

ZNEO32! Cortex-M3

Z32F0641 MCU

Product Specification

PS034404-0417

PRELIMINARY

Copyright ©2017 Zilog[®], Inc. All rights reserved. www.zilog.com

ii

Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2017 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

ZNEO32! is a trademark or registered trademark of Zilog, Inc. All other product or service names are the property of their respective owners.

iii An **DXYS** Company

Revision History

Each instance in this document's revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in the table below.

Date	Revision Level	Description	Page
Apr 2017	04	Updated part numbers to include the Cortex M identifier.	All
Aor 2016	03	Added timing information for peripherals; global edits for clarity.	All
Feb 2016	02	Updated Figure 18.2 LQFP-32 Package Dimension.	178
Nov 2015	01	Original issue.	

1. Overview

Introduction

Zilog's Z32F0641 MCU, a member of the ZNEO32! Family of microcontrollers, is a cost-effective and highperformance 32-bit microcontroller. The Z32F0641 MCU provides a 3-phase PWM generator unit which is suitable for inverter bridges, including motor drive systems.

Two 12-bit high speed ADC units with 16-channel analog multiplexed inputs support feedback retrieval from the inverter bridge. Multiple powerful external serial interfaces help communicate with on-board sensors and devices.

Figure 1.1 shows a block diagram of the Z32F0641 MCU.

Figure 1.1 Block Diagram

Figure 1.2 and Figure 1.3 show the pin layouts.

Figure 1.2 Pin Layout (LQFP-48)

Figure 1.3 Pin Layout (LQFP-32)

Overview

Product Features

The Z32F0641 MCU offers the following features:

- High Performance low-power Cortex-M3 core
- 64 KB code Flash memory with cache function
- 8 KB SRAM
- 3-Phase PWM with ADC triggering function
- 1.5Msps high-speed ADC with sequential conversion function
 - 2 units with 11 channel Inputs
- Watchdog timer
- Six general purpose timers
 - Periodic, One-shot, PWM, Capture mode
 - Multi-timer synchronization option
- External communication ports:
 - o 2 UARTs
 - 1 l²C
 - o 1 SPI
- Direct Memory Access (DMA) controller with 4 channels
- System fail-safe function by clock monitoring
- XTAL OSC fail monitoring
- Debug and emergency stop function
- Serial Wire Debug (SWD) and JTAG Debugger (JTAG is only for LQFP-48)
- Supports UART and SPI ISP
- Two types of package options
 - LQFP-48 (0.5mm pitch)
 - LQFP-32 (0.65mm pitch)
- Industrial grade operating temperature (-40 ~ +85 ℃)

Part Number	Flash	SRAM	UART	SPI	I2C	MPWM	ADC	I/O Ports	Package
Z32F06410AES	64KB	8KB	2	1	1	1	2-unit 11 ch	44	LQFP-48
Z32F06410AKS	64KB	8KB	2	1	1	1	2-unit 8 ch	30	LQFP-32

Table 1.1 Device Type

Architecture

Block Diagram

An internal block diagram of the Z32F0641 MCU is shown in Figure 1.4.

Figure 1.4 Internal Block Diagram

Functional Description

The following section provides an overview of the features of the Z32F0641 microcontroller.

ARM Cortex-M3

- ARM-powered Cortex-M3 core based on ARMv7M architecture, which is optimized for small-size and low-power systems. On core system timer (SYSTICK) provides a simple 24-bit timer that enables easy management of system operations
- Thumb-compatible Thumb-2 only instruction set processor core makes code high-density
- Hardware division and single-cycle multiplication
- Integrated Nested Vectored Interrupt Controller (NVIC) provides deterministic interrupt handling
- JTAG and SWD debugging features
- Maximum 48 MHz operating frequency with zero wait execution

Nested Vector-Interrupt Controller (NVIC)

- The ARM Nested Vectored Interrupt Controller (NVIC) on the ARM Cortex-M3 core handles all internal and external exceptions. When an interrupt condition is detected, the processor state is automatically stored to the stack and automatically restored from the stack at the end of interrupt service routine.
- The vector is fetched in parallel to the state saving, which enables efficient interrupt entry.
- The processor supports tail-chaining, which allows for back-to-back interrupts to be performed without the overhead of state saving and restoring

64 KB Internal Code Flash Memory

- The Z32F0641 MCU provides internal 64 KB code Flash memory and its controller, which is sufficient to program the motor algorithm and control the system. Self-programming is available and ISP and JTAG programming is also supported in boot or debugging mode.
- Instruction and data cache buffer are present and overcome the low-bandwidth Flash memory. The CPU can execute from Flash memory with zero wait state up to 48 MHz bus frequency.

8 KB 0-wait Internal SRAM

On chip 8 KB 0-wait SRAM can be used for working memory space and program code can be loaded on this SRAM

Boot Logic

• Smart boot logic supports Flash programming. The Z32F0641 MCU can be accessed by an external boot pin; UART and SPI programming are available in Boot Mode

System Control Unit

 The System Control Unit (SCU) block manages internal power, clock, reset, and Operation Mode. The SCU also controls analog blocks (Oscillator Block, VDC and LVD)

32-bit Watchdog Timer

• The Watchdog Timer (WDT) performs the system monitoring function. The WDT generates an internal reset or interrupt if the system is in abnormal state

Multi-purpose 16-bit Timer

- Six-channel 16-bit general purpose timers support the following functions
 - o Periodic timer mode
 - $\circ \quad \text{Counter mode} \quad$
 - o PWM mode
 - Capture mode

 Built-in timer also supports counter-synchronization mode which can generate synchronized waves and timing

Motor PWM Generator

- 3-phase Motor PWM Generator is implemented. 16-bit up/down counter with prescaler supports triangular and saw tooth waveforms
- PWM has the ability to generate internal ADC trigger signals to measure the signal on time
- Dead time insertion and emergency stop functionality provide overcurrent protection for the chip and system

Serial Peripheral Interface (SPI)

- The Serial Peripheral Interface (SPI) block provides synchronous serial communication. The Z32F0641 MCU has 1 channel SPI module which includes the DMA function supported by a DMA controller. Transfer data is moved to/from the memory area without CPU operation
- Boot Mode uses this SPI block to download the Flash program

Inter-Integrated Circuit Interface

The Z32F0641 MCU has 1 channel Inter-Integrated Circuit (I²C) block which supports up to 400 kHz I²C communication. Master and slave modes are supported

Universal Asynchronous Receiver/Transmitter

- The Z32F0641 MCU has 2 channels Universal Asynchronous Receiver/Transmitter (UART) block. For accurate baud rate control, the fractional baud rate generator is provided
- The UART features the DMA function, supported by a DMA controller. Transfer data is moved to/from the memory area without CPU operation

General PORT I/Os

- 16-bit PA, PB, PC, and PD ports are available and provide multiple functionality:
 - o General I/O port
 - Independent bit set/clear function
 - External interrupt input port
- Programmable pull-up and open-drain selection
- On-chip input debounce filter

12-bit Analog-to-Digital Converter (ADC)

- 2 built-in Analog-to-Digital Converters (ADC) can convert analog signals up to 1.5 Msps conversion rate. 11-channel analog MUX provides various combinations from external analog signals.
- The ADC features the DMA function, supported by a DMA controller. Transfer data is moved to/from the memory area without CPU operation.

Pin Description

Pin configurations are listed in Table 1.2.

Pin M	lame				
LQFP48		Pin Name	Туре	Description	Remark
		PA0*	IOUS	PORT A Bit 0 Input/Output	
1	1	AN0	IA	Analog Input 0	
•		PA1*	IOUS	PORT A Bit 1 Input/Output	
2	2	AN1	IA	Analog Input1	
		PA2*	IOUS	PORT A Bit 2 Input/Output	
3	3	WDTO	0	Watchdog timer overflow output	
		AN2	IA	Comparator 2 Input	
4		PA3*	IOUS	PORT A Bit 3 Input/Output	
4	4	AN3	IA	Analog Input 3	
		PA4*	IOUS	PORT A Bit 4 Input/Output	
5	-	SS1	I/O	Slave Select 1 for SPI0	
		AN4	IA	Analog Input 4	
		PA5*	IOUS	PORT A Bit 5 Input/Output	
6	-	SS2	I/O	Slave Select 2 for SPI0	
		AN5	IA	Analog Input 5	
		PA6*	IOUS	PORT A Bit 6 Input/Output	
	-	TOIO	I/O	Timer 0 Input/Output	
7	5	T2IO	I/O	Timer 2 Input/Output	
		AN6	IA	Analog Input 6	
		PA7*	IOUS	PORT A Bit 7 Input/Output	
0	0	T1IO	I/O	Timer 1 Input/Output	
8	6	T3IO	I/O	Timer 3 Input/Output	
		AN7	IA	Analog Input 7	
		PA8*	IOUS	PORT A Bit 8 Input/Output	
•	-	T2IO	I/O	Timer 2 Input/Output	
9	7	T0IO	I/O	Timer 0 Input/Output	
		AN8	IA	Analog Input 8	
		PA9*	IOUS	PORT A Bit 9 Input/Output	
40		T3IO	I/O	Timer 3 Input/Output	
10	-	T1IO	I/O	Timer 1 Input/Output	
		AN9	IA	Analog Input 9	
		PA10*	IOUS	PORT A Bit 10 Input/Output	
11	-	SS3	Output	ETM Trace Data 1	
		AN10	IA	Analog Input 10	
12	8	VDD	Р	VDD	
13	9	GND	Р	Ground	
14	-	PA11*	IOUS	PORT A Bit 11 Input/Output	
		DAACT			
45		PA12*	IOUS	PORT A Bit 12 Input/Output	
15	-	TOIO	I/O	Timer 0 Input/Output	

Table 1.2 Pin Description

		PA13*	IOUS	PORT A Bit 13 Input/Output	
16	-	T1IO	I/O	Timer 1 Input/Output	
		PA14*	IOUS	PORT A Bit 14 Input/Output	
17	-	T2IO	I/O	Timer 2 Input/Output	
		PA15*	IOUS	PORT A Bit 15 Input/Output	
18	-	T3IO	I/O	Timer 3 Input/Output	
40	40	PB0	IOUS	PORT B Bit 0 Input/Output	
19	10	PWM0UH	Output	PWM0 UH Output	
		PB1	IOUS	PORT B Bit 1 Input/Output	
20	11	PWM0UL	Output	PWM0 UL Output	
	10	PB2	IOUS	PORT B Bit 0 Input/Output	
21	12	PWM0VH	Output	PWM0 VH Output	
	1.0	PB3	IOUS	PORT B Bit 1 Input/Output	
22	13	PWM0VL	Output	PWM0 VL Output	
		PB4	IOUS	PORT B Bit 4 Input/Output	
23	14	PWM0WH	Output	PWM0 WH Output	
		PB5	IOUS	PORT B Bit 5 Input/Output	
24	15	PWM0WL	Output	PWM0 WL Output	
		PB6	IOUS	PORT B Bit 6 Input/Output	
25	16	PRTIN0	Input	PWM0 Protection Input signal 0	
		TOIO	I/O	Timer 0 Input/Output	
		PB7	IOUS	PORT B Bit 7 Input/Output	
26	17	OVIN0	Input	PWM0 Over-voltage input signal 0	· · · · ·
		T1IO	I/O	Timer 1 Input/Output	
		PC0	IOUS	PORT C Bit 0 Input/Output	
	10	TCK/SWC			
27	18	К	Input	JTAG TCK, SWD Clock Input	
		RXD1	Input	UART0 Rx Data Input	
		PC1	IOUS	PORT C Bit 1 Input/Output	
28	19	TMS/SWDI	I/O	JTAG TMS, SWD Data Input/Output	
20	13	0	1/0	· · ·	
		TXD1	Input	UART0 Tx Data Output	
		PC2	IOUS	PORT C Bit 2 Input/Output	
29	20	TDO/SWO	Output	JTAG TDO, SWO Output	
		T8IO	I/O	Timer 8 Input/Output	
		PC3	IOUS	PORT C Bit 3 Input/Output	
30	-	TDI	Input	JTAG TDI Input	
		T9IO	I/O	Timer 9 Input/Output	
		PC4	IOUS	PORT C Bit 4 Input/Output	
31	-	nTRST	Input	JTAG nTRST Input	
		T0IO	Input	Timer 0 input/Output	
		PC5	IOUS	PORT C Bit 5 Input/Output	
32	-	RXD1	Input	UART1 RXD Input	
		T1IO	I/O	Timer 1 input/Output	
33		PC6	IOUS	PORT C Bit 6 Input/Output	
55		TXD1	Output	UART1 TXD Output	

Z32F0641 Product Specification

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			T2IO	I/O	Timer 2 input/Output	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			PC11	IOUS	· · ·	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	34	21	BOOT	Input	Boot mode Selection Input	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			T9IO	I/O		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			PC10	IOUS	PORT C Bit 10 Input/Output	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	22	nRESET	Input	External Reset Input	Pull-up
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			T8IO	I/O	Timer 8 input/Output	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	36	23	GND	Р	Ground	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	37	24	VDD	Р	VDD	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			PC7	IOUS	PORT C Bit 7 Input/Output	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38	-	SCL0	Output	I ² C Channel 0 SCL In/Out	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			T3IO	I/O	Timer 3 input/Output	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20		PC8	IOUS	PORT C Bit 8Input/Output	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	39	39 -	SDA0	Output	I ² C Channel 0 SDA In/Out	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	40		PC9	IOUS	PORT C Bit 9 Input/Output	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	40	40 -	CLKO	Output	System Clock Output	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			PC15	IOUS	PORT C Bit 14 Input/Output	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	41	25	TXD0	Output	UART0 TXD Output	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			MISO0	I/O	SPI0 Master-Input/Slave-Output	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			PC14	IOUS	PORT C Bit 14 Input/Output	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42	26	RXD0	Input	UART0 RXD Input	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			MOSI0	I/O	SPI0 Master-Output/Slave-Input	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12	27	PC13	IOUS	PORT C Bit 13 Input/Output	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	43	21	XOUT	OA	External Crystal Oscillator Output	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4.4	20	PC12	IOUS	PORT C Bit 12 Input/Output	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	20	XIN	IA	External Crystal Oscillator Input	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			PD0	IOUS	PORT D Bit 0 Input/Output	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	29	SS0	I/O	SPI1 Slave Select	
46 30 SCK0 I/O SPI0 Clock Input/Output T9IO I/O Timer 9 input/Output Timer 9 input/Output 47 31 PD2 IOUS PORT D Bit 2 Input/Output 47 31 MISO0 I/O SPI Channel 0 Master In / Slave Out 5CL0 Output I²C Channel 0 SCL In/Out PD3* 48 32 MOSI0 I/O SPI Channel 0 Master Out / Slave In			T8IO	I/O	Timer 8 input/Output	
47 31 PD2 I/O Timer 9 input/Output 48 32 PD3* IOUS PORT D Bit 2 Input/Output			PD1	IOUS	PORT D Bit 1 Input/Output	
47 31 PD2 IOUS PORT D Bit 2 Input/Output 47 31 MISO0 I/O SPI Channel 0 Master In / Slave Out SCL0 Output I²C Channel 0 SCL In/Out 48 32 PD3* IOUS PORT D Bit 3 Input/Output	46	30	SCK0	I/O	SPI0 Clock Input/Output	
47 31 MISO0 I/O SPI Channel 0 Master In / Slave Out SCL0 Output I²C Channel 0 SCL In/Out 48 32 PD3* IOUS PORT D Bit 3 Input/Output 48 32 MOSI0 I/O SPI Channel 0 Master Out / Slave In			T9IO	I/O	Timer 9 input/Output	
47 31 MISO0 I/O SCL0 Output I ² C Channel 0 SCL In/Out PD3* IOUS PORT D Bit 3 Input/Output 48 32 MOSI0 I/O			PD2	IOUS	PORT D Bit 2 Input/Output	
48 32 PD3* IOUS PORT D Bit 3 Input/Output 48 32 MOSI0 I/O SPI Channel 0 Master Out / Slave In	47	31	MISO0	I/O	SPI Channel 0 Master In / Slave Out	
48 32 MOSI0 I/O SPI Channel 0 Master Out / Slave In			SCL0	Output	I ² C Channel 0 SCL In/Out	
48 32 MOSIO 1/0			PD3*	IOUS	PORT D Bit 3 Input/Output	
	48	32	MOSI0	I/O	SPI Channel 0 Master Out / Slave In	
SDA0 Output I ² C Channel 0 SDA In/Out			SDA0	Output	I ² C Channel 0 SDA In/Out	

*Notation:

I=Input, O=Output, U=Pull-up, D=Pull-down,

S=Schmitt-Trigger Input Type, C=CMOS Input Type, A=Analog, P=Power

(*) Selected pin function after reset condition

Pin order may be changed with revision notice.

Memory Map

Address	Memories mapped
0x0000_0000	FLASH ROM (64KB)
0x0000_FFFF 0x0001_0000	RESERVED
0x0001_FFFF 0x0002_0000	RESERVED
0x1FFE_FFFF 0x1FFF_0000	BOOT ROM (2KB)
0x1FFF_07FF 0x1FFF_0800	RESERVED
0x1FFF_FFFF 0x2000_0000	SRAM (8KB)
0x2000_1FFF 0x2000_2000	RESERVED
0x2FFF_FFFF 0x3000_0000	FLASH ROM Mirrored (64KB)
0x3000_FFFF 0x3001_0000	RESERVED
0x3001_FFFF 0x3002_0000	BOOT ROM (2KB) Mirror
0x3002_07FF 0x3003_0000	OTP Mirror
0x3003_07FF 0x3004_0000	RESERVED
0x3FFF_FFFF 0x4000_0000	PERIPHERALS
0x4000_FFFF 0x4001_0000	RESERVED
0x5FFF_FFFF 0x6000_0000	External RAM (Not support)
0x9FFF_FFFF 0xA000_0000	External DEVICE(Not support)
0xDFFF_FFFF 0xE000_0000	Private peripheral bus: Internal
0xE003_FFFF 0xE004_0000	Private peripheral bus: Debug/External
0xE00F_FFFF 0xE010_0000 0xFFFF_FFFF	Vendor Specific

Figure 1.5 Main Memory Map

Address	Peripherals mapped	
0x4000_0000	SCU	
0x4000_00FF 0x4000_0100	FMC	
0x4000_01FF 0x4000_0200	WDT	
0x4000_02FF 0x4000_0300	Reserved	
0x4000_03FF 0x4000_0400	DMAC	
0x4000_04FF 0x4000_0500	Reserved	
0x4000_05FF 0x4000_0600	Reserved	
0x4000_0FFF 0x4000_1000	PCU	
0x4000_1FFF 0x4000_2000	GPIO	
0x4000_2FFF 0x4000_3000	TIMER	
0x4000_3FFF 0x4000_4000	MPWM0	
0x4000_4FFF 0x4000_5000	Reserved	
0x4000_7FFF 0x4000_8000	UART0	
0x4000_80FF 0x4000_8100	UART1	
0x4000_81FF 0x4000_8200	Reserved	
0x4000_8FFF 0x4000_9000	SPI0	
0x4000_90FF 0x4000_9100	Reserved	
0x4000_9FFF 0x4000_A000	I2C0	
0x4000_A0FF 0x4000_A100	Reserved	
0x4000_AFFF 0x4000_B000	ADC0	
0x4000_B0FF 0x4000_B100	ADC1	
0x4000_B1FF 0x4000_B200 0x4000_FFFF	Reserved	

Figure 1.6 Peripheral Memory Map

Address	Core Memory Map
0xE000_0000	ITM
0xE000_0FFF	
0xE000_1000	DWT
0xE000_1FFF	
0xE000_2000	FPB
0xE000_2FFF	
0xE000_3000	Reserved
0xE000_DFFF	
0xE000_E000	System Control
0xE000_EFFF	
0xE000_F000	Reserved
0xE003_FFFF	
0xE004_0000	TPIU
0xE004_0FFF	1110
0xE004_1000	ETM
0xE004_1FFF	
0xE004_2000	
0xE00F_EFFF	
	External PPB
0xE00F_F000	ROM Table
0xE00F_FFFF	

Figure 1.7 Cortex-M3 Private Memory Map

Note: Refer to document number DDI337 from ARM for more information about the memory maps.

2. CPU

Cortex-M3 Core

The CPU core is supported by the ARM Cortex-M3 processor which provides a high-performance, low-cost platform. Document number DDI337 from ARM provides more information about Cortex-M3.

Interrupt Controller

Driority	Table 2.1 Interrupt vector Map					
Priority	Vector Address	Interrupt Source				
-16	0x0000_0000	Stack Pointer				
-15	0x0000_0004	Reset Address				
-14	0x0000_0008	NMI Handler				
-13	0x000_000C	Hard Fault Handler				
-12	0x0000_0010	MPU Fault Handler				
-11	0x0000_0014	BUS Fault Handler				
-10	0x0000_0018	Usage Fault Handler				
-9	0x0000_001C	Reserved				
-8	0x0000_0020	Reserved				
-7	0x0000_0024	Reserved				
-6	0x0000_0028	Reserved				
-5	0x0000_002C	SVCall Handler				
-4	0x0000_0030	Debug Monitor Handle r				
-3	0x0000_0034	Reserved				
-2	0x0000_0038	PenSV Handler				
-1	0x0000_003C	SysTick Handler				
0	0x0000_0040	LVDDETECT				
1	0x0000_0044	SYSCLKFAIL				
2	0x0000_0048	XOSCFAIL				
3	0x0000_004C	WDT				
4	0x0000_0050	Reserved				
5	0x0000_0054	TIMER0				
6	0x0000_0058	TIMER1				
7	0x0000_005C	TIMER2				
8	0x0000_0060	TIMER3				
9	0x0000_0064	Reserved				
10	0x0000_0068	Reserved				
11	0x0000_006C	Reserved				
12	0x0000_0070	Reserved				
13	0x0000_0074	TIMER8				
14	0x0000_0078	TIMER9				
15	0x0000_007C	Reserved				
16	0x0000_0080	GPIOAE				
17	0x0000_0084	GPIOAO				
18	0x0000_0088	GPIOBE				

Table 2.1 Interrupt Vector Map

Z32F0641 Product Specification

19	0x0000_008C	GPIOBO
20	0x0000_0090	GPIOCE
21	0x0000_0094	GPIOCO
22	0x0000_0098	GPIODE
23	0x0000_009C	GPIODO
24	0x0000_00A0	MPWM0
25	0x0000_00A4	MPWM0PROT
26	0x0000_00A8	MPWM00VV
27	0x0000_00AC	Reserved
28	0x0000_00B0	Reserved
29	0x0000_00B4	Reserved
30	0x0000_00B8	Reserved
31	0x0000_00BC	Reserved
32	0x000_00C0	SPI0
33	0x0000_00C4	Reserved
34	0x0000_00C8	Reserved
35	0x0000_00CC	Reserved
36	0x0000_00D0	I2C0
37	0x0000_00D4	Reserved
38	0x0000_00D8	UART0
39	0x0000_00DC	UART1
40	0x0000_00E0	Reserved
41	0x0000_00E4	Reserved
42	0x0000_00E8	Reserved
43	0x0000_00EC	ADC0
44	0x0000_00F0	ADC1
45	0x0000_00F4	Reserved
46	0x0000_00F8	Reserved
47	0x0000_00FC	Reserved
48	0x0000_0100	Reserved
49	0x0000_0104	Reserved
50	0x0000_0108	Reserved
51	0x0000_010C	Reserved
52	0x0000_0110	Reserved
53	0x0000_0114	Reserved
54	0x0000_0118	Reserved
55	0x0000_011C	Reserved
56	0x0000_0120	Reserved
57	0x0000_0124	Reserved
58	0x0000_0128	Reserved
59	0x0000_012C	Reserved
60	0x0000_0130	Reserved
61	0x0000_0134	Reserved
62	0x0000_0138	Reserved
63	0x0000_013C	Reserved

CPU

3. Boot Mode

Boot Mode Pins

The Z32F0641 MCU includes a Boot Mode option to program internal Flash memory. To enter Boot Mode, set the BOOT pin to **Low** at reset timing.

Note: The Normal state of the BOOT pin is High.

Boot Mode supports UART boot and SPI boot.UART boot uses the UART0 port, and SPI boot uses SPI0.The pins used for Boot Mode are listed in Table 3.1.

Block	Pin Name	Dir	Description
SYSTEM	nRESET/PC10	I	Reset Input signal
SISIEM	BOOT/PC11	1	'0' to enter Boot mode
UART0	RXD0/PC14	I	UART Boot Receive Data
UANTO	TXD0/PC15	0	UART Boot Transmit Data
	SS0/PA12	1	SPI Boot Slave Select
SPI0	SCK0/PA13	I	SPI Boot Clock Input
510	MOSI0/PA14	I	SPI Boot Data Input
	MISO0/PA15	0	SPI Boot Data Output

Table 3.1 Boot Mode Pins

Boot Mode Connections

Design the target board using either of the Boot Mode ports – UART or SPI. Figure 3.1 and Figure 3.2 display sample Boot Mode connections.

Figure 3.1 UART Boot Connection Diagram

4. System Control Unit

Overview

The Z32F0641 microcontroller has an in-built intelligent power control block which manages the system analog blocks and operating modes. Internal reset and clock signals are controlled by the SCU block to maintain optimal system performance and power dissipation.

Figure 4.1 SCU Block Diagram

Clock System

The Z32F0641 MCU has the following two main operating clocks:

HCLK – Clock for the CPU and AHB bus system

PCLK – Clock for peripheral systems

Figure 4.2 and Figure 4.3 show the chip's clock system. Table 4.1 lists the clock source descriptions.

Figure 4.2 Clock Source Configuration

Figure 4.3 System Clock Configuration

Each of the multiplexers for switching the clock source contains a circuit which allows glitch-free switching between clock modes.

Table 4	.1 Clock	Sources
---------	----------	---------

Clock name	Frequency	Description
MainOSC	XTAL(4MHz~8MHz)	External Crystal IOSC
PLL Clock	8MHz ~ 80MHz	On Chip PLL
ROSC	1MHz	Internal RING OSC

The PLL can synthesize the PLLCLK clock up to 80 MHz with the FIN reference clock. It also has an internal pre-divider and post-divider.

HCLK Clock Domain

The HCLK clock feeds the clock to the CPU and AHB bus. The Cortex-M3 CPU requires two clocks related with the HCLK clock:

FCLK – FCLK is a free-running clock which runs continuously except during Power-Down Mode HCLK – HCLK can be stopped during Idle Mode

Miscellaneous Clock Domain for Cortex-M3

Figure 4.4 Miscellaneous Clock Configuration

Z32F0641 Product Specification

PCLK Clock Domain

PCLK is the master clock of all the peripherals. It can be stopped in Power-Down Mode. Each peripheral clock is generated by the PCER register set.

Clock Configuration

After power up, the default system clock is fed by the RINGOSC (1 MHz) clock. RINGOSC is enabled by default at power up. The other clock sources are enabled by user controls with the RINGOSC system clock.

The MOSC clock can be enabled by the CSCR register. Before enabling the MOSC block, the pin mux configuration should be set for XIN, XOUT function. PC12 and PC13 pins are shared with MOSC's XIN and XOUT function - PCCMR and PCCCR registers should be correctly configured. After enabling the MOSC block, you must wait for more than 1 msec to ensure stable operation of crystal oscillation.

The PLL clock can be enabled by the PLLCON register. After enabling the PLL block, you must wait for the PLL lock flag. When the PLL output clock is stable; you can select MCLK for your system requirement. Before changing the system clock, Flash access wait should be set to the maximum value. After the system clock is changed, you will need to set the desired Flash access wait time.

An example flow chart outlining the steps to configure the system clock is shown in Figure 4.5.

Figure 4.5. Clock Configuration Flow Chart

When you speed up the system clock up to maximum operating frequency, you should check the Flash wait control configuration. Flash read access time is one of the limiting factors in performance. The wait control recommendation is provided in Table 4.2.

FM.CFG.WAIT	FLASH Access Wait	Available Max System Clock Frequency
000	0 clock wait	~16MHz
001	1 clock wait	~32MHz
010	2 clock wait	~48MHz
011	3 clock wait	~48MHz

Table 4.2. Flash Wait Control Recommendation

Reset

The Z32F0641 MCU has two system resets:

- Cold reset by POR, which is effective during power up or down sequence, and
- Warm reset, which is generated by several reset sources. The reset event causes the chip to return to initial state.

The cold reset has only one reset source, POR. The warm reset has the following reset sources:

- nRESET pin
- WDT reset
- LVD reset
- MCLK Fail reset
- MOSC Fail reset
- S/W reset
- CPU request reset

Cold Reset

Cold reset is an important feature of the chip when power is up. This characteristic globally affects the system boot. Internal VDC is enabled when VDD power is turned on. The internal VDD level slope is followed by the external VDD power slope. The internal PoR trigger level is 1.4 V of internal VDC voltage out level. At this time, boot operation is started. The RINGOSC clock is enabled and counts to 4 msec for internal VDC level stabilizing. During this time, the external VDD voltage level should be greater than the initial LVD level (2.3 V). After counting 4 msec, the CPU reset is released and the operation is started.

Figure 4.6 shows the power up sequence and internal reset waveform.

Figure 4.6. Power-up POR Sequence

The RSSR register shows the POR reset status. The last reset comes from POR; RSSR.PORST is set to "1". After power up, this bit is always "1". If an abnormal internal voltage drop occurs during normal operation, the system will be reset and this bit is also set to "1".

When cold reset is applied, the chip returns to its initial state.

Warm Reset

The warm reset event has several reset sources. Some parts of the chip return to initial state when a warm reset condition occurs.

The warm reset source is controlled by the RSER register and the status appears in the RSSR register. The reset for each peripheral block is controlled by the PRER register. The reset can be masked independently.

Figure 4.7. Reset Configuration

Operation Mode

The INIT mode is the initial state of the chip when reset is asserted. The RUN mode is for maximum performance of the CPU with a high-speed clock system. The SLEEP mode can be used as the low-power consumption mode. Low-power consumption is achieved by halting the processor core and unused peripherals.

Figure 4.8 shows the operating mode transition diagram.

Figure 4.8. Operating Mode

RUN Mode

In RUN mode, the CPU core and the peripheral hardware is operated by using the high-speed clock. After reset, followed by the INIT state, the chip enters RUN mode.

SLEEP Mode

In SLEEP mode, only the CPU is stopped. Each peripheral function can be enabled by the function enable and clock enable bit in the PER and PCER register.

Pin Description

Pin Name	Туре	Description
nRESET	1	External Reset Input
XIN/XOUT	OSC	External Crystal Oscillator
STBYO	0	Stand-by Output Signal
CLKO	0	Clock Output Monitoring Signal

Table 4.3 SCU and PLL Pins

Registers

The base address of the system control unit is $0 \times 4000 _ 0000$ and the register map is described in Table 4.4.

Name	Offset	Туре	Description	Reset Value
CIDR	0x0000	R	CHIP ID Register	AC33_4064
SMR	0x0004	RW	System Mode Register	0000_0000
SRCR	0x0008	RW	System Reset Control Register	0000_0000
WUER	0x0010	RW	Wake up source enable register	0000_0000
WUSR	0x0014	RW	Wake up source status register	0000_0000
RSER	0x0018	RW	Reset source enable register	0000_0049
RSSR	0x001C	RW	Reset source status register	0000_0080*
PRER1	0x0020	RW	Peripheral reset enable register 1	030F_0F3F*
PRER2	0x0024	RW	Peripheral reset enable register 2	0031_0311*
PER1	0x0028	RW	Peripheral enable register 1	0000_000F*
PER2	0x002C	RW	Peripheral enable register 2	0000_0101*
PCER1	0x0030	RW	Peripheral clock enable register 1	0000_000F*
PCER2	0x0034	RW	Peripheral clock enable register 2	0000_0101*
CSCR	0x0040	RW	Clock Source Control register	0000_0020
SCCR	0x0044	RW	System Clock Control register	0000_0000
CMR	0x0048	RW	Clock Monitoring register	0000_0090
NMIR	0x004C	RW	NMI control register	0000_0000
COR	0x0050	RW	Clock Output Control register	0000_000F
PLLCON	0x0060	RW	PLL Control register	0000_0000
VDCCON	0x0064	RW	VDC Control register	0000_000F
LVDCON	0x0068	RW	LVD Control register	0000_0001
EOSCR	0x0080	RW	External Oscillator control register	0000_0300
EMODR	0x0084	RW	External mode pin read register	0000_000X
DBCLK1	0x009C	RW	Debounce Clock Control register 1	0001_0001
DBCLK2	0x00A0	RW	Debounce Clock Control register 2	0001_0001
MCCR1	0x0090	RW	Misc Clock Control register 1	0000_0000
MCCR2	0x0094	RW	Misc Clock Control register 2	0000_0000
MCCR3	0x0098	RW	Misc Clock Control register 3	0000_0001
MCCR4	0x00A8	RW	Misc Clock Control register 4	0001_0000

Table 4.4 SCU Register Map

CIDR Chip ID Register

The CHIP ID Register shows chip identification information. This register is a 32-bit read-only register.

																											CIE	DR=	0x40	000_	000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															СН	IPID															
														0x	AC3	3_40	064														
															F	RO															
•																															
									31	С	HIP	٦ID				Devi			~ 4												
								()						(DxAC	-33_	_40	04												
																										CI	DR=	0x4	000_	000	С
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															СНІ	PID2	2														
														01	000	0_00	00														
														0,		_															
															F	80															

SMR System Mode Register

31

0

CHIPID2

The current operating mode is shown in this SCU mode register. The operating mode can be changed by writing a new mode in this register. The previous operating mode will be saved in this register after a reset event. The System Mode Register is a 16-bit register.

Revision ID 0x0000_0000

SRCR System Reset Control Register

The System Reset Control Register allows the software to initate a reset. This register also provides the polarity for the STBYOP pin.

WUER Wakeup Source Enable Register

Enable the wakeup source when the chip is in Power-Down Mode. The source of chip wakeup should be enabled in each bit field for wakeup sources that will be used. If the source is used as a wakeup source, the corresponding bit should be written as **1**. If the source is not used as a wakeup source, the bit should be written as **0**. The Wakeup Source Enable Register is a 16-bit register.

WUER=-0x4000_	0010
	_0010

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				GPIODWUE	GPIOCWUE	GPIOBWUE	GPIOAWUE							WDTWUE	LVDWUE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				RW	RW	RW	RW	Ì						RW	RW
				11	GPIC	DWUE		Enable	wakeup	source	of GP	IOD po	rt pin c	hange	
								event 0 Not	t used f	or wak		ILCO			·
									able the				ation		
				10	GPIC	CWUE		Enable						hange	
								event						_	
									t used f				- 4'		
				9	GPIC	BWUE		Enable	able the					hande	event
				0		DIIOL			t used f					nange	event
				_					able the				ation		
				8	GPIC	DAWUE		Enable	wakeup	source	of GP	IOA poi	rt pin c	hange	event
								0 Not	t used f	or wak	eup sou	urce			
									able the				ation		
				1	WDT	WUE		Enable					timer ev	vent	
									t used f				otion		
				0	LVDV	VUE		Enable v	able the						
				0		VOL			t used f						
				_					able the				ation		

WUSR=0x4000 0014

WUSR Wakeup Source Status Register

When the system is woken up by any wakeup source, the wakeup source is identified by reading the Wakeup Source Status Register. When the bit is set to 1, the related wakeup source issues the wake-up signal to the SCU. The bit is cleared when the event source is cleared by the software. These bits show the interrupt flag in each peripheral.

Examples:

A GPIO wakeup status is cleared by clearing the interrupt flag in the PCn.ISR register of the PCU block. A WDTWU interrupt is cleared by clearing the overflow interrupt flag in the WDT block. The LVD flag is cleared when the low voltage condition is resolved.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				GPIODWU	GPIOCWU	GPIOBWU	GPIOAWU							WDTWU	LVDWU
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				R	R	R	R							R	R
								•							
				11	GPIC	DWU		Status c event	of wakeu	up sou	ce of C	SPIOD	port pin	change	e
							 		wakeup	o event	:				
							1	Wa	ikeup ev	vent wa	as gene				
				10	GPIC	CWU		Status c event	of wakeu	up sou	ce of C	SPIOC	port pin	change	Э
							<u> </u>		wakeup	o event					
							1		keup ev			rated			
				9	GPIC	BWU			of wakeu	up sou	ce of C	SPIOB	port pin	change)
								event	wakaur						
							1		wakeup keup ev			rated			
				8	GPIC	DAWU		Status c	of wakeu	JD SOU	ce of C	GPIOA r	oort pin	change)
				-				event							
							C		wakeup						
							1		ikeup ev						
				1	WDT	WU			of wakeu			vatchdo	g timer	event	
								-	wakeup						
				0	LVDV	VII	1		keup ev f wakeu				nt		
				U		vU			wakeup				71 IL		
							1		-			rated			
								٧Vd	keup ev		is gene	aleu			

PS034404-0417

RSER Reset Source Enable Register

The reset source to the CPU is selected by the Reset Source Enable Register. When **1** is written in the bit field of each reset source, the reset source event is transferred to the reset generator. When **0** is written in the bit field of each reset source, the reset source event is masked and does not generate a reset event.

RSER=0x4000_0018

7	6		5	2	1	0												
	PINRST	COF	RERST	SWRST	WDTRST	MCKFRST	XFRST	LVDRST										
0	1	_1	0	0	1	0	0	1										
	RW	F	RW	RW	RW	RW	RW	RW										
		6	PINF	ST	External pin res	set enable bit												
		Ũ		<u> </u>		n this event is	masked											
				-	1 Reset from this event is enabled													
		5	CPU	RST	CPU request re													
				_	0 Reset from													
					1 Reset from this event is enabled													
		4	SWF	ST	Software reset enable bit 0 Reset from this event is masked													
				-														
				DOT		n this event is												
		3	WDT	RSI _	Watchdog Time													
				-		n this event is												
		2	MCK	FRST	MCLK Clock fa													
		2	WON	-														
			0 Reset from this event is masked 1 Reset from this event is enabled															
		1	XFR	ST	External OSC (
		•	74114	_		n this event is												
				-		n this event is												
		0	LVDF	RST	LVD reset enab													
				-	0 Reset from this event is masked													
				-	1 Reset from this event is enabled													

RSSR Reset Source Status Register

The Reset Source Status Register displays the reset source information when a reset event occurs. 1 indicates that a reset event exists and 0 indicates that a reset event does not exist for a given reset source. When a reset source is found, write 1 to the corresponding bit to clear the reset status. This register is an 8-bit register.

RSSR=0x4000_001C

7	6	5	4	3	2	1	0									
PORST	PINRST	CPURST SWF		WDTRST	MCKFRST	XFRST	LVDRST									
1	0	0	0	0	0	0	0									
RC1	RC1	RC	1 RC1	RC1	RC1	RC1	RC1									
		7	PORST	Power on rese	t status bit											
				0 Read : R Write : n	eset from this e o effect	event was not	exist									
					set from this ev lear the status	vent was occur	rred									
		6	PINRST	External pin re	set status bit											
				Write : n												
					set from this ev lear the status	vent was occu	rred									
		5	CPURST	CPU request i												
				• • • • • • •	eset from this e	event was not	exist									
			Write : no effect 1 Read :Reset from this event was occurred Write : Clear the status													
				Write : C	lear the status											
		4	SWRST		oftware reset status bit Read : Reset from this event was not exist											
				0 Read : R Write : n		event was not	exist									
					set from this ev	vent was occu	rred									
					lear the status											
		3	WDIRSI		er reset status		oviet									
					0 Read : Reset from this event was not exist Write : no effect											
					set from this ev	vent was occu	rred									
					lear the status											
		2	MCLKFRST	MCLK Fail res		want waa not	aviat									
				0 Read : R Write : n	eset from this e	event was not	exist									
					set from this ev	vent was occu	rred									
					lear the status											
		1	XFRST	Clock fail rese												
				0 Read : R Write : n	eset from this e	event was not	exist									
				1 Read :Re	set from this evident the status	vent was occu	rred									
		0	LVDRST	LVD reset stat												
				0 Read : R Write : n	eset from this e o effect	event was not	exist									
					set from this ev lear the status	vent was occu	rred									

PRER1 Peripheral Reset Enable Register 1

The reset of each peripheral by Event Reset can be masked by this user setting. The PRER1/PRER2 register controls enablement of the event reset. If the corresponding bit is **1**, the peripheral corresponding to this bit accepts the reset event. Otherwise, the peripheral is protected from the reset event and maintains its current operation.

PRER1=0x4000_0020

29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	76	65	4	3	2	1	0
				TIMER9	TIMER8					TIMER3	TIMER2	TIMER1	TIMERO					GPIOD	GPIOC	GPIOB	GPIOA			DMA	PCU	WDT	FMC	SCU
0	0	0	0	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0 0	0	1	1	1	1	1
				RW	RW					RW	RW	RW	RW					RW	RW	RW	RW			RW	RW	RW	RW	RW
							-	24 19 18 17 16 11 10 9 8 4 3	4) 3 7	TIN TIN TIN TIN GP GP GP GP DN PC	AER8 AER3 AER2 AER1 AER1 AER0 PIOD PIOD PIOD PIOC PIOC PIOA 1A			TI TI TI G G G G D P	IME IME IME IME PIC PIC PIC MA ort		3 r 3 r 2 r 2 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1	eset eset eset eset set r set r set r set n set n t ma rol U	masł masł masł masł nask nask nask nask nask nask	< < < <								
							-	1		FN	IC			FI	asl	h r	ner	nory	cont	roller	rese			k				
					LIMERO 0 0 0 1	LIMER8 LIMER9 LI	LIMEK8 1 0 0 0 0 0 0	Image: 100 minipage Image: 100 minipage Image: 100 minipage Image: 100 minipage Image: 100 minipage Image: 100 minipage Image: 100 minipage Image: 100 minipage Image: 100 minipage	Image: 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1 10 9 8 4 3 2 1 1	0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 10 0 0 0 0 1 1 0 0 0 1 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 10 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 10 1 1 1 1 1 1 1 1 10 1	0 0 0 1 1 0 0 0 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 2 2 1 </td <td>0 0 0 0 1 1 0 0 0 1</td> <td>0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1</td> <td>0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0</td> <th>0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0</th> <th>0 0 0 0 1 1 0 0 0 1 1 1 0</th> <th>0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1</th> <td>0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1</td> <td>0 0 0 0 1</td> <td>0 0 0 1 1 0 0 0 1</td> <th>0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1</th> <th>0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1</th> <td>Image: Second state Second state</td> <td>0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1</td> <td>0 0 0 0 1 1 1 1 1 0 0 0 1</td> <td>0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1</td>	0 0 0 0 1 1 0 0 0 1	0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1	0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0	0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0	0 0 0 0 1 1 0 0 0 1 1 1 0	0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1	0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1	0 0 0 0 1	0 0 0 1 1 0 0 0 1	0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1	0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1	Image: Second state Second state	0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1	0 0 0 0 1 1 1 1 1 0 0 0 1	0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1

PRER2 Peripheral Reset Enable Register 2

The reset of each peripheral by Event Reset can be masked by this user setting. The PRER1/PRER2 register controls enablement of the event reset. If the corresponding bit is **1**, the peripheral corresponding to this bit accepts the reset event. Otherwise, the peripheral is protected from the reset event and maintains its current operation.

PRER2=0x4000_0024

21	ADC1	ADC1 reset enable
20	ADC0	ADC0 reset enable
16	MPWM0	MPWM0 reset enable
9	UART1	UART1 reset enable
8	UART0	UART0 reset enable
4	I2C0	l ² C0 reset enable
0	SPI0	SPI0 reset enable
-		

PER1 Peripheral Enable Register 1

0

Prior to using a peripheral unit, it requires to be activated by writing **1** to the corresponding bit in the PER1/PER2 register. Until activation, the peripheral stays in Reset state.

To disable the peripheral unit, write **0** to the corresponding bit in the PER0/PER1 register, after which the peripheral enters the Reset state.

PER1=0x4000_0028

3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	76	65	4	3	2	1	0
						TIMER9	TIMER8					TIMER3	TIMER2	TIMER1	TIMER0					GPIOD	GPIOC	GPIOB	GPIOA			DMA				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 (0	1	1	1	1
						RW	RW					RW	RW	RW	RW					RW	RW	RW	RW			RW	ĸ	ĸ	R	R
									-	25			/ER9								on er									
									-	24			IER8								on er									
									-	19			IER3								on er									
									-	18			IER2								on er									
									-	17			<u>/ER1</u>								on er									
									-	16 11			<u>/IER0</u> PIOD								on er n ena									
									-	10		-	10D			-		-	-		n ena									
									-	9	<u> </u>		PIOB								n ena									
									-	8			PIOA								n ena									
									-	8 4 3 2		DN									enabl									
									-	3		2.1									0	•								
									-	2						~														
									-	1						R	ese	erve	ed											

PER2 Peripheral Enable Register 2

Prior to using a peripheral unit, it requires to be activated by writing **1** to the corresponding bit in the PER1/PER2 register. Until activation, the peripheral stays in Reset state.

To disable the peripheral unit, write $\mathbf{0}$ to the corresponding bit in the PER0/PER1 register, after which the peripheral enters the Reset state.

PER2=0x4000_002C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										ADC1	ADC0				MWPM0							UART1	UART0				12C0				SP10
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
										RW	RW				RW							RW	RW				RW				RW

21	ADC1	ADC1 function enable
20	ADC0	ADC0 function enable
16	MPWM0	MPWM0 function enable
9	UART1	UART1 function enable
8	UART0	UART0 function enable
4	I2C0	I ² C0 function enable
0	SPI0	SPI0 function enable

PCER1 Peripheral Clock Enable Register 1

Prior to using a peripheral unit, its clock should be activated by writing **1** to the corresponding bit in the PCER1/PCER2 register. The peripheral will not operate correctly until its clock is enabled.

To stop the clock of the peripheral unit, write **0** to the corresponding bit in the PCER1/PCER2 register.

PCER1=0x4000_0030

3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	76	5	4	3	2	1	0
						TIMER9	TIMER8					TIMER3	TIMER2	TIMER1	TIMERO					GPIOD	GPIOC	GPIOB	GPIOA			DMA				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0	0	1	1	1	1
						RW	RW					RW	RW	RW	RW					RW	RW	RW	RW			RW	R	R	R	R

25	TIMER9	TIMER9 clock enable
24	TIMER8	TIMER8 clock enable
19	TIMER3	TIMER3 clock enable
18	TIMER2	TIMER2 clock enable
17	TIMER1	TIMER1 clock enable
16	TIMER0	TIMER0 clock enable
11	GPIOD	GPIOD clock enable
10	GPIOC	GPIOC clock enable
9	GPIOB	GPIOB clock enable
8	GPIOA	GPIOA clock enable
4	DMA	DMA clock enable
3		
2		Reserved
1		
0		

PCER2 Peripheral Clock Enable Register 2

Prior to using a peripheral unit, its clock should be activated by writing **1** to the corresponding bit in the PCER1/PCER2 register. The peripheral will not operate correctly until its clock is enabled.

To stop the clock of the peripheral unit, write **0** to the corresponding bit in the PCER1/PCER2 register.

PCER2=0x4000_0034

21	ADCT	ADCT CICCK enable
20	ADC0	ADC0 clock enable
16	MPWM0	MPWM0clock enable
9	UART1	UART1 clock enable
8	UART0	UART0 clock enable
4	I2C0	I ² C0 clock enable
0	SPI0	SPI0 clock enable

CSCR=0x4000_0040

CSCR Clock Source Control Register

The Z32F0641 MCU has multiple clock sources to generate internal operating clocks. Each clock source can be controlled by the Clock Source Control Register. This register is an 8-bit register.

7	6	5	4		3	2	1	0
	-	RING	OSCCON		-		EOS	CCON
C	0		10		00)		00
I	र		RW		R		F	۲W
		5 RIN 4	NGOSCCON	Inter 0 X 10 11	Stop interna Enable inte	illator control al sub oscillato rnal sub oscilla rnal sub oscilla	ator	/ 2
		1 EC 0	SCCON	Exte 0 X 10 11	Stop Extern Enable Extern	oscillator contr nal Ctystal osc ernal Ctystal o ernal Ctystal d	illator scillator	

SCCR System Clock Control Register

The Z32F0641 MCU has multiple clock sources to generate internal operating clocks. Each clock source can be controlled by the System Clock Control Register. The MOSC MUST be running and stable before setting the FINSEL bit.

							5	SCCR=0x4000_0044
7	6		5	4	3	2	1	0
			-			FINSEL	м	CLKSEL
		0	000			0	1	00
			R			RW		RW
								·
		2	FINSEL	-	PLL input source			
				-	0 IOSC cloc	k is used as F	IN clock	
					1 MOSC clo	ck is used as	FIN clock	
		1	MCLKSEL		System clock s	elect register		
		0		-	0 Internal su	b oscillator		
					Х			
					10 PLL bypas	sed clock		
					11 PLL output	t clock		

Note: When changing FINSEL, both internal OSC and external OSC should be alive to prevent the chip from mal functioning.

CMR Clock Monitoring Register

To monitor the internal clock and external oscillator, the MCLKMNT/EOSCMNT bits must be set before the MCLK and EOSC bits are valid. The Clock Monitoring Register is a 16-bit register.

Note: The EOSC bit only checks for the EOSC oscillation, not its stability. When the system detects an MCLKFAIL interrupt, the MCLKREC bit determines if the system dies or will auto-recover using the ROSC. The system usually auto-recovers so that it can continue running.

														CN	IR=0x40	00_0048
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	MCLKREC								MCLKMNT	MCLKIE	MCLKFAIL	MCLKSTS	EOSCMNT	EOSCIE	EOSCFAIL	EOSCSTS
Ī	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
	R								RW	RW	RC1	RC1	RW	RW	RC1	RC1

15	MCLKREC	MCLK fail auto recovery
10		0 MCLK is changed to RINGOSC by default when
		MCLKFAIL issued
		1 MCLK auto recovery is disabled
7	MCLKMNT	MCLK monitoring enable
	-	0 MCLK monitoring disabled
		1 MCLK monitoring enabled
6	MCLKIE	MCLK fail interrupt enable
		0 MCLK fail interrupt disabled
		1 MCLK fail interrupt enabled
5	MCLKFAIL	MCLK fail interrupt
		0 MCLK fail interrupt not occurred
		1 Read : MCLK fail interrupt is pending
		Write : Clear pending interrupt
4	MCLKSTS	MCLK clock status
		0 No clock is present on MCLK
		1 Clock is present on MCLK
3	EOSCMNT	External oscillator monitoring enable
		0 External oscillator monitoring disabled
		1 External oscillator monitoring enabled
2	EOSCIE	External oscillator fail interrupt enable
		0 External oscillator fail interrupt disabled
		1 External oscillator fail interrupt enabled
1	EOSCFAIL	External oscillator fail interrupt
		0 External oscillator fail interrupt not occurred
		1 Read : External oscillator fail interrupt is pending
		Write : Clear pending interrupt
0	EOSCSTS	External oscillator status
		0 Not oscillate
		1 External oscillator is working normally

The clock monitoring function cannot cover all malfunction cases and is only used for reference. Figure 4.9 shows the operational diagram for clock monitoring function.

Figure 4.9. Clock Monitoring Function Diagram

NMIR Non-Maskable Interrupt Control Register

The Non-Maskable Interrupt Control Register can be set with software. There are five kinds of interrupt sources from MPWM, WDT, and SCU. Write access key 0xA32C to NMR[31:16] is required before writing to this register.

NMIR=0x4000_004C

		1													
30 29 28 27 26 25 24 <mark>23 22 21</mark>	20 19 1	8 17 16	15 1	4 13	3 12	11	10	9	8	765	4	3	2	1	0
ACCESSCODE					PROTSTS	OVPSTS	WDTSTS	MCLKFAILSTS	LVDSTS		PROTEN	OVPEN	WDTEN	MCLKFAILEN	LVDEN
-			0	0 0	0	0	0	0	0	000	0	0	0	0	1
WO					R	R	R	R	R		RW	RW	RW	RW	RV
	31 16	ACCE	ESS	SCO	DE	This fi Writing	eld ena g 0xA3					his reg	ister.		
	12	PRO	TST	S	-	Protect This b 0 N	tion co bit can't ot occu vent oc	ndition invok urred	status e nmi	s bit.		thout e	enable	bit	- -
	11	OVPS	STS	5		Over \ This b 0 N	Vent of /oltage bit can't ot occu vent of	Protect invok urred	ction c e nmi				enable	bit	_
	10	WDT	STS	6		WDT I This b 0 N		ot con invok urred	dition e nmi			thout e	enable	bit	_ _
	9	MCL	ΚFA	ILS ⁻	TS -	MCLK This b 0 N		ondition invok urred	n statu e nmi		upt wi	thout e	enable	bit	_ _ _
	8	LVDS	STS		-	LVD co This b 0 N		n statu invok urred	s bit e nmi	interr	upt wi	thout e	enable	bit	_ _ _
	4	PRO	TEN	1		Protect	tion con isable			e for	NMI ii	nterrup	t		_

1

pt

0

0

1

0

1

0

1

3

2

1

0

OVPEN

WDTEN

LVDEN

MCLKFAILEN

Enable

Disable

Enable

Disable

Enable

Disable

Enable

Disable Enable

Over Voltage Protection condition enable for NMI interru

WDT Interrrupt condition enable for NMI interrupt

MCLK Fail condition enable for NMI interrupt

LVD Fail condition enable for NMI interrupt

COR Clock Output Register

The Z32F0641 MCU can drive the clock from internal MCLK clock with a dedicated post divider. The Clock Output Register is an 8-bit register.

						CO	R=0x4000_0050
6	5	5	4	3	2	1	0
-			CLKOEN		CLK	ODIV	
000			0		1	111	
R			RW		F	RW	
	4	CLKO	EN _				
			_			tay "L" output	
	3	CLKO	DIV	Clock output divid	der value		
	0						
				CLKO = MCLK	(CLKODIV	(= 0)	
				$CLKO = \frac{1}{2*}$	MCLK (CLKODIV +	(CLKODIN	′ > 0)
	- 000	- 000 R 4 3	- 000 R 4 CLKO 3 CLKO	- CLKOEN 000 0 R R 4 CLKOEN	- CLKOEN 000 0 R 4 CLKOEN Clock output ena 0 Clock output ena 0 CLKO is dis 1 CLKO Is en 3 CLKODIV Clock output divid 0 CLKO = MCLK	CLKOEN CLK 000 0 1 R RW R 4 CLKOEN Clock output enable 0 0 CLKO is disabled and s 1 CLKO Is enabled 1 3 CLKODIV Clock output divider value 0 CLKO = MCLK CLKODIV	-CLKOENCLKODIV00001111RRWRW 4 CLKOEN $Clock$ output enable 0 4 CLKOEN $Clock$ output enable 0 3 CLKODIVClock output divider value 0 0 CLKO Is enabled 1 CLKO Is enabled 1 CLKO Is enabled 1 CLKO Is enabled 1 CLKO Is enabled 2 CLKO = MCLK 0 CLKO = MCLK

PLLCON PLL Control Register

Integrated PLL can synthesize the high speed clock for extremely high performance of the CPU from either the internal oscillator (IOSC) or the external oscillator (MOSC). The PLL Control register provides the configuration for the PLL system. By default, the PLL system is in reset mode and disabled. You must negate the reset and enable the PLL to operate (bits 14 and 15 must be set). The Bypass bit must be set to output the PLL clock. The active clock is defined in SCCR bit 2 (FIN).

To calculate the PLL output:

PLL Out = ((Active clock / PREDIV) * FBCTRL) / POSTDIV

For example:

Using MOSC (assuming it is running at 8 MHz and selected):

PREDIV set to 1	(FIN / 2)
FBCTRL set to 0x04	(M=12)
POSTDIV set to 0x00	(N=1)
((8 MHz / 2) * 12) = 48 MHz	

PLLCON=0x4000_0060

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PLLRSTB	PLLEN	BYPASS	LOCKSTS				PREDIV		ERCTRI	-			VIUTSO		
Ī	0	0	0	0	0	0	0	0		00	00			00	00	
	RW	RW	RW	R				RW		R	w			R	w	

15	PLLRSTB	PLL reset		
		0 PLL reset is asserted		
		1 PLL reset is negated		
14	PLLEN	PLL enable		
		0 PLL is disabled		
		1 PLL is enabled		
13	BYPASS	FIN bypass		
		0 FOUT is bypassed as	; FIN	
		1 FOUT is PLL output		
12	LOCK	LOCK status		
		0 PLL is not locked		
		1 PLL is locked		
8	PREDIV	FIN predivider		
		0 FIN divided by 1		
		1 FIN divided by 2		
7	FBCTRL	Feedback control		
4		0000 M = 4	1000	M = 20
		0001 M = 6	1001	M = 24
		0010 M = 8	1010	M = 26
		0011 M = 10	1011	M = 34
		0100 M = 12	1100	_
		0101 M = 14	1101	 Not available
		0110 M = 16	1110	_
		0111 M = 18	1111	
3	POSTDIV	Post divider control		
0		000 N = 1		
		001 N = 2		
		010 N = 3		

011	N = 4
100	N = 6
101	N = 8
110	N = 3
111	N =16

VDCCON VDC Control Register

The on chip VDC control register, VDCTRIM, is used for the trim value of VDC output. To modify the VDCTRIM bit, **1** should be written to VDCTE simultaneously. The VDCWDLY value can be written by writing **1** to the VDCDE bit simultaneously.

VDCCON=0x4000_0064

LVDCON LVD Control Register

The LVD Control Register is an on chip brown-out detector control register. This register is a 32-bit register.

																										LV	DCC	DN=0)x40	00_	0068
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								LVDTE						LVDTRIM		SELEN						LVDSFL								LVDLVL	LVDEN
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
								RW						RW		RO						RW								RO	RW
								 1 1	3	Ľ	VDT VDT ELE VDS	RIN N	1		1 1 1 1 1 1 1 1 1 1 1)1	e. LVE volt an w leve SEI SEI dete LVE LVE	DTR DTR age vrital el S L file ect D de D de D de D de	IM IM ble EL eld ietec etec etec	field filed vel t whe valu is n can can el se t lev t lev t lev	I is I ca rim en tr ae v ot u be elect vel vel vel	not n be valu rim vrite upda upd	upo e up ena ena ted lateo .8V- .2V	date pdat ble able by d by - 50 - 50	<u>d by</u> ed mod s. W writ y wr mV 50m	y w by v de i rite ing riting	ritin writi n F onl	g ng MC	/DT	RIM	
											VDE				()	VD VD	DEX DEX	(T I	evel	l is	ove und									
									,	L		. 1 N			(1)	LVE) is	no	t en	able	ed									

EOSCR External Oscillator Control Register

The external main crystal oscillator has two characteristics. For noise immunity, the NMOS amp type is recommended and for low power, the INV amp type is recommended. This register is a 16-bit register.

EMODR External Mode Status Register

External Mode Status Register shows the external mode pin status while booting. This register is an 8-bit register.

DBCLK1=0x4000_009C

DBCLK1 Debounce Clock Control Register 1

The Debounce Clock Control register 1 controls the debounce timing configuration for Port A and Port B.

31	30	29	28	27	26	25	24	23	22	21	20	19 1	3 1	17 î	16	15	14	13	12	11	10	9	8	7	6	5	4 3	2	1	0
						PBDCSEL					PRDNV											PADCSEL					PADDIV			
0	0	0	0	0		000					0x	01				0	0	0	0	0		000					0x01			
						RW					R	w			İ							RW					RW			
I															1								l							I
								2	26	Р	BDC	SEL			D	ebc	unc	e C	loc	k fo	r Po	ort E	3 sc	ourc	e se	elect	t bit			
								2	24						0>	κx		RIN	GΟ	DSC	1M	hz								
															1(00		MCL	_K ((bus	clo	ck)								
															1(01		Res												
																10					ain (OSC) (X	TAL	_)					
															11			Res												
									23	Ρ	BDD	DIV			P	OR	ТΒ	De	ebou	ince	Clo	ock	Νc	livid	er					
									6			SEL				<u>_ h a</u>				1. 40	- D	- u1 /	\				. I. i.			
								5	0	P.	ADC	SEL				ebc KX					1M		A SC	ource	e se	elect	bit			
								C)							xx 00					clo									
) <u>)</u>)1		Res		•	CIU	UK)								
																10					ain	osc) (X	TAI)					
															11	-		Res					- (),		/					
								7	7	P	ADD	NV			P	OR					Clo	ock	Nc	livid	er					
								0)																					

DBCLK2=0x4000_00A0

DBCLK2 Debounce Clock Control Register 2

The Debounce Clock Control register 2 controls the debounce timing configuration for Port C and Port D.

31	30	29	28	27	26	25	24	23	3 22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						PDDCSEL																PCDCSEL					PCDDIV				
0	0	0	0	0		000					0x	:01				0	0	0	0	0		000					0x0)1			
1						RW					R	w										RW					RV	v			
I								_	26 24 23 16			CSE DIV	L		0 1 1 1	00 01 10 11		RIN MCL Res Exte Res	G C _K (erve erna erve	OSC (bus ed I Ma ed	r P(1M clo ain (lhz ick) OSC	C (X	TAL	_)	sele	ect I	Dit			
								_	10 8 7 0		CD	CSE DIV	L		0 1 1 1	00 01 10 11		RIN MCL Res Exte Res	G C _K (erve erna erve	OSC (bus ed I Ma ed	ain (lhz ick) OSC	C (X	TAL	_)	sele	ect I	Dit			

MCCR1 Miscellaneous Clock Control Register 1

The Miscellaneous Clock Control register 1 controls the configuration for the System Tick clocks.

MCCR1=0x4000_0090

MCCR2 Miscellaneous Clock Control Register 2

The Miscellaneous Clock Control register 2 controls the optional configuration of MPWM0 clocks.

MCCR3 Miscellaneous Clock Control Register 3

The Miscellaneous Clock Control register 3 controls the configuration for the Timer EXT0 and WDT clocks.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						TEXT0CSEL					TEXTODIV											WDTCSEL									
0	0	0	0	0		000					0x(01				0	0	0	0	0		000					0x	01			
						RW		ĺ			R١	N										RW					R	w			
								22	4		EXT				1 1 1	00 01 10 11		RIN MCL Res Exte Res	G C K (erve erna erve	DSC (bus ed I Ma ed	sou 1M clo ain N c	lhz ck) OSC	C (X								
								1 8 7 0	0		VDT(1 1 1 1	VDT 9xx 00 01 10 11 VDT		RIN MCL Res	G C K (erve erve erve	DSC (bus ed I Ma ed	sel 1M clo ain ler	hz ck)		TAL	_)						

MCCR4 Miscellaneous Clock Control Register 4

The Miscellaneous Clock Control Register 4 controls the clock setting for the ADC peripheral.

																										Μ	ICCF	R7=0	x40	00_0	0A8
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						ADCCSEL																									
0	0	0	0	0		000)				0x	01																			
						RW	1				R	w																			
								_	26 24			CSE			1 1 1	00 00 01 10 11		RIN MCI Res Exte Res	G C _K erve erna erve	DSC (bus ed I M ed	sele 1N clo ain	lhz ock)		(TAI	L)						
									23 16	A	DC	CDI	V		A	ADC	Clo	ock	Να	divid	ler										

5. Port Control Unit

Overview

The Port Control Unit (PCU) controls the external I/O configuration to:

- Set the multiplex state of each pin (for alternative functions)
- Set external signal type (Analog / Push-Pull output /Open Drain output /Input)
- Set enable/monitor/trigger type for interrupts for each pin
- Set internal pull-up register control for each pin
- Set debounce for each pin

Note: You must enable both the Port Periphreal and the Port Periphreal CLOCK in PER1/PCER1/ to use the pins of the port.

Figure 5.1 Block Diagram

Figure 5.2 I/O Port Block Diagram (ADC and External Oscillator pins)

Figure 5.3 I/O Port Block Diagram (General I/O pins)

Pin Multiplexing

GPIO pins have alternative function pins. Table 5.1 Table 5.1 GPIO Alternative functionshows pin multiplexing information.

Port	Pin		Fu	Inction	
Port	Pin	00	01	10	11
	0	PA0*			AN0
	1	PA1*			AN1
	2	PA2*		WDTO	AN2
	3	PA3*			AN3
	4	PA4*	SS1		AN4
	5	PA5*	SS2		AN5
	6	PA6*	TOIO	T2IO	AN6
PA	7	PA7*	T1IO	T3IO	AN7
FA	8	PA8*	T2IO	TOIO	AN8
	9	PA9*	T3IO	T1IO	AN9
	10	PA10*	SS3		AN10
	11	PA11*			
	12	PA12*	TOIO		
	13	PA13*	T1IO		
	14	PA14*	T2IO		
	15	PA15*	T3IO		
	0	PB0*	MP0UH		
	1	PB1*	MP0UL		
	2	PB2*	MP0VH		
	3	PB3*	MP0VL		
	4	PB4*	MP0WH		
	5	PB5*	MP0WL		
	6	PB6*	PRTIN0	TOIO	
PB	7	PB7*	OVIN0	T1IO	
гD	8				
	9				
	10				
	11				
	12				
	13				
	14				
	15				

Table 5	1 (GPIO	Alternative	function
		•••••	/	

(*) indicates default pin setting ⁽²⁾ indicates secondary port

PortPinImage: constraint of the second			Function								
00 01 10 11 0 PC0 TCK/SWCLK* RXD1 1 1 PC1 TMS/SWDIO* TXD1 1 2 PC2 TDO/SWO* T8IO 1 3 PC3 TDI* T9IO 1 4 PC4 nTRST* T0IO 1 5 PC5* RXD1 T1IO 1 6 PC6* TXD1 T2IO 1 7 PC7* SCL0 T3IO 1 8 PC8* SDA0 1 1 9 PC9* CLKO 1 1 10 PC10 nRESET* T8IO 1 11 PC14* RXD0 MOSIO ⁽²⁾ 1 12 PC15* TXD0 MISO ⁽²⁾ 1 14 PC14* RXD0 MOSIO ⁽²⁾ 1 12 PD2* MOSIO SCL0 1 1 2 PD2*<	Port	Pin									
1PC1TMS/SWDIO*TXD1Immediate2PC2TDO/SWO*T8IOImmediate3PC3TDI*T9IOImmediate4PC4nTRST*T0IOImmediate5PC5*RXD1T1IOImmediate6PC6*TXD1T2IOImmediate7PC7*SCL0T3IOImmediate8PC8*SDA0ImmediateImmediate9PC9*CLKOImmediateImmediate10PC10nRESET*T8IOImmediate11PC11/BOOT*T9IOImmediateXOUT12PC12*ImmediateXOUT14PC14*RXD0MOSIO ^[2] Immediate15PC15*TXD0MISOO ^[2] Immediate1PD1*SCK0T9IOImmediate2PD2*MOSIOSCL0Immediate3PD3*MISOOSDA0Immediate4ImmediateImmediateImmediate5ImmediateImmediateImmediate6ImmediateImmediateImmediate7ImmediateImmediateImmediate8ImmediateImmediateImmediate9ImmediateImmediateImmediate10ImmediateImmediateImmediate11ImmediateImmediateImmediate12ImmediateImmediateImmediate13ImmediateImmediate <td></td> <td></td> <td></td> <td></td> <td></td> <td>11</td>						11					
2PC2TDO/SWO*T8IOI3PC3TDI*T9IOI4PC4nTRST*T0IOI5PC5*RXD1T1IOI6PC6*TXD1T2IOI7PC7*SCL0T3IOI9PC9*CLKOII10PC10nRESET*T8IOI11PC11/BOOT*CLKOII12PC12*IXOUT13PC13*TSIOXOUT14PC14*RXD0MOSIO ⁽²⁾ 15PC15*TXD0MISOO ⁽²⁾ 16PD1*SCK0T9IO17PD1*SCK0T9IO18OPD3*MISO19PD3*MISOSDA010III11PD1*SCK0T9IO12PD2*MOSIOSLO13OSDA0I14III15III16III17III18III19III10III11III12III13III14III14III14III14III14		0									
3PC3TDI*T9IOIndiana4PC4nTRST*T0IOIndiana5PC5*RXD1T1IOIndiana6PC6*TXD1T2IOIndiana7PC7*SCL0T3IOIndiana9PC9*CLKOIndianaIndiana10PC10nRESET*T8IOIndiana11PC11/BOOT*IndianaXINXIN13PC13*IndianaXOUT14PC14*RXD0MOSIO ⁽²⁾ Indiana15PC15*TXD0MISO0 ⁽²⁾ Indiana1PD1*SCK0T9IOIndiana2PD2*MOSIOSCL0Indiana3PD3*MISO0SDA0Indiana4IndianaIndianaIndiana9IndianaIndianaIndiana11PD1*SCK0T9IO13PD3*MISO0SDA014IndianaIndiana10IndianaIndiana11IndianaIndiana12IndianaIndiana13IndianaIndiana14IndianaIndiana14IndianaIndiana14IndianaIndiana14IndianaIndiana14IndianaIndiana14IndianaIndiana14IndianaIndianaIndianaIndianaIndianaIndianaIndianaIndiana </td <td rowspan="3"></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
4PC4nTRST*T0IOImmediate5PC5*RXD1T1IOImmediate6PC6*TXD1T2IOImmediate7PC7*SCL0T3IOImmediate9PC9*CLKOImmediateImmediate10PC10nRESET*T8IOImmediate11PC11/BOOT*ImmediateT9IOImmediate12PC12*ImmediateXIN13PC13*ImmediateXOUT14PC14*RXD0MOSIO ^{I2/} Immediate15PC15*TXD0MISOO ^{I2/} Immediate1PD1*SCK0T9IOImmediate2PD2*MOSIOSCL0Immediate3PD3*MISO0SDA0Immediate4ImmediateImmediateImmediateImmediate5ImmediateImmediateImmediateImmediate6ImmediateImmediateImmediateImmediate9ImmediateImmediateImmediateImmediate10ImmediateImmediateImmediateImmediate11ImmediateImmediateImmediateImmediate12ImmediateImmediateImmediateImmediate13ImmediateImmediateImmediateImmediate14ImmediateImmediateImmediateImmediate14ImmediateImmediateImmediateImmediate14ImmediateImme		2									
5 PC5* RXD1 T1IO Image: constraint of the state of the st		3									
6 PC6* TXD1 T2IO Image: constraint of table of		4	PC4	nTRST*	TOIO						
PC 7 PC7* SCL0 T3IO Image: constraint of table o		5	PC5*	RXD1	T1IO						
PC 8 PC8* SDA0 Image: constraint of the system 9 PC9* CLKO Image: constraint of the system 10 PC10 nRESET* T8IO 11 PC11/BOOT* T9IO Image: constraint of the system 12 PC12* Image: constraint of the system XOUT 13 PC13* Image: constraint of the system XOUT 14 PC14* RXD0 MOSIO ⁽²⁾ Image: constraint of the system 15 PC15* TXD0 MISO0 ⁽²⁾ Image: constraint of the system 1 PD1* SCK0 T9IO Image: constraint of the system 2 PD2* MOSIO SCL0 Image: constraint of the system 3 PD3* MISO0 SDA0 Image: constraint of the system 6 Image: constraint of the system Image: constraint of the system Image: constraint of the system 9 Image: constraint of the system 10 Image:		6		TXD1	T2IO						
8 PC8* SDA0 9 PC9* CLKO 10 PC10 nRESET* T8IO 11 PC11/BOOT* T9IO III 12 PC12* VIN XIN 13 PC13* XOUT XOUT 14 PC14* RXD0 MOSIO ⁽²⁾ III 15 PC15* TXD0 MISO0 ⁽²⁾ III 1 PD1* SCK0 T9IO III 2 PD2* MOSIO SCL0 IIII 3 PD3* MISO0 SDA0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PC	7	PC7*	SCL0	T3IO						
10 PC10 nRESET* T8IO 11 PC11/BOOT* T9IO 12 PC12* XIN 13 PC13* XOUT 14 PC14* RXD0 MOSIO ⁽²⁾ 15 PC15* TXD0 MISO0 ⁽²⁾ 15 PC15* TXD0 MISO0 ⁽²⁾ 1 PD1* SCK0 T9IO 2 PD2* MOSIO SCL0 3 PD3* MISO0 SDA0 4 5 6 7 8 9 10 11 12 13 14	FU	8	PC8*	SDA0							
11 PC11/BOOT* T9IO 12 PC12* XIN 13 PC13* XOUT 14 PC14* RXD0 MOSI0 ⁽²⁾ 15 PC15* TXD0 MISO0 ⁽²⁾ 15 PC15* TXD0 MISO0 ⁽²⁾ 1 PD1* SCK0 T9IO 2 PD2* MOSIO SCL0 3 PD3* MISO0 SDA0 4 5 6 7 8 9 11 12 13 14		9	PC9*	CLKO							
12 PC12* XIN 13 PC13* XOUT 14 PC14* RXD0 MOSI0 ^[2] 15 PC15* TXD0 MISO0 ^[2] 0 PD0* SS0 T8IO 1 PD1* SCK0 T9IO 2 PD2* MOSI0 SCL0 3 PD3* MISO0 SDA0 4 5 6 7 8 9 11 12 13 14		10	PC10	nRESET*	T8IO						
13 PC13* XOUT 14 PC14* RXD0 MOSI0 ⁽²⁾ Image: constraint of the stress of the s		11	PC11/BOOT*		T9IO						
14PC14*RXD0MOSI0(2)15PC15*TXD0MISO0(2)0PD0*SS0T8IO1PD1*SCK0T9IO2PD2*MOSIOSCL03PD3*MISO0SDA045III6III7III8III9III11III12III13III14III		12	PC12*			XIN					
15 PC15* TXD0 MISO0 ⁽²⁾ 0 PD0* SS0 T8IO 1 PD1* SCK0 T9IO 2 PD2* MOSIO SCL0 3 PD3* MISO0 SDA0 4 5 6 7 8 9 11 12 9 11 12 13 14		13	PC13*			XOUT					
0 PD0* SS0 T8IO 1 PD1* SCK0 T9IO 2 PD2* MOSIO SCL0 3 PD3* MISOO SDA0 4 5 6 7 8 9 10 11 12 13		14	PC14*	RXD0	MOSI0 ⁽²⁾						
1 PD1* SCK0 T9IO 2 PD2* MOSIO SCL0 3 PD3* MISOO SDA0 4 5 6 7 8 9 10 11 12 13 14		15	PC15*	TXD0	MISO0 ⁽²⁾						
2 PD2* MOSIO SCL0 3 PD3* MISOO SDA0 4 5 6 7 8 9 10 11 12 13 14		0	PD0*	SS0	T8IO						
3 PD3* MISO0 SDA0 4 5 6 7 <td></td> <td>1</td> <td>PD1*</td> <td>SCK0</td> <td>T9IO</td> <td></td>		1	PD1*	SCK0	T9IO						
4		2	PD2*	MOSI0	SCL0						
5		3	PD3*	MISO0	SDA0						
6 Image: Constraint of the system 7 Image: Constraint of the system 8 Image: Constraint of the system 9 Image: Constraint of the system 10 Image: Constraint of the system 11 Image: Constraint of the system 12 Image: Constraint of the system 13 Image: Constraint of the system 14 Image: Constraint of the system		4									
PD 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5									
PD 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6									
8 9 10 11 12 13 14	חח	7									
10	Pυ	8									
11 12 13 14		9									
12		10									
13		11									
14		12									
		13									
15		14									
		15									

Table 5.2 GPIO Alternative Function

(*) indicates default pin setting. (2) indicates secondary port

Registers

The base address of the PCU block is 0x4000_1000.

Table 5.3	Base	Address	of	Port
-----------	------	---------	----	------

Port Name	Address
PCA	0x4000_1000
PCB	0x4000_1100
PCC	0x4000_1200
PCD	0x4000_1300

Table 5.4 PCU Register Map

Name	Offset	Туре	Description
PC <i>n</i> .MR	0x00	RW	Port <i>n</i> pin mux select register
PCn.CR	0x04	RW	Port n pin control register
PCn.PCR	0x08	RW	Port <i>n</i> internal pull-up control register
PCn.DER	0x0C	RW	Port n debounce control register
PCn.IER	0x10	RW	Port <i>n</i> interrupt enable register
PCn.ISR	0x14	RW	Port <i>n</i> interrupt status register
PCn.ICR	0x18	RW	Port <i>n</i> interrupt control register
	0x1C		Reserved
PORTEN	0x1FF0	RW	Port Access enable

PCA.MR PORT A Pin MUX Register

This register is the PA Port Mode select register, and must be set up correctly before using the port to ensure that the port functions as designed.

PCA.MR=0x4000_1000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
--	--

		-	-	-	-		-		-	-		-	-	-	-
PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Port	Selection Bit								
FUIL	00	01	10	11					
PA0	PA0*			AN0					
PA1	PA1*			AN1					
PA2	PA2*		WDTO	AN2					
PA3	PA3*			AN3					
PA4	PA4*	SS1		AN4					
PA5	PA5*	SS2		AN5					
PA6	PA6*	TOIO	T2IO	AN6					
PA7	PA7*	T1IO	T3IO	AN7					
PA8	PA8*	T2IO	T0IO	AN8					
PA9	PA9*	T3IO	T1IO	AN9					
PA10	PA10*	SS3		AN10					
PA11	PA11*								
PA12	PA12*	TOIO							
PA13	PA13*	T1IO							
PA14	PA14*	T2IO							
PA15	PA15*	T3IO							

PCB.MR PORT B Pin MUX Register

This register is the PB Port Mode select register, and must be set up correctly before using the port to ensure that the port functions as designed.

PCB.MR=0x4000_1100

		-	-	-	-		-	-	-	-		-	-	-	-
PB15	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Port	Selection Bit								
FOIL	00	01	10	11					
PB0	PB0*	MP0UH							
PB1	PB1*	MP0UL							
PB2	PB2*	MP0VH							
PB3	PB3*	MP0VL							
PB4	PB4*	MP0WH							
PB5	PB5*	MP0WL							
PB6	PB6*	PRTIN0	T0IO						
PB7	PB7*	OVIN0	T1IO						

PCC.MR PORT C Pin MUX Register

This register is the PC Port Mode select register, and must be set up correctly before using the port to ensure that the port functions as designed.

PCC.MR=0x4000_1200

		-	-	-	-		-	-	-	-		_	-	-	-
PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
00	00	00	00	01	01	00	00	00	00	00	01	01	01	01	01
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Port		Selection	n Bit	
POIL	00	01	10	11
PC0	PC0	TCK/SWCLK*	RXD1	
PC1	PC1	TMS/SWDIO*	TXD1	
PC2	PC2	TDO/SWO*	T8IO	
PC3	PC3	TDI*	T9IO	
PC4	PC4	nTRST*	T0IO	
PC5	PC5*	RXD1	T1IO	
PC6	PC6*	TXD1	T2IO	
PC7	PC7*	SCL0	T3IO	
PC8	PC8*	SDA0		
PC9	PC9*	CLKO		
PC10	PC10	nRESET*	T8IO	
PC11	PC11/BOOT*		T9IO	
PC12	PC12*			XIN
PC13	PC13*			XOUT
PC14	PC14*	RXD0	MOSI0 ⁽²⁾	
PC15	PC15*	TXD0	MISO0 ⁽²⁾	

PORT D Pin MUX Register PCD.MR

This register is the PD Port Mode select register, and must be set up correctly before using the port to ensure that the port functions as designed.

PCD.MR=0x4000_	1300
----------------	------

ĺ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PD	15	PC	014	PC	013	PD	12	PD	011	PD	10	P	D9	P	80	PD	07	P	D6	PI	D5	PI	D4	P	D3	P	02	Ы	D1	PI	D0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R	w	R	w	R	w	R	w	R	w	R	W	R	W	R	w	R	N	R	w	R	w	R	w	R	w	R	w	R	w	R	w

Port		Selec	tion Bit	
FOIL	00	01	10	11
PD0	PD0*	SS0	T8IO	
PD1	PD1*	SCK0	T9IO	
PD2	PD2*	MOSI0	SCL0	
PD3	PD3*	MISO0	SDA0	

PORT n Pin Control Register (Except for PCCR) PCn.CR

This register controls the input or output of each port pin. Each pin can be configured as input pin, output pin, or open-drain pin.

31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	98	76	54	32	10
P15	P14	P13	P12	P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0
11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Pn	Port control
	00 Push-pull output
	01 Open-drain output
	10 Input
	11 Analog

PCA.CR=0x4000_1004, PCB.CR=0x4000_1104, PCD.CR=0x4000_1304

PCCCR PORT C Pin Control Register

This register controls the input or output of each port pin. Each pin can be configured as input pin, output pin, or open-drain pin.

PCC.CR=0x4000 1204	PCC.	CR=0	x4000	1204
--------------------	------	------	-------	------

31 3	0 29 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	98	76	54	32	10
P15	P14	P13	P12	P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0
11	11	11	11	10	10	11	11	11	11	11	10	10	00	10	10
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

Pn	Port control
	00 Push-pull output
	01 Open-drain output
	10 Input
	11 Analog

PCn.PCR PORT n Pull-up Resistor Control Register

Every pin in the port has on-chip pull-up resistors which can be configured by the PnPCR registers.

PCA.PCR=0x4000_1008, PCB.PCR=0x4000_1108 PCC.PCR=0x4000_1208, PCD.PCR=0x4000_1308 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PUE14 PUE13 PUE12 PUE10 PUE15 PUE11 PUE9 PUE8 PUE6 PUE5 PUE4 PUE3 PUE2 PUE0 PUE7 PUE1 0000 RW

n	PUEn	Port pull-up control
		0 Disable pull-up resistor
		1 Enable pull-up resister

PCn.DER PORT n Debounce Enable Register

Every pin in the port has a digital debounce filter which can be configured by the PnDER registers. . The Debounce clock can be configured in the DBCLKx registers.

PCn.IER PORT n Interrupt Enable Register

Each individual pin can be an external interrupt source. The edge trigger interrupt and level trigger interrupt are both supported. The interrupt mode can be configured by setting the PnIER registers.

PCA.IER=0x4000_1010, PCB.IER=0x4000_1110 PCC.IER=0x4000_1210, PCD.IER=0x4000_1310

31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	98	76	54	32	1 0
PIE15	PIE14	PIE13	PIE12	PIE11	PIE10	PIE9	PIE8	PIE7	PIE6	PIE5	PIE4	PIE3	PIE2	PIE1	PIE0
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW

PIEn	Pin	interrupt enable
	00	Interrupt disabled
	01	Enable interrupt as level trigger mode
	10	Reserved
	11	Enable interrupt as edge trigger mode

PCn.ISR PORT n Interrupt Status Register

When an interrupt is delivered to the CPU, the interrupt status can be detected by reading the PnISR register. PnISR register reports an interrupt source pin and an interrupt type.

PCA.ISR=0x4000_1014, PCB.ISR=0x4000_1114	
PCC.ISR=0x4000_1214, PCD.ISR=0x4000_1314	

31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	98	76	54	32	1 0
PIS15	PIS14	PIS13	PIS12	PIS11	PIS10	PIS9	PIS8	PIS7	PIS6	PIS5	PIS4	PIS3	PIS2	PIS1	PIS0
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
					PIS	'n	F	Pin inter	rupt sta	atus					
							00 No interrupt event								
							0	1 Lov	v level	interrup	t or Fa	lling ed	ge inte	rrupt ev	/ent i

01	Low level interrupt or Falling edge interrupt event i s present
10	High level interrupt or rising edge interrupt event i s present
11	Both of rising and falling edge interrupt event is p resent in edge trigger interrupt mode. Not available in level trigger interrupt mode

PCn.ICR PORT n Interrupt Control Register

This is the Interrupt Mode control register.

PCA.ICR=0x4000_1018, PCB.ICR=0x4000_1118	
PCC.ICR=0x4000_1218, PCD.ICR=0x4000_1318	

																								_						_	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PIC	C15	PIC	C14	PIC	213	PIC	:12	PIC	:11	PIC	:10	Pl	C9	PI	C8	PIC	C7	PI	C6	PI	C5	PIC	C4	Ы	C3	PI	C2	PI	C1	PI	C0
0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	00	0	0	0	0
R	W	R	w	R	W	R	W	R	w	R١	W	R	W	R	W	R	N	R	W	R	w	R١	N	R	W	R	w	R	W	R	w

PICn	Pin	interrupt mode
	00	Prohibit external interrupt
	01	Low level interrupt or Falling edge interrupt mode
	10	High level interrupt or rising edge interrupt mode
	11	Both of rising and falling edge interrupt mode.
		Not support for level trigger mode

PORTEN Port Access Enable

Port Access Enable provides register writing permission for all PCU registers.

PORTEN=0x4000_1FF0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											POR	TEN			
0	0	0	0	0	0	0	0				-	-			
											W	0			
				7	PO	RTEN							x51 in t		
				0							J regist egisters		d writing	g other	valu

Functional Description

All the GPIO pins can be configured for different operations – inputs, outputs, and triggered interrupts (both level and edge) through the PDU. The system is also able to disable ports by setting the PER1 and PCER1 registers in the SCU. By default, all pins are disabled (except for UART0/SPI0) so the developer must enable these to operate.

All configuration parameters are protected by the Port Access Enable register. You must write the sequence in order (0×15 , 0×51) to the PORTEN register to configure any pin(s). Once the configuration is complete, write any other value to the PORTEN register to lock it.

Note: Do not read in between the sequence; it will prevent the configuration registers from being unlocked.

When the input function of I/O port is used by the Pin Control Register, the output function of I/O port is disabled. The Port function differs according to the Pin Mux Register.

The Input Data Register captures the data present on the I/O pin or debounced input data at every GPIO Clock cycle.

Figure 5.4. Port Diagram

Figure 5.5. Debounce Function

When the Debounce function of input data is used by the Debounce Enable Register, the external input data is captured by the Debounce CLK.

- If CNT Value is "01", Debounced Input Data is "1".
- If CNT Value is "10", Debounced Input Data is "0"

The Debounce CLK of each port group can be configured by the DBCLK Registers.

6. General Purpose I/O

Overview

Most pins, except the dedicated function pins, can be used as general I/O ports. General input/output ports are controlled by the GPIO block.

- Output signal level (H/L) select
- Input signal level
- Output Set/Clear pin by writing a 1

Pin Description

Table 6.1 External Signal

Pin Name	Туре	Description
PA	10	PA0 - PA15
PB	10	PB0 – PB7
PC	10	PC0 - PC15
PD	10	PD0 – PD3

Registers

The base address of GPIO is 0x4000 2000 and the register map is described in Table 6.2 and Table 6.3.

Port	Address
PA PORT	0x4000_2000
PB PORT	0x4000_2100
PC PORT	0x4000_2200
PD PORT	0x4000_2300

Table 6.2 Base Address of Each Port

Table 6.3 GPIO Register Map

Name	Offset	Туре	Description	Reset Value
Pn.ODR	0x00	RW	Port n Output data register	0x0000000
Pn.IDR	0x04	RO	Port n Input data register	0x0000000
Pn.BSR	0x08	WO	Port n Pin set register	0x0000000
Pn.BCR	0x—0C	WO	Port n Pin clear register	0x0000000

Pn.ODR PORT n Output Data Register

When the pin is set as output and GPIO Mode, the pin output level is defined by Pn.ODR registers.

										PA.O	DR=0x4	000_200	0, PB.OI	OR=0x40	00_2100
										PC.O	DR=0x4	000_220	0, PD.OI	OR=0x40	00_2300
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							0	DR							
							00	00							
							R	W							
1															I
					OD	R	F	Pin outp	ut leve						
					-		() Ou	tput low	/ level					
							1	Ou	tput hig	h level					

Pn.IDR PORT n Input Data Register

Each pin level status can be read in the Pn.IDR register. Even if the pin is a mode other than Analog Mode, the pin level can be detected in the PnIDR register.

PA.IDR=0x4000_2004, PB.IDR=0x4000_ PC.IDR=0x4000_2204, PD.IDR=0x4000_															_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Pn	IDR							
	0000														
							R	0							
				IDR Pin current level											
							0 The pin is low level								
							1 The pin is high level								

Pn.BSR PORT n Bit Set Register

Pn.BSR is a register for controlling each bit of the PnODR register. Writing a **1** into the specific bit will set a corresponding bit of PnODR to **1**. Writing **0** in this register has no effect.

											SR=0x4	_			_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							BS	SR							
							00	00							
							w	0							
					BSR	2	F	in curr	ent leve	el					
							0	Not	t effect						
							1	Set	corres	ponden	t bit in	PnODF	regist	er	

Pn.BCR PORT n Bit Clear Register

Pn.BRR is a register for controlling each bit of the PnODR register. Writing a **1** into the specific bit will set a corresponding bit of PnODR to **0**. Writing **0** in this register has no effect.

												_	•	CR=0x40 CR=0x40	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Pn	BCR							
							00	00							
							W	10							
					BCF	2	F	Pin curr	ent leve	el					
							0) No	t effect						
							1	Cle	ar corr	esponde	ent bit i	n PnO	DR regi	ster	

Functional Description

The GPIO registers provide the input/output condition of the GPIO pins. The input data registers give the states of the pins of the ports. The output data register is for setting the port pins. The Set and Clear registers control the pins at the individual level.

When configured as output, the value written to the GPIO Ouput Data Register is output on the I/O Pin.

When setting the Bit Set Register, the GPIO Output Data Register sets the high. When setting the Bit Clr Register, the GPIO Output Data Register sets the Low.

The Input Data Register captures the data present on the I/O pin or debounced input data at every GPIO clock cycle.

Figure 6.2. GPIO Diagram

7. Flash Memory Controller

Introduction

The Flash Memory Controller is an internal Flash memory interface controller with the following features:

- 64KB Flash code memory
- 32-bit read data bus width
- Code cache block for fast access mode
- 128-byte page size
- Support page erase and macro erase
- 128-byte unit program

Note: Programming the Flash requires the execution to occur in RAM. Once the Program mode is selected, Flash is no longer able to be read for instructions.

Item	Description
Size	64KB
Start Address	0x0000_0000
End Address	0x0000_FFFF
Page Size	128-byte
Total Page Count	512 pages
PGM Unit	128-byte
Erase Unit	128-byte

Table 7.1 Internal Flash Specification

Figure 7.1 Block Diagram

Pin Description

The Flash Memory Controller has no external interface pins.

Registers

The base address of the Flash Memory Controller is 0x4000_0100.

Table 7.2 shows the register memory map.

Name	Offset	Туре	Description	Reset Value
FM.MR	0x0004	RW	Flash Memory Mode Select register	0x01000000
FM.CR	0x0008	RW	Flash Memory Control register	0x0000000
FM.AR	0x000C	RW	Flash Memory Address register	0x0000000
FM.DR	0x0010	RW	Flash Memory Data register	0x0000000
FM.TMR	0x0014	RW	Flash Memory Timer register	0x00000bb
FM.DRTY	0x0018	RW	Flash Memory Dirty bit	
FM.TICK	0x001C	RO	Flash Memory Tick Timer	0x0000000
FM.CRC	0x0020	RO	Flash Memory Read CRC Value	
FM.BOOTCR	0x0074	RW	Boot ROM Remap Clear register	0x0000000
FM.PROT	0x0078	RW	Flash Page protection register	0x0000000
FM.JTAGEN	0x007C	RW	Jtag protection register	0x0000001

Table 7.2 Flash Memory Controller Register Map

FM.MR Flash Memory Mode Register

The Flash Memory Mode Register is an internal Flash memory mode 32-bit register.

FM.MR=0x4000_0104

BOOT																	13		••		-									
						IDLE	VERIFY	AMBAEN					TRMEN	TRM							FEMOD	FMOD				ACODE	ACCUL			
0 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				0x	00			
2						ĸ	RW	RW					RW	RW							ĸ	R				Ma				
						31		BO	ОТ		()																		
												1			Во	ot n	nod	e ei	nabl	e s	tatu	s(rea	ad d	only)					
						24		IDL	E		()																		
															Во	ot n	nod	e ei	nabl	e s	tatu	us(read only)								
						23		VE	RIF	Y	(
																					nab	le si	tatus	s(rea	ad (only)			
						22		AM	BAE	ΞN	(de												
								-			1	-			AN	1BA	mo	de	ena	ble	(ca	n ch	nang	je v	vait	stat	te a	nd	etc)	<u> </u>
						17		IR	MEN	N					T :		l.			- 1 - 1				1)						
						16		TR	1		(I rii	mn	1006	e er	ntry	sta	tus(read	on	iy)						
						10		IR	VI		_				Tri	mn	node	o et	otuc	lro	ad c	only)								
						9		FFI	NO	<u> </u>	(1000	5 31	alua	5(100	au t	л ну <i>)</i>								
						U		, –		-	-				Fla	sh	mor	de e	entry	/ sta	atus	(rea	d o	nlv)						
						8		FM	OD		(0							<u>,</u>								
											-				Fla	ish	mod	de s	statu	ıs(re	ad	only	/)							
						7		AC	ODE	DE _ 5A \rightarrow A5 Flash mode																				
						0					1	۹5 ·	$\rightarrow 5$	A	Tri	m n	node	Э												

FM.CR Flash Memory Control Register

The Flash Memory Control Register is an internal Flash memory control register.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											TIMER			TEST1	TEST0	VPPOUT	EVER	PVER		OTPBE	OTPAE	PPGM	AE			PMOD	WE	РВLD	PGM	ERS	PBR
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RW	RW	RW	RW	RW		RW	RW	RW	RW		RW			RW	RW	¥	RW	RW		RW	RW		RW			RW	RW	RW	RW	RW	RW
							20			1ER			-	0		(tin	ner		be	ena				Мd	or E	ERS	6 bit))			_
							17		TE	ST				00				l op													_
							16							01				Rov													_
														01				OD				gra	m								_
													-	10 11				Row			m										_
							15			POI	п			11				v pi			mn	Vnr		itou	+						_
							14			ER	51							ase					5 00	npu	L						_
							13		PV									ogra													_
							11			PBE	-							rea													_
							10			PAE								rea													_
							9		PP	GΜ						Pre	PC	ЗM	ena	ble											_
																Ра	ge l	ouffe	er s	et a	utor	mati	cally	/							_
							8		AE									se e													_
							5			OD	E							E e		le(A	ddre	ess	path	n ch	nan	ginç	g)				_
							4		WE									enat													_
							3		PB									ouffe			WE	sho	buld	be	se	t)					_
							2		PG ER					0			_	m e			obl	~									_
							I		ΕK	3			-	0				m n moc				e									_
							0		PB	R				1				buffe													_
									. 0	• •						i u	90 1	June													

FM.CR=0x4000_0108

FM.AR Flash Memory Address Register

The Flash Memory Address Register is an internal Flash memory program, erase address register.

FM.DR Flash Memory Data Register

This is an internal Flash memory program data register.

																										I	FM.C	DR=)x40	00_	0110
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															FD/	ATA															
														0x	0000	0_00	00														
															R	w															
											<u> </u>																				
								3 0	1	F	DAT	A			F	last	ר ר	Mاف	dat	a (3	32-b	it)									

FM.TMR Flash Memory Timer Register

The Flash Memory Timer Register is an internal Flash memory Timer value register (16-bit). Erase/Program timer runs up to TMR[15:0]

													FM.TN	IR=0x40	000_011
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Т	M R							
							0x0	9C4							
							R	w							
			7	т	MR			Frase/	PGM ti	mer (de	fault 0	x09C4)			
			0	'				Timer	counts	up to -	FMR[15	:0] by	1MHz in		
								k or E CK bi		OSC	clock. I	t can t	be selec	ted in	TMR

FM.DRTY Flash Memory Dirty Bit Register

This is an internal Flash memory dirty bit clearing register.

																										FM.	DR	TY=0	0x40	00_0	0118
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								•							FDF	RTY															
																•															
														v	Vrite	On	ly														
•																															
							31		F	DR	TΥ							any	val	ue	here	, Ca	ache	line	e fill	l fla	ag v	will	be	clea	ar
						-	0									ed															

Note: This device has a small internal cache. All cache lines are cleared when any data is written to this register.

FM.TICK Flash Memory Tick Timer Register

The Flash Memory Tick Timer Register is an internal Flash memory Burst Mode channel selection register.

FM.CRC Flash Memory CRC Value Register

The Flash Memory CRC Value Register is the Cyclic Redundancy Check (CRC) value resulting from read access on internal Flash memory.

EM CEG-0x4000 0130

FM.CFG Flash Memory Config Value Register

The Flash Memory Config Value Register is the Flash configuration register.

																										FN	л.сг	G=0	x40	00_0	130
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						w	RITE	E KE	Y							HRESPD			TMRCK			WAIT		CRCINIT	CRCEN				TR	IM	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1			0		0	1	1	0	0				0)	
																													R	w	
							3	1 5	V	VRI	ГЕ	KEY	,		ł	ΚEΥ	Val	ue :	0x	785	8										
								5	F	IRE	SPE	0			5	Disab Syste (HRE	em	bus				-			nctio	on)	of [Data	or		
							1	2	Т	MR	CK			C	-	PGM PRM												C			
							1	0	V	VAIT			(000	١	lo v	/ait	acc	ess	for	flas	sh n	nem	ory							
							8						(001	1	-wa	it in	sert	ed 1	for	flasł	n ac	ces	s							
													(010	2	2-wa	it in	sert	ed 1	for	flasł	n ac	ces	s							
														011	-	8-wa	-			-				-							
							7		C	RC	INIT	Γ	(0		CRC															
														1		agaiı Initia										CRC	216	cal	cula	tion	
							6		C	CRC	ΕN		(0	C	CRC	16 6	enat	ole												
														1	(CRC	val	ue	will	be	calc	ulat	ed	at e	ever	y fla	ash	rea	d tir	ning	3
								3 TRIM 0							F	FLAS	SH 1	RIN	ΝV	alue	e (tri	im_r	mod	le_e	entry	r)					

FM.BOOTCR Boot ROM Remap Clear Register

This is the Boot ROM remap clear register. This register is an 8-bit register.

FM.PROTECT=0x4000_0178

FM.PROTECT Write Protection Control Register

The Write Protection Control Register is an internal Flash memory control register.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		W	RITE	E_KE	ΞY											WP15	WP14	WP13	WP12	WP11	WP10	WP9	WP8	WP7	WP6	WP5	WP4	WP3	WP2	WP1	WP0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
							15		WF	°15						0xl	=000)~	0xF	FFF	, w	rite_	key	/ is	0x8	87					_
							14		WF)~													_
							13		WF	-								0~													_
							12 11		WF									0~													_
							10			211 210) ~) ~													_
							9		WF	-)~													_
							8		WF	-)~													_
							7		WF)~													-
							6		WF)~													_
							5 4		WF	°5)~													_
							4		WF	9 4						0x4	4000)~	0x4	FFF	, wi	rite	key	is	0x8	37					_
							3		WF	' 3						0x3	3000)~	0x3	FFF	, wi	rite_	key	' is	0x8	37					
							2		WF							0x2	2000)~	0x2	FFF	, wi	rite_	key	is	0x8	37					_
							1		WF)~													_
						-	0		WF	0						0x(0000)~	0x0	FFF	, wi	rite_	key	is	0x9	98					_

FM.JTAGEN JTAG Protection Control Register

The JTAG Protection Control Register is a debug access control register.

Functional Description

Flash Memory Controller is an internal Flash memory interface controller. It mainly controls the program Flash memory operation and prepares read data for requesting from the bus.

Flash Organization

The 64 Kbytes code Flash memory consists of 1,024 pages which have a uniform 128-bytes page size. The Flash controller allows for reading or writing a data of the Flash memory. Read access can be performed by 8, 16, and 32 bits wide.

This momory is located at $0 \times 0000_0000$ address on the system memory map. The system boot address is $0 \times 0000_0000$, so this Flash memory is boot memory. The code data which is programmed in the Flash memory will boot up the device after the boot ROM sequence is completed.

Flash Read Operation

The Flash data read operation is requested from the bus. The Flash controller responds to the request by itself. The wait time should be correctly defined because the bus speed is usually faster than Flash data access time.

The normal read operation is not available in FLASH MODE in the ACODE.FM.MR field.

Flash Program Operation

The erase and program access of Flash memory is available only in FLASH MODE in the ACODE.FM.MR field. Therefore, self-programming is not supported. The Flash program/erase operation should be performed by the execution program on the SRAM memory.

The Flash program operation writes one page to the target address selected by the FM.AR register. At first, users should write the program data into the page buffer. Page buffer write is performed by word write access to the FM.DR register on the FM.AR address.

After filling the page buffer, users can start the Flash write operation and should wait for the IDLE bit to be set.

Figure 7.2 shows the page buffer loading operation.

Figure 7.2. Page Buffer Load Timing Diagram

The Flash write of page buffer data is performed by the PRGM.FM.CR command. Safe writing operation requires correct program time. The program time tPGM is defined by the FM.TMR register. This timer counts the number of HCLK clock to the FM.TMR value. When the timer count starts, the IDLE.FM.MR register is cleared. When the timer count is completed, the IDLE.FM.MR register is set.

In this page write operation, the target page address should be written in the FM.AR register.

Figure 7.3 shows the page write operation.

Figure 7.3.Page Erase Timing Diagram

The Flash erase of page data is done by the ERS.FM.CR command. Safe writing operation requires correct program time. The erase time tERS is defined by the FM.TMR register. This timer counts the number of HCLK clock to the FM.TMR value. When the timer count starts, the IDLE.FM.MR register is cleared. When the timer count is completed, the IDLE.FM.MR register is set.

Figure 7.4 shows the bulk erase operation.

Figure 7.4. Bulk Erase Timing Diagram

8. Internal SRAM

Overview

The Z32F0641 MCU has a block of 0-wait on-chip SRAM. The size of SRAM is 8 KB. The SRAM base address is 0x2000_0000. The SRAM memory area is usually used for data memory and stack memory. Sometimes the code is dumped into the SRAM memory for fast operation or Flash erase/PGM operation. This device does not support a memory remap strategy; therefore, jump and return is required to execute the code in the SRAM memory area.

Figure 8.1 SRAM Block Diagram

9. Direct Memory Access Controller

Introduction

Features of the Direct Memory Access Controller (DMAC) include:

- Four channels
- Single transfer only
- Supports 8/16/32-bit data size
- Supports multiple buffers with same size
- Interrupt condition is transferred through peripheral interrupt

A block diagram of the DMAC is shown in Figure 9.1.

Figure 9.1 Block Diagram

Pin Description

The DMAC has no external interface pins.

Registers

The base address of the DMA controller is shown in Table 9.1.

Table 9.1 DMA	Controller Base Address
Channel	Base Address
DMACH0	0x4000_0400
DMACH1	0x4000_0410
DMACH2	0x4000_0420
DMACH3	0x4000_0430

Table 9.2 shows the register map of the DMA controller.

			Table 9.2 DMAC Register Map	
Name	Offset	Туре	Description	Reset Value
DC <i>n.</i> CR	0x0000	RW	DMA Channel n Control Register	0x0000_0000
DC <i>n.</i> SR	0x0004	RW	DMA Channel n Status Register	0x0000_0000
DC <i>n.</i> PAR	0x0008	R	DMA Channel n Peripheral Address	0x0000_0000
DC <i>n.</i> MAR	0x000C	RW	DMA Channel n Memory Address	0x2000_0000

DCn.CR DMA Controller Configuration Register

This DMA operation control register is a 32-bit register.

DC0.CR=0x4000_0400 , DC1.CR=0x4000_0410 DC2.CR=0x4000_0420 , DC3.CR=0x4000_0430

```
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
```

					TRANSCNT					PERISEL					SIZE	DIR	
0	0	0	0	•	0x000	0	0	0	0	0	0	0	0	0	00	0	0
					RW					RW					RW	RW	

27	TRANSCNT	Number of DMA transfer remained
16		Required transfer number should be written before ena
		ble DMA transfer.
		0 DMA transfer is done.
		N N transfers are remained
11	PERISEL	Peripheral selction
8		N Associated peripheral selection.
		Refer to DMA Peripheral connection table
3	SIZE	Bus transfer size.
2		00 DMA transfer is byte size transfer
		01 DMA transfer is half word size transfer
		10 DMA transfer is word size transfer
		11 Reserved
1	DIR	Select transfer direction.
		0 Transfer direction is from memory to peripheral. (T
		X)
		1 Transfer direction is from peripheral to memory (R
		X)

A DMA channel is connected to the selected peripheral. Table 9.3 shows the peripheral selections. This PERISEL field must be configured with the correct number of peripherals that will be connected to the DMA interface.

Table 9.3 L	DMAC PERISEL Selection
PERISEL[3:0]	Associatec Peipheral
0	CHANNEL IDLE
1	UARTO RX
2	UART0 TX
3	UART1 RX
4	UART1 TX
5	SPI0 RX
6	SPI0 TX
7	ADC0 RX
8	ADC1 RX
9 - 15	N.A.

Table 9.3	DMAC PERISEL	Selection
-----------	--------------	-----------

Note: PERISEL cannot have the same value in different channels. If the same PERISEL value is written in more than one channel, proper operation is not guaranteed. Unused channels must contain CHANNEL IDLE value in PERISEL bit postions.

DCn.SR DMA Controller Status Register

The DMA Controller Status Register is an 8-bit register. This register represents the current status of the DMA Controller and enables DMA function.

DC0.SR=0x4000_0404 , DC1.SR=0x4000_0414 DC2.SR=0x4000_0424 , DC3.SR=0x4000_0434

DC*n*.PAR DMA Controller Peripheral Address Register

This register represents the peripheral addresses.

DC0.PAR=0x4000_0408 , DC1.PAR=0x4000_0418 DC2.PAR=0x4000_0428 , DC3.PAR=0x4000_0438

Peripheral BASE OF	FSET	PAR
0x4000		0x0000
RO		RW
31 0	PAR	Target Peripheral address of transmit buffer or receive buffer. User must set exact target peripheral buffer address in this field. If DIR is "0" this address is destination address of data transfer. If DIR is "1", this address is source address of data transfer.

DCn.MAR DMA Controller Memory Address Register

This register represents the memory addresses.

DC0.MAR=0x4000_040C , DC1.MAR=0x4000_041C DC2.MAR=0x4000_042C , DC3.MAR=0x4000_043C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																							M	AR							
							0x2	000															0x0	000							
							R	ο								ĺ							R	w							
	0													Addi bits f Di nsfe f Di	ress wh IR is r.	is ien s "0 s "1	aut eac " th	oma ch t nis a	dres atica rans addr add	lly i fer ess	ncre is d is s	emer one sour	nted	ac add	ress	s of	dat	a tr	а		

Functional Description

The DMA controller performs direct memory transfer by sharing the system bus with the CPU core. The system bus is shared by 2 AHB masters following the round-robin priority strategy. Therefore, the DMA controller can share half of the system bandwidth.

The DMA controller is triggered only with a peripheral request. When a peripheral requests the transfer to the DMA controller, the associated channel is activated and accesses the bus to transfer the requested data from memory to the peripheral data buffer or from the peripheral data buffer to memory space.

- 1. User sets the peripheral address and memory address.
- 2. User configures DMA operation mode and transfer count.
- 3. User enables the DMA channel.
- 4. Peripheral sends a DMA request.
- 5. DMA activates the channel that was requested.
- 6. DMA reads data from the source address and saves it to the internal buffer.
- 7. DMA writes the buffered data to the destination address.
- 8. Transfer count number is decreased by 1.
- 9. When Transfer count is 0, the EOT flag is set and a notice sent to peripheral to issue the interrupt.
- 10. DMA does not have an interrupt source; the interrupt related DMA status can be shown from the assigned peripheral interrupt.

Figure 9.2. Block Diagram

Figure 9.2 shows the functional timing diagram of the DMA controller. The transfer request from the peripheral is pended internally and it invokes source data read transfer on the AHB bus. The read data from the source address is stored in the internal buffer. This data will then be transferred to the destination address when the AHB bus is available.

The timing diagram for a DMA transfer from the peripheral to memory is shown in Figure 9.3. A 4-clock cycle latency exists when accessing the peripheral. If the bus is occupied by a different bus master, the number of bus waiting cycles increase until the bus is available.

Figure 9.3. DMA Transfer from Peripheral to Memory

The timing diagram for a DMA transfer from memory to the peripheral is shown in Figure 9.4. 4-clock cycle latency exists during accessing the peripheral. If the bus is occupied by a different bus master, there are amount of bus waiting cycles.

Figure 9.4. DMA Transfer from Memory to Peripheral

The figure is an example N data transfers with the DMA. The DMA transfer is started when DCnSR.DMAEN is set and will be cleared when all the number of transfer is completed.

Figure 9.5. N DMA Transfer Example

10. Watchdog Timer

Overview

The Watchdog Timer can monitor the system and generate an interrupt or a reset. It has a 32-bit down-counter. The Miscellaneous Clock Control Register 3 provides base clock options with clock dividers to drive the WDT clock. This can be selected in the WDTCON register. To prevent the WDT from firing, reload the LR register with the appropriate value before the WDT times out. 32-bit down counter (WDTCVR)

Features include:

- Select reset or periodic interrupt
- Count clock selection
- Dedicated pre-scaler
- Watchdog overflow output signal

Figure 10.1 Block Diagram

Registers

The base address of the watchdog timer is $0x4000_{0200}$ and the register map is described in Table 10.1. The initial watchdog time-out period is set to 2,000-milliseconds.

NAME	OFFSET	TYPE	DESCRIPTION	RESET VALUE
WDT.LR	0x0000	W	WDT Load register	0x0000000
WDT.CNT	0x0004	R	WDT Current counter register	0x0000FFFF
WDT.CON	0x0008	RW	WDT Control register	0x0000805C

Table 10.1	Watchdog	Timer	Register	Мар
------------	----------	-------	----------	-----

WDT.LR Watchdog Timer Load Register

The WDTLR register is used to update the WDTCVR register. To update the WDTCVR register, the WEN bit of WDTCON should be set to **1** and written to the WDTLR register with a target value of WDTCVR.

WDT.LR=0x4000_0200

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															WD	TLR															
														0x	000	0_00	00														
															R	w															
								3	1	V	/DT	LR			٧	Vato	hdo	g ti	mer	loa	d v	alue	e reg	giste	ər						
								C)														write				egis	ster	will	up	d
															á	ate	WD.	ТС٧	/R \	/alu	e wi	ith ۱	writt	en '	valu	е					

WDT.CNT Watchdog Timer Current Counter Register

The WDTCNT register represents the current count value of 32-bit down counter .When the counter value reaches 0, an interrupt or reset occurs.

WDT.LR=0x4000_0204

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														١	WDT	CNT	r														
														0x	0000	_FF	FF														
															R	W															
								3	1	N	/DT	CNT	Г		V	Vatc	hdo	g ti	mer	cu	rrent	t co	unte	er re	egis	ter					
								0							3	2-bi	t do	own	COL	unte	r wi	ll ru	ın fi	rom	the	e wri	itter	ı va	lue.		

WDT.CON Watchdog Timer Control Register

WDT module should be configured properly before running. When target purpose is defined, the WDT can be configured in the WDTCON register

													WDT.CO	ON=0x4000	0_0208		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
WDBG							WUF	WDTIE	WDTRE		WDTEN	CKSEL		WPRS			
1	0	0	0	0	0	0	0	0	1	0	1	1	•	100			
RW							RW	RW	RW		RW	RW		RW			
				15	WDB	G) '	Watchdo	og cour	nter run	ning wh	nen deb				
				8	WUF			Vatchdo		underf erflow	low flag						
				7	WDT	IE		Watchdo)		counte interru	er under ot	rflow int	errupt	enable			
				6	WDT	RE		Vatchdo)		counte reset		rflow int	errupt	enable			
				4	WDT	EN		Watchdo		iter ena dog cou	inter dis						
				3	CKSI	ΞL		NDTCLI)	KIN cloo PCLK	ck sour	ce sele	ct	MHz)				
				2 0	WPR	S		Counter WDTCLI 000 ' 001 ' 010 ' 011 ' 100 ' 101 ' 101 '	clock p	TCLKII KIN KIN / 4 KIN / 4 KIN / 4 KIN / 4 KIN / 3 KIN / 6 KIN / 1	r N/WPRS 6 6 6 6 6 6 6 2 6 4 28		100 V RW ug mode when debug mode when debug mode interrupt enable interrupt enable				

Functional Description

The watchdog timer count can be enabled by setting WDTEN (WDT.CON[4]) to 1. When the watchdog timer is enabled, the down counter starts counting from the Load Value. If WDTRE (WDT.CON[6]) is set as 1, WDT reset will be asserted when the WDT counter value reaches 0 (underflow event) from the WDTLR value. Before WDT counter goes down to 0, the software can write a certain value to the WDTLR register to reload the WDT counter.

Timing Diagram

Figure 10.2. Timing Diagram in Interrupt Mode Operation when WDT Clock is the External Clock

In WDT Interrupt mode, after WDT underflow occurs, a certain count value is reloaded to prevent the next WDT interrupt in a short time period and this reloading action can only be activated when the watchdog timer counter is set to Interrupt mode (set WDTIE of WDT.CON). It takes up to 5 cycles from the Load value to the CNT value. The WDT interrupt signal and the CNT value data might be delayed by a maximum of 2 system bus clocks in synchronous logic.

Prescale Table

The Watchdog Timer includes a 32-bit down counter with programmable pre-scaler to define different time-out intervals.

The clock sources of watchdog timer can be peripheral clock (PCLK) or one of 3 external clock sources. The external clock source can be enabled by CKSEL (WDT.CON[3]) set to '1'. The external clock source is selected in the MCCR3 register of the System Control Unit block.

To make the WDT counter base clock, users can control the 3-bit pre-scaler WPRS [2:0] in the WDT.CON register and the maximum pre-scaled value is "clock source frequency/256". The pre-scaled WDT counter clock frequency values are listed in Table 10.2.

Selectable clock source (40 kHz ~ 16 MHz) and the time out interval when 1 count

Time out period = {(Load Value) * (1/pre-scaled WDT counter clock frequency) + max 5T_{ext}} + max 4T_{clk}

*Time out period (time out period from load Value to interrupt set '1')

Table 10.2. Pre-scaled WDT Counter Clock Frequency

		10010 10.2.1			olookiicque	licy		
Clock Source	WDTCLKIN	WDTCLKIN /4	WDTCL KIN/8	WDTCL KIN/16	WDTCL KIN/32	WDTCL KIN/64	WDTCL KIN/128	WDTCL KIN/256
Ring OSC	1Mhz	250khz	125khz	62.5khz	31.25khz	15.625khz	7.8125khz	3.90625kh z
MCLK	MCLK (BUS CLK)	MCLK/4	MCLK/8	MCLK/16	MCLK/32	MCLK/64	MCLK/128	MCLK/256
EOSC	XTAL	XTAL/4	XTAL/8	XTAL/16	XTAL/32	XTAL/64	XTAL/128	XTAL/256

11. 16-Bit Timer

Overview

The timer block consists of six channels of 16-bit general-purpose timers. They support periodic timer, PWM pulse, one-shot timer, and capture mode. The 16-bit timer has the following features:

- 16-bit up-counter
- Periodic timer mode
- One-shot timer mode
- PWM pulse mode
- Capture mode
- 10-bit prescaler
- Synchronous start and clear function

Figure 11.1 shows the block diagram of a unit timer block.

Figure 11.1 Block Diagram

Pin Description

Table 11.1 External Pin

Pin Name	Туре	Description
TnIO	I	External clock/capture input and PWM/one-shot output

Registers

The base address of the timer is $0 \times 4000_{3000}$ and the register map is described in Table 11.3.

Channel	Base Address
T0	0x4000_3000
T1	0x4000_3020
T2	0x4000_3040
Т3	0x4000_3060
Т8	0x4000_3100
Т9	0x4000_3120

Table 11.2 Base Address of Each Channel

Table 11.3 Timer Register Map

Name	Offset	Туре	Description	Reset Value
T <i>n.</i> CR1	0x00	RW	Timer control register 1	0x0000000
T <i>n.</i> CR2	0x04	RW	Timer control register 2	0x0000000
T <i>n.</i> PRS	0x08	RW	Timer prescaler register	0x0000000
T <i>n.</i> GRA	0x0C	RW	Timer general data register A	0x0000000
T <i>n.</i> GRB	0x10	RW	Timer general data register B	0x0000000
T <i>n</i> .CNT	0x14	RW	Timer counter register	0x0000000
T <i>n.</i> SR	0x18	RW	Timer status register	0x0000000
T <i>n.</i> IER	0x1C	RW	Timer interrupt enable register	0x0000000

T0.CR1=0x4000_3000, T1.CR1=0x4000_3020

Tn.CR1 Timer n Control Register 1

The Timer Control Register 1 is a 16-bit register.

The timer module should be accurately configured prior to operating it. When a target purpose is defined, the timer can be configured in the TnCR1 register.

												_		R1=0x400 R1=0x400	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSYNC	CSYNC	NAO	OUTPOL				ADCTRGEN	STARTLVL		CKSEL				MODE	
0	0	0	0	0	0	0	0	0		000		0	0	00	
RW	RW	RW	RW				RW			RW		R	N	RV	1

15	SSYNC	Synchronize start counter with other synchronized timer
		0 Single counter mode
14	CSYNC	1 Synchronized counter start mode Synchronize clear counter with other synchronized timer
14	CSTNC	
		S O Cingle counter mode
		0 Single counter mode
40		1 Synchronized counter clear mode
13	UAO	Select GRA, GRB update mode
		0 Writing GRA or GRB takes effect after current
		period
		1 Writing GRA or GRB takes effect in current per
40		Od
12	OUTPOL	Timer output polarity
		0 Normal output
	ADOTDOEN	1 Negated output
8	ADCTRGEN	ADC Trigger enable control
		0 Disable adc trigger
		1 Enable adc trigger
7	STARTLVL	Timer output polarity control
		0 Default output level is HIGH
	0	1 Defulat output level is LOW
6	CKSEL[2:0]	Counter clock source select
4		000 PCLK/2
		001 PCLK/4
		010 PCLK/16
		011 PCLK/64
		10X MCCR3 clock setting
		11X TnIO pin input (TnIO pin must be set as input
		mode)
3	CLRMOD	Clear select when capture mode
2		00 Rising edge clear mode
		01 Falling edge clear mode
		10 Both edge clear mode
		11 None clear mode
1	MODE	Timer operation mode control
0		00 Normal periodic operation mode
		01 PWM mode
		10 One shot mode
		11 Capture mode

Tn.CR2 Timer Control Register 2

The Timer Control Register 2 is an 8-bit register.

T0.CR2=0x4000_3004, T1.CR2=0x4000_3024 T2.CR2=0x4000_3044, T3.CR2=0x4000_3064 T8.CR2=0x4000_3104, T9.CR2=0x4000_3124

Note: It is recommended that the timer is started with TCLR bit setting at 1.

Tn.PRS Timer n Prescaler Register

The Timer Prescaler Register is a 16-bit register designed to prescale the counter input clock.

Tn.GRA Timer General Register A

The Timer General Register A is a 16-bit register.

T0.GRA=0x4000_300C, T1.GRA=0x4000_302C T2.GRA=0x4000_304C, T3.GRA=0x4000_306C T8.GRA=0x4000_310C, T9.GRA=0x4000_312C

										T8.G	RA=0x40	00_310	C, T9.GR	RA=0x40	00_31
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							G	RA							
							0x0	000							
							R	w							
				15	GRA				-	· ·	uty/Inter		u /		
				0			-	In PW	/M mod	le this		is used	d as du	ity value	
							(GRA M	atch int		alue is s reque		ed with	this va	lue,
							-		g edge		•	•	ture the	e count	valu
								 Rising 	edge	of TnIC	ear moo port w ar mod	vill capt	ure the	count	value

Tn.GRB Timer n General Register B

The Timer General Register B is 16-bit register.

										T2.GI	RB=0x4	000_305), T3.GF	RB=0x40	00_3030 00_3070 00_3130
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							G	RB							
							0x0	000							
							R	w							
				15 0	GRB		- - (- (-	General Periodic In perio value. When t GRB Ma S-shot m Capture n Rising when ris Falling when fa	he con tch int odes. mode edge c sing edge o	/ PWM ode or l ue. The unter va errupt is of TnIO dge cleat of TnIO	/ One PWM r counte alue is reque port w ar mode port w	shot mo node, th r will co matche ested on ill captu e vill captu	nis regi punt up d with ly in P re the	o to (GF this va WM an	RB-1) Ilue, Id on value

Tn.CNT Timer Count Register.

The Timer Count Register is a 16-bit register.

										T2.0	CNT=0x4	4000_301 4000_305 4000_311	54, T3.CI	NT=0x40	00_307
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							C	NT							
							0x0	000							
							R	w							
				15	CNT		1	imer co	ount va	lue regi	ster				
				0			F			ent time	er coun	t value			
							V	V Set	count	value					

Tn.SR Timer n Status Register

The Timer Status Register is an 8-bit register. This register indicates the current status of timer module.

Note: The OVF flag occurs only when the counter rolls from $0 \times FFFF$ to 0.

Tn.IER Timer Interrupt Enable Register

The Timer Interrupt Enable Register is an 8-bit register.

Each status flag of the timer block can issue the interrupt. To enable the interrupt, write **1** in the corresponding bit in the TnIER register.

T0.IER=0x4000_301C, T1.IER=0x4000_303C T2.IER=0x4000_305C, T3.IER=0x4000_307C T8.IER=0x4000_311C, T9.IER=0x4000_313C

1

Enable counter overflow interrupt

Functional Description

Timer Basic Operation

In Figure 11.2, TMCLK is a reference clock for operation of the timer. When this clock is divided by the prescaler setting, the counting clock will work.

Figure 11.2. Basic Start and Match Operation

The period of timer count can be calculated as shown in the following equation:

The period = TMCLK Period * Tn.GRB value

Match A interrupt time = TMCLK Period * Tn.GRA value

If the Tn.CR1.UAO bit is "0", the Tn.CR2.TCLR command will initialize all the registers in the timer block and load the GRA and GRB values into the Data0 and Data1 buffer. When you change the timer setting and restart the timer with the new setting, it is recommended that you write the CR2.TCLR command before the CR2.TEN command.

The update timing of the Data0 and Data1 buffer in dynamic operation is different in each operating mode and depends on the Tn.CR1.UAO bit.

Normal Periodic Mode

Figure 11.3 shows the timing diagram in normal periodic mode. Tn.GRB value decides the timer period. One more compare point is provided with Tn.GRA register value.

Figure 11.3. Normal Periodic Mode Operation

The period of timer count can be calculated as shown in the following equation:

The period = TMCLK Period * Tn.GRB value Match A interrupt time = TMCLK Period * Tn.GRA value

If Tn.GRB = 0, the timer cannot be started even if TnCR2.TEN is "1" because the period is "0".

The value in Tn.GRA and Tn.GRB is loaded into the internal compare data buffers 0 and 1 when the loading condition occurs. In this periodic mode with TnCR1.UAO =0, the Tn.CR2.TCLR write operation and the GRB match event will load the compare data buffers.

When TnCR1.UAO is 1, the internal compare data buffer is updated whenever the Tn.GRA or Tn.GRB data is updated.

The TnIO output signal will be toggled at every Match A condition time. If the value of TnGRA is 0, the TnIO output does not change its previous level. If TnGRA is the same as TnGRB, the TnIO ouput will toggle at same time as the counter start time. The initial level of the TnIO signal is decided by the TnCR1.STARTLVL value.

One Shot Mode

Figure 11.4 shows the timing diagram in one shot mode. Tn.GRB value decides the one shot period. One more compare point is provided with Tn.GRA register value.

Figure 11.4. One Shot Mode Operation

The period of one shot count can be calculated as shown in the following equation:

The period = TMCLK Period * Tn.GRB value

Match A interrupt time = TMCLK Period * Tn.GRA value

If Tn.GRB = 0, the timer cannot be started even if TnCR2.TEN is "1" because the period is "0".

The value in Tn.GRA and Tn.GRB is loaded into the internal compare data buffer 0 and 1 when the loading condition occurs. In this periodic mode with TnCR1.UAO =0, the Tn.CR2.TCLR write operation and the GRB match event will load the compare data buffers.

When TnCR1.UAO is 1, the internal compare data buffer is updated whenever the Tn.GRA or Tn.GRB data is updated.

The TnIO output signal format is the same as PWM mode. Tn.GRB value defines the output pulse period and the Tn.GRA value defines the pulse width of one shot pulse.

PWM Timer Output

Figure 11.5 shows the timing diagram in PWM output mode. The Tn.GRB value decides the PWM pulse period. An additional comparison point is provided by the Tn.GRA register value which defines the pulse width of PWM output.

Figure 11.5. PWM Output Operation

The period of PWM pulse can be calculated as shown in the following equation:

The period = TMCLK Period * Tn.GRB value Match A interrupt time = TMCLK Period * Tn.GRA value

If Tn.GRB = 0, the timer cannot be started even TnCR2.TEN is "1" because the period is "0".

The value in Tn.GRA and Tn.GRB is loaded into the internal compare data buffer 0 and 1 when the loading condition occurs. In this periodic mode with TnCR1.UAO =0, the Tn.CR2.TCLR write operation and the GRB match event will load the compare data buffers.

When TnCR1.UAO is 1, the internal compare data buffer is updated whenever the Tn.GRA or Tn.GRB data is updated.

The TnIO output signal generates a PWM pulse. The Tn.GRB value defines the output pulse period and the Tn.GRA value defines the pulse width of one shot pulse. The active level of the PWM pulse can be controlled by the Tn.CR1.STARTLVL bit value.

ADC Trigger generation is available at Match A interrupt time.

PWM Synchronization Function

2-PWM outputs are usually used as synchronous PWM signal control. This function is provided with a synchronous start function. Figure 8.6 shows the synchronous PWM generation function.

Figure 11.6. Example of Timer Synchronization Function (SSYNC='0')

Figure 11.7. Example of Timer Synchronization Function (CSYNC='1')

The TnCR1.SSYNC bit controls start synchronization with other timer blocks. The TnCR1.CSYCN bit controls clear sync with other timer blocks. The SSYNC and CSYNC bits are only effective when used with two or more timers.

For example, timer0 and timer1 set the SSYNC and CCSYNC bits in each CR1 register; both timers are started whenever one of them is enabled and both timers will cleared with a short period match value. However, others are not affected by these two timers, and they can be operated independently because their SYNC control bit is 0.

Capture Mode

Figure 11.8 shows the timing diagram in the Capture mode operation. The TnIO input signal is used for capturing the pulse. Rising and falling edges can capture the counter value in each capture codition.

Figure 11.8. Capture Mode Operation

A 5 PCLK clock cycle is required internally. Therefore, the actual capture point is after 5 PCLK clock cycles from the rising or falling edge of the TnIO input signal.

The internal counter can be cleared in multiple modes. The TnCR1.CLRMD field controls the counter clear mode. The following clear modes are supported: Rising edge, Falling edge, Both edges, and None.

The example in Figure 11.8 is of Rising edge clear mode.

ADC Trigger Function

The timer module can generate ADC start trigger signals. One timer can be one trigger source of the ADC block. Trigger source control is performed by the ADC control register.

Figure 11.9 shows the ADC trigger function.

The conversion rate must be shorter than the timer period, else an overrun situation can occur. ADC acknowledge is not required because the trigger signal is automatically cleared after 3 PCLK clock pulses.

Figure 11.9. ADC Trigger Function Timing Diagram

12. UART

Overview

•

2-Channel Universal Asynchronous Receiver/Transmitter (UART) modules are included. Dedicated DMA support to transfer data between the Memory buffer and the Transmit/Receive buffer of the UART block is also provided.

The UART operation status, including error status, can be read from the status register. The prescaler, which generates proper baud rate, exists for each UART channel. This prescaler divides the UART clock source which is PCLK/2, from 1 to 65535. The baud rate is generated using the clock with a prescaler of 16, and an 8-bit precision clock tuning function.

Programmable interrupt generation function helps control communication via the UART channel. Features of the UART include:

- Compatible with 16450 UART
- Supports DMA transfer
- Standard asynchronous control bit (start, stop, and parity) configurable
- Programmable 16-bit fractional baud rate generator
- Programmable serial communication
 - \circ 5-, 6-, 7- or 8- bit data transfer
 - \circ $\;$ Even, odd, or no-parity bit insertion and detection
 - o 1-, 1.5- or 2-stop bit-insertion and detection
 - 16-bit baud rate generation with 8-bit fraction control
- Hardware inter-frame delay function
- Stop bit error detection
- Detail status register
- Loop-back control

Figure 12.1 Block Diagram

Pin Description

Pin Name	Туре	Description			
TXD0	0	UART Channel 0 transmit output			
RXD0	I	UART Channel 0 receive input			
TXD1	0	UART Channel 1 transmit output			
RXD1	I	UART Channel 1 receive input			

Table 12.1 External Signal

Registers

The base address of UART is shown in Table 12.2 and the register map is described in and Table 12.3.

	Table	12.2	Base	Address	of	Each	Port
--	-------	------	------	---------	----	------	------

Name	Base Address
UART 0	0x4000_8000
UART 1	0x4000_8100

Name Offset Description **Reset Value** Туре Un.RBR 0x00 R Receive data buffer register 0x00 Un.THR 0x00 W Transmit data hold register 0x00 Un.IER RW 0x04 Interrupt enable register 0x00 Un.IIR 0x08 R Interrupt ID register 0x01 0x08 reserved Un.LCR 0x0C RW Line control register 0x00 Un.DCR 0x10 RW Data Control Register 0x00 Un.LSR 0x14 R Line status register 0x00 0x18 reserved -Un.SCR 0x1C RW Scratch pad register 0x00 Un.BDR 0x20 RW Baud rate Divisor Latch Register 0x0000 Un.BFR 0x24 RW Baud rate Fractional Counter Value 0x00 Un.IDTR 0x30 RW Inter-frame Delay Time Register 0x00

Table 12.3 UART Register Map

Un.RBR Receive Buffer Register

The UART Receive Buffer Register is an 8-bit Read-Only register.

Un.THR Transmit Data Hold Register

The UART Transmit Data Hold Register is an 8-bit Write-Only register.

					U0.THR=0x40	000_8000, U1.TH	HR=0x4000_8100	
7	6	5	4	3	2	1	0	
THR								
				-				
	wo							
		7 TH	R	Transmit Data	Hold Register			

Un.IER UART Interrupt Enable Register

The UART Interrupt Enable Register is an 8-bit register.

7	6	5	5	4	3	2	1	0		
-	-	DTX	IEN	DRXIEN	TXIE	RLSIE	THREIE	DRIE		
0	0	C)	0	0	0	0	0		
		R	w	RW		RW	RW	RW		
		5	DTXI	EN	DMA transmit d					
		4 DRXIEN 3 TXIE 2 RLSIE					upt is disabled			
					1 Receive line status interrupt is enabled DMA receive done interrupt enable					
					0 DMA receive done interrupt is disabled					
				1 DMA receive done interrupt is enabled						
				0 Transmit register empty interrupt is disabled						
				_	1 Transmit register empty interrupt is enabled					
				= .	Receiver line status interrupt enable 0 Receive line status interrupt is disabled					
		1 THREIE		1 Receive line status interrupt is enabled EIE Transmit holding register empty interrupt enable						
		·					empty interrup			
					5	olding register	empty interru	pt is enable		
		0	DRIE		Data receive in	terrupt enable				
						ve interrupt is	disabled			
					1 Data recei	ve interrupt is	enabled			

Un.IIR UART Interrupt ID Register

The UART Interrupt ID Register is an 8-bit register.

U0.IIR=0x4000_8008, U1.IIR=0x4000_8108

7	6		5	4	3	2	1	0
				ТХЕ		IID		IPEN
0	0	_1	0	0	<u>I</u>	000		0
				R		R		R
		4	TXE	Interrupt source ID See interrupt source ID table				
		3 1	IID	Interrupt source ID See interrupt source ID table				
		0	IPEN		nterrupt pendir) Interrupt is	ng bit		

1

No interrupt is pending.

The UART supports 3-priority interrupt generation. The Interrupt Source ID register shows one interrupt source which has the highest priority among pending interrupts. This priority is defined in the following order:

- Receive line status interrupt
- Receive data ready interrupt/Character timeout interrupt
- Transmit hold register empty interrupt
- Tx/Rx DMA complete interrupt

	TXE		IID		IPEN		Interrupt Sources		
Priority	Bit4	Bit3	Bit2	Bit1	Bit0	Interrupt Interrupt Interrupt		Interrupt Clear	
-	0	0	0	0	1	None	-	-	
1	0	0	1	1	0	Receiver Line Status	Overrun, Parity, Framing or Break Error	Read LSR register	
2	0	0	1	0	0			Read receive register or read IIR register	
3	0	0	0	1	0	Transmitter Holding Register Empty	Transmit Write tra hold register buffer empty or read IIR register		
4	1	х	x	х	x			hold register or read IIR	
5	0	1	1	0	0	RX DIMA done		Read IIR register	
6	0	1	0	1	0			Read IIR register	
7	1	х	x	x	x	Transmitter register Empty and DMA done	Transmitter regiser Empty and Tx DMA completed.	Read IIR register	

Table 12.4 Interrupt ID and Control

U0.LCR=0x4000_800C, U1.LCR=0x4000_810C

Un.LCR UART Line Control Register

The UART Line Control Register is an 8-bit register.

7	6	5	4	3	2	1	0
	BREAK	STICKP	PARITY	PEN	STOPBIT	DL	EN
0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW
	6	BREAK	r to notic 0 No	e the alert to rmal transfer r	node	driven at low s	state in orde
	5	STICKP	1 Break transmit mode Force parity and it will be effective when PEN bit is set. 0 Parity stuck is disabled 1 Parity stuck is enabled and parity always the bit of F TY.				
	4	PARITY	Parity mode selection bit and stuck parity select bit 0 Odd parity mode 1 Even parity mode 1 Even parity mode Parity bit transfer enable 0 0 The parity bit disabled 1 The parity bit enabled 1 The parity bit followed by data bits. 0 1 stop bit 1 1.5 / 2 stop bit In case of 5 bit data case, 1.5 stop bit is added. I e of 6,7 or 8 bit data, 2 stop bit is added				
	3	PEN					
	2	STOPBIT					dded. In cas
	1 0	DLEN	The data 00 5 01 6 10 7		transfer word.		

Parity bit is generated according to bit 3, 4, 5 of UnLCR register. The following table shows the variation of parity bit generation.

STICKP	PARITY	PEN	Parity
Х	Х	0	No Parity
0	0	1	Odd Parity
0	1	1	Even Parity
1	0	1	Force parity as "1"
1	1	1	Force parity as "0"

U0.DCR=0x4000_8010, U1.DCR=0x4000_8110

Un.DCR UART Data Control Register

The UART Data Control Register is an 8-bit register.

7	6	5	4	3	2	1	0
			LBON	RXINV	TXINV		
0	0	0	0	0	0	0	0
				RW	RW		
		4 LBON	0 No	pback test mo ormal mode		nected to RxD	internally
		3 RXINV	1 Local loopback mode (TxD connected to RxD internation Rx Data Inversion Selection 0 Normal RxData Input 1 Inverted RxData Input				
		2 TXINV	Tx Data 0 No	Inversion Sele ormal TxData (verted TxData	ction Dutput		

Un.LSR UART Line Status Register

The UART Line Status Register is an 8-bit register.

U0.LSR=0x4000_8014	, U1.LSR=0x4000_8114
--------------------	----------------------

7	6	5		4	3	2	1	0
-	ТЕМТ	THRE		BI	FE	PE	OE	DR
0	1	1	•	0	0	0	0	0
	R	R		R	R	R	R	
			TEMT	<u> </u>	Transmit re	egister has the egister is empt	у.	
		4	31	1 E 1	Transmit h Break condition Normal sta	olding register indication bit	empty	
		3	E	F 1	Frame Error. No framing			eive charact
		2	ΡE	 1	Parity Error No parity Parity erro	error r. The receive rity information		s not have
		1	DE	0 0 1	Overrun error No overrur			when the R
		0	DR	 1	Data received No data in	n receive holdir ved and saved		lding registe

This register provides the status of data transfers between the transmitter and receiver. Users can get the line status information from this register and handle the next process. Bits 1,2,3, and 4 will cause the line status Interrupt when RLSIE bit in UnIEN register is set. Other bits generate an interrupt when their interrupt enable bit in UnIEN register is set.

Un.BDR Baud Rate Divisor Latch Register

The UART Baud Rate Divisor Latch Register is a 16-bit register.

										U0.B	DR=0x4	000_802	0, U1.BI	OR=0x40	000_8120
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							B	DR							
							0x0	000							
							R	w							
				15 0	BDR		E	Baud ra	te Divid	ler latch	n value				·

To establish communication with the UART channel, the baud rate should be set. The baud rate for the baud rate generator is determined using divider values from 1 to 65535 The 16 bit divider register (UnBDR) is written for desired baud rate. The baud rate calculation formula is shown below.

$$BDR = \frac{UART_{PCLK}}{32 \times BaudRate}$$

For a speed of 48 MHz UART_PCLK, the divider value and error rate is described in table Table 12.5.

UART_PCLK=48 MHz												
Baud Rate	Divider	Error (%)										
1200	1250	0.00%										
2400	625	0.00%										
4800	312	0.16%										
9600	156	0.16%										
19200	78	0.16%										
38400	39	0.16%										
57600	26	0.16%										
115200	13	0.16%										

Table 12.5 Example of Baud Rate Calculation (without BFR)

110 BER-0x4000 8024 111 BER-0x4000 8124

Un.BFR Baud Rate Fraction Counter Register

The Baud Rate Fraction Counter Register is an 8-bit register.

					00.01 1(-0/4	000_0024, 01.8	111-074000_01
7	6	5	4	3	2	1	0
			BFR				
			0x00)			
			RW				
		7 BFF	R Fra	actions count	er value.		
		0	0	Fraction c	ounter is disab	led	
			N		ounter enabled erating. Fractic		

	UART	PCLK=48 MHz	
Baud Rate	Divider	FCNT	Error (%)
1200	1250	0	0.0%
2400	625	0	0.0%
4800	312	128	0.0%
9600	156	64	0.0%
19200	78	32	0.0%
38400	39	16	0.0%
57600	26	10	0.01%
115200	13	5	0.01%

Table 12.6 Example of Baud Rate Calculation

BFR = Float * 256

The FCNT value can be calculated using the equation above. For example, if the target baud rate is 4800 bps and UART_PCLK is 48 MHz, the BDR value is 312.5. Using the integer 312 as the BDR value and the floating number 0.5, the FNCT value will be 128, as shown in the following calculation:

FCNT = 0.5 * 256 = 128

The 8-bit fractional counter will count up by the BFR value every (baud rate)/16 periods and whenever the fractional counter overflows, the divisor value will increment by 1. Therefore, this period will be compensated. In the next period, the divisor value will return to the original set value.

Un.IDTR Inter-frame Delay Time Register

The UART Inter-frame Time Register is an 8-bit register. A dummy delay can be inserted between two continuous transmits.

Functional Description

General Operation

The UART module is compatible with 16450 UART. Additionally, dedicated DMA channels and fractional baud rate compensation logic are provided. This UART module does not have an internal FIFO block. Therefore, data transfers are established either interactively or with DMA support. The DMA operation is described in this section.

Two DMA channels are provided for each UART module – one channel is for TX transfer and the other one is for RX transfer. Each channel has a 32-bit memory address register and a 16-bit transfer counter register.

Prior to DMA operation, the DMA Memory Address Register and the Transfer Count Register should be configured. For the RX operation, the memory address is the destination memory address and for the TX operation, the memory address is the source memory address.

The transfer counter register stores the number count of transfer data. Each time a single transfer is done, the counter is decremented by 1. When the counter reaches zero, the DMA done flag is delivered to the UART control block. If the interrupt is enabled, this flag generates the interrupt.

Receiver Sampling Timing

The UARTs operates with the following timing.

If the falling edge is on the receive line, the UART determines it to be the start bit. From the start timing, UART oversamples 16 times of 1-bit and detects the bit value at the 7th sample of 16 samples.

Figure 12.2. Sampling Timing of UART Receiver

Note: Enable the debounce settings in the PCU block to reinforce the immunity of external glitch noise.

UART

Transmitter

The transmitter's function is to transmit data transmit. The start bit, data bits, optional parity bit, and stop bit are serially shifted, with the least significant bit first.

The number of data bits is selected in the DLAN[1:0] field in the Un.LCR register.

The parity bit is set according to the PARITY and PEN bit field in the Un.LCR register. If the parity type is even, the parity bit depends on the one bit sum of all data bits. For odd parity, the parity bit is the inverted sum of all data bits.

The number of stop bits is selected in the STOPBIT field in the Un.LCR register.

An example of transmit data format is shown

Figure 12.3. Transmit Data Format Example

Inter-frame Delay Transmission

The inter-frame delay function allows the transmitter to insert an idle state on the TXD line between two characters. The width of the idle state is defined in the WAITVAL field of the Un.IDTR register. When this field is set to 0, zero time-delay is generated. Otherwise, the transmitter holds a high level on TXD after each transmitted character during the number of bit periods defined in the WATIVAL field.

Figure 12.4. Inter-frame Delay Timing Diagram

Transmit Interrupt

The transmit operation generates interrupt flags. When the transmitter holding register is empty, the THRE interrupt flag will be set. When the transmitter shifter register is empty, the TXE interrupt flag will be set. Users can select the interrupt timing that is best for the application.

Figure 12.5. Transmit Interrupt Timing Diagram

DMA Transfers

The UART supports the DMA interface function. It is provided as an option, depending on the device. The start memory address for transfer data and the length of transfer data are programmed in the registers in the DMA block.

The end of transfer is notified via the related transfer done flag.

The Transmit with DMA operation invokes the DMA TX done flag DTX.UnIIR and sets the DMA TX done interrupt ID when all the transmit data are written to the transmit holding register. Two transmit data are remain in registers in the UART block after the DMA transfer done interrupt.

The Receive with DMA operation invokes the RXT.UnIIR DMA RX done flag and sets the DMA RX done interrupt ID when all the receive data are written to the destination memory. Therefore, the UART RXD signal is already in IDLE state when the DMA RX done interrupt is issued.

13. Serial Peripheral Interface

Overview

One-channel serial Interface is provided for synchronous serial communications with external peripherals. The Serial Peripheral Interface (SPI) block supports both master and slave modes. Four signals are used for SPI communication – SS, SCK, MOSI, and MISO.

- Master or Slave operation.
- Programmable clock polarity and phase.
- 8, 9, 16, 17-bit wide transmit/receive register.
- 8, 9, 16, 17-bit wide data frame.
- Loop-back mode.
- Programmable start, burst, and stop delay time.
- DMA transfer operation.

Figure 13.1 SPI Block Diagram

Pin Description

Table 13.1 External Pins

Pin Name	Туре	Description
SS0	I/O	SPI0 Slave select input / output
SCK0	I/O	SPI0 Serial clock input / output
MOSI0	I/O	SPI0 Serial data (Master output, Slave input)
MISO0	I/O	SPI0 Serial data (Master input, Slave output)

Registers

The base address of SPI is 0x4000 9000 and the register map is described in Table 13.3.

Table 13.2 SPI Base Address

Name	Base Address
SPI0	0x4000_9000

Table 13.3 SPI Register Map

Name	Offset	Туре	Description	Reset Value
SP0.TDR	0x00	W	SPI0 Transmit Data Register	-
SP0.RDR	0x00	R	SPI0 Receive Data Register	0x000000
SP0.CR	0x04	RW	SPI0 Control Register	0x001020
SP0.SR	0x08	RW	SPI0 Status Register	0x000006
SP0.BR	0x0C	RW	SPI0 Baud rate Register	0x0000FF
SP0.EN	0x10	RW	SPI0 Enable register	0x000000
SP0.LR	0x14	RW	SPI0 delay Length Register	0x010101

SP0.TDR SPI Transmit Data Register

SP0.TDR is a 17-bit read/write register. It contains serial transmit data.

SP0.RDR SPI Receive Data Register

SP0.RDR is a 17-bit read/write register. It contains serial receive data.

SP0.CR SPI Control Register

SP0.CR is a 20-bit read/write register which can be set to configure SPI operation mode.

																										s	P0.0	CR=0	0x40	00_9	004
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											TXBC	RXBC	TXDIE	RXDIE	SSCIE	TXIE	RXIE	SSMOD	SSOUT	LBE	SSMASK	SSMO	SSPOL			MS	MSBF	СРНА	CPOL	BITSZ	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
											RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW			RW	RW	RW	RW	RW	
Ĩ						20	Т	XB	С		Т	c buf	ffer	clea	ar bi	t.								1							ļ
											0	N	o ad	ctior	۱																
											1			' Tx																	
					-	19	F	RXB	С		R	x bu	ffer	clea	ar bi	t															
											0			ctior																	
					_						1			⁻ Rx																	
						18	Г	'XD	IE		DI	MA ⁻					-														
											0							upt i													
					-						1							upt i			ed.										
						17	F	RXD	IE			MAI																			
											0							upt i													
					-	10					1							upt i													
						16	5	SSC	IE			S Ed	-		-					le b	it.										
											0							able ablec		hai	16 0	400	. //		<u>ц</u> ,	<u></u>					
					-	15		XIE			-	ransi								DOI	in eo	Jges	5 (L-	7 ⊓,		7L)					
						15	1		-		0							s dis		od -											
											1						•	s uis s en													
					-	14	5	RXIE			-	ecei					•			u.											
						14	Г		-		0							disa		h											
											1							ena													
					-	13	ç	SSM				S Au																			
					-	10			00		0	27.0	10/1	nan	uui	սսր	Jura			••											

		0 SS output is not set by SSOUT (SPnCR[12]).
		- SS signal is in normal operation mode.
		1 SS output signal is set by SSOUT.
12	SSOUT	SS output signal select bit.
		0 SS output is 'L.'
		1 SS output is 'H'.
11	LBE	Loop-back mode select bit in master mode.
		0 Loop-back mode is disabled.
		1 Loop-back mode is enabled.
10	SSMASK	SS signal masking bit in slave mode.
		0 SS signal masking is disabled.
		- Receive data when SS signal is active.
		1 SS signal masking is enabled.
	00140	- Receive data at SCLK edges. SS signal is ignored.
9	SSMO	SS output signal select bit.
		0 SS output signal is disabled.
	00001	1 SS output signal is enabled.
8	SSPOL	SS signal Polarity select bit.
		0 SS signal is Active-Low.
		1 SS signal is Active-High.
7 6		Reserved
5	MS	Master/Slave select bit.
		0 SPI is in Slave mode.
		1 SPI is in Master mode.
4	MSBF	MSB/LSB Transmit select bit.
		0 LSB is transferred first.
		1 MSB is transferred first.
3	CPHA	SPI Clock Phase bit.
		0 Sampling of data occurs at odd edges (1,3,5,,15).
		1 Sampling of data occurs at even edges (2,4,6,,16).
2	CPOL	SPI Clock Polarity bit.
		0 Active-high clocks selected.
		1 Active-low clocks selected.
1	BITSZ	Transmit/Receive Data Bits select bit.
		00 8 bits
		01 9 bits
		10 16 bits
0		11 17 bits

CPOL=0, CPHA=0 : data sampling at rising edge, data changing at falling edge CPOL=0, CPHA=1 : data sampling at falling edge, data changing at rising edge CPOL=1, CPHA=0 : data sampling at falling edge, data changing at rising edge CPOL=1, CPHA=1 : data sampling at rising edge, data changing at falling edge

SP0.SR

SPI Status Register

SP0.SR is a 10-bit read/write register. It contains the status of the SPI.

SP0.SR=0x4000_9008

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
						TXDMAF	RXDMAF		SSDET	SSON	OVRF	UDRF	TXIDLE	ткрү	RRDY				
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0				
						RC1	RC1		RC1	RC1	RC1	RC1	R	R	R				
			9	TXDMAF	D			peration		-									
					0			mit Op i		ng or is	disablec	l.							
					1			mit Op i			(0.51.)								
			8	RXDMAF			-	peration	-	-		-							
					0			ve Oper		working	g or is ai	sabled.							
			7			1 DMA Transmit Op is done. Reserved													
			6	SSDET		Reserved The rising or falling edge of SS signal Detect flag.													
					0														
					1														
						- The bit is cleared when it is written as "0".													
			5	SSON		SS signal Status flag.													
						0 SS signal is inactive.1 SS signal is active.													
			4	OVRF		Receive Overrun Error flag.													
			4	UVKF		Receive Overrun Error flag. 0 Receive Overrun error is not detected.													
					- 1														
						 Receive Overrun error is detected. This bit is cleared by writing or reading SPnRDR. 													
			3	UDRF	Т		Underru	un Error	flag.										
					0			nderrun											
					1	Trai		nderrun											
			2	TXIDLE	т	ransmit		nis bit is ƏOperat			riting or	reading	g SPnT	DR.					
			2	INDEE				mitting	-	•									
					1			LE state											
			1	TRDY	Т			mpty fla											
					0	Trai	nsmit bu	iffer is b	usy.										
					1	Trai	nsmit bu	iffer is re	eady.										
						- This bit is cleared by writing data to SPnTDR.													
			0	RRDY		Receive buffer Ready flag. 0 Receive buffer has no data.													
					1 Receive buffer has data.														
					1	Kec				dbuw	ritina d-	to to C	ההםמם						
							- 11	nis bit is	cieare	ubyw	nang da	iia io S	FIIKUR	•					

SP0 BR-0x4000 900C

SP0.BR

SPI Baud Rate Register

SP0.BR is a16-bit read/write register. Baud rate is set by writing the register.

													51 0.2	-0740	00_3000
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							E	BR							
							0x0	0FF							
							R	W							
			15	BR	Baud	rate se	tting bit	S							
							_								

Baud Rate = PCLK / (BR + 1)

(BR must be bigger than "0", BR >= 2)

SP0.EN SPI Enable Register

0

SP0.EN is a bit read/write register. It contains the SPI enable bit.

Note: When in SPI Slave mode, ensure that you disable the SPI prior to loading the TDR register, then enable it to prevent an extra byte from being sent.

SP0.LR

SPI Delay Length Register

SP0.LR is a 24-bit read/write register. It contains start, burst, and stop length value.

																										S	P0.1	_R=0)x40	00_9	9014
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											SF	۶L							B	TL							S	ΓL			
0	0	0	0	0	0	0	0				0x	01							0x	:01							0x	01			
											R۱	N							R	w							R	w			
					-	23 16 15		SPL BTL		0> B	toPL x01 ursT x01	~ 0×	(FF	: 1 ~ valu	~ 25 Je																
					-	8		STL			Tart							-	`			, 									
					-	0					x01		-			5 S(CLK	Ś.	(S	TL	≥ 1)									

Figure 13.2 SPI Waveform (STL, BTL and SPL)

Functional Description

The SPI Transmit block and Receive block share the Clock Gen Block; however, they are independent of each other. The Transmit and Receive blocks contain double buffers and SPI is available for back to back transfer operation.

SPI Timing

The SPI has four modes of operation. These modes essentially control the way data is clocked in or out of an SPI device. The configuration is done by two bits in the SPI control register (SPnCR). The clock polarity is specified by the CPOL control bit, which selects an active high or active low clock. The clock phase (CPHA) control bit selects one of the two fundamentally different transfer formats. To ensure proper communication between master and slave, both devices must run in the same mode. This may require a reconfiguration of the master to match the requirements of different peripheral slaves.

The clock polarity has no significant effect on the transfer format. Switching this bit causes the clock signal to be inverted (active high becomes active low and idle low becomes idle high). The settings of the clock phase, however, select one of the two different transfer timings, which are described in detail in the following two chapters. Because the MOSI and MISO lines of the master and the slave are directly connected to each other, the diagrams show the timing of both devices. The nSS line is the slave select input of the slave. The nSS pin of the master is not shown in the diagrams. It has to be inactive by a high level on this pin (if configured as input pin) or by configuring it as an output pin.

The timing of a SPI transfer where CPHA is zero is shown in Figure 13.3 and Figure 13.4.

Two wave forms are shown for the SCK signal: one for CPOL equals zero and another for CPOL equals one.

When the SPI is configured as a slave, the transmission starts with the falling edge of the /SS line. This activates the SPI of the slave and the MSB of the byte stored in its data register (SPnTDR) is output on the MISO line. The actual transfer is started by a software write to the SPnTDR of the master. This causes the clock signal to be generated. In cases where the CPHA equals zero, the SCLK signal remains zero for the first half of the first SCLK cycle. This ensures that the data is stable on the input lines of both the master and the slave. The data on the input lines is read with the edge of the SCLK line from its inactive to its active. The edge of the SCLK line from its active to its inactive state (falling edge if CPOL equals zero and rising edge if CPOL equals one) causes the data to be shifted one bit further so that the next bit is output on the MOSI and MISO lines.

Figure 13.3 Transfer Timing 1/4 (CPHA=0, CPOL=0, MSBF=0)

Figure 13.4 SPI Transfer Timing 2/4 (CPHA=0, CPOL=1, MSBF=1)

The timing of a SPI transfer where CPHA is one is shown in Figure 13.5 and Figure 13.6. Two wave forms are shown for the SCLK signal -one for CPOL equals zero and another for CPOL equals one.

Similar to the previous cases, the falling edge of the nSS lines selects and activates the slave. Compared to the previous cases, where CPHA equals zero, the transmission is not started and the MSB is not output by the slave at this stage. The actual transfer is started by a software write to the SPnTDR of the master which causes the clock signal to be generated. The first edge of the SCLK signal from its inactive to its active state (rising edge if CPOL equals zero and falling edge if CPOL equals one) causes both the master and the slave to output the MSB of the byte in the SPnTDR.

As shown in Figure 13.3 and Figure 13.4, there is no delay of half a SCLK-cycle. The SCLK line changes its level immediately at the beginning of the first SCLK-cycle. The data on the input lines is read with the edge of the SCLK line from its active to its inactive state (falling edge if CPOL equals zero and rising edge if CPOL equals one). After eight clock pulses, the transmission is completed.

Figure 13.5 SPI Transfer Timing 3/4 (CPHA=1, CPOL=0, MSBF=0)

DMA Handshake

SPI supports the DMA handshaking operation. In order to operate a DMA handshake, DMA registers should first be set. (Refer to Chapter 6, Direct Memory Access Controller). As the transmitter and receiver are independent of each other, SPI can operate the two channels at the same time.

After the DMA channel for the receiver is enabled and the receive buffer is filled, SPI sends an Rx request to the DMA to empty the buffer and waits for an ACK signal from DMA. If the Receive buffer is filled again after the ACK signal, SPI sends an Rx request. If DMA Rx DONE becomes high, RXDMAF (SPnSR[8]) becomes **1** and an interrupt is serviced when RXDIE (SPnCR[17]) is set.

Similarly, if the transmit buffer is empty after the DMA channel for the transmitter is enabled, SPI sends a Tx request to the DMA to fill the buffer and waits for an ACK signal from DMA. If the transmit buffer is empty again after the ACK signal, SPI sends a Tx request. If DMA Tx DONE becomes high, TXDMAF(SPnSR[9]) becomes **1** and an interrupt is serviced when TXDIE(SPnCR[18]) is set.

The slave transmitter sends dummy data at the first transfer (8~17 SCLKs) in DMA handshake mode.

Figure 13.7 DMA Handshake Flow Chart

14. I²C Interface

Overview

Inter-Integrated Circuit (I^2C) bus serves as an interface between the microcontroller and the serial I^2C bus. It provides two wires, serial bus interface to a large number of popular devices and allows parallel-bus systems to communicate bidirectionally with the I^2C -bus.

- Master and slave operation
- Programmable communication speed
- Multi-master bus configuration
- 7-bit addressing mode
- Standard data rate of 100/400 kbps
- STOP signal generation and detection
- START signal generation
- ACK bit generation and detection

Figure 14.1 I²C Block Diagram

Pin Description

Table 14.1 I²C Interface External Pins

Pin Name	Туре	Description
SCL0	I/O	I ² C channel 0 Serial clock bus line (open-drain)
SDA0	I/O	I ² C channel 0 Serial data bus line (open-drain)

Registers

The base address of I^2C0 is 0×4000 _A000. The register map is described in Table 14.3.

Table 14.2 I²C Interface Base Address

Name	Base Address
l ² C0	0x4000_A000

Name	Offset	Туре	Description	Reset Value
ICn.DR	0x00	RW	I ² C0 Data Register	0xFF
ICn.SR	0x08	R, RW	I ² C0 Status Register	0x00
ICn.SAR	0x0C	RW	I ² C0 Slave Address Register	0x00
ICn.CR	0x14	RW	I ² C0 Control Register	0x00
ICn.SCLL	0x18	RW	I ² C0 SCL LOW duration Register	0xFFFF
ICn.SCLH	0x1C	RW	I ² C0 SCL HIGH duration Register	0xFFFF
ICn.SDH	0x20	RW	I ² C0 SDA Hold Register	0x7F

Table 14.3 I²C Register Map

ICn.DR I²C Data Register

ICn.DR is an 8-bit read/write register. It contains a byte of serial data to be transmitted or a byte which has just been received.

ICn.SR I²C Status Register

ICn.SR is an 8-bit read/write register. It contains the status of I^2C bus interface. Writing to the register clears the status bits except for IMASTER.

IC0.SR=0x4000_A008

7	6	5	4	3	2	1	0
GCALL	TEND	STOP	SSEL	MLOST	BUSY	TMODE	RXACK
0	0	0	0	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW

7	GCALL	General call flag
		0 General call is not detected.
		1 General call detected or slave address (ID byte) was sent.
6	TEND	1 Byte transmission complete flag
		0 The transmission is working or not completed.
		1 The transmission is completed.
5	STOP	STOP flag
		0 STOP is not detected.
		1 STOP is detected.
1	SSEL	Slave flag
		0 Slave is not selected.
		1 Slave is selected.
3	MLOST	Mastership lost flag
		0 Mastership is not lost.
		1 Mastership is lost.
2	BUSY	BUSY flag
		0 I ² C bus is in IDLE state.
		1 I^2C bus is busy.
l '	TMODE	Transmitter/Receiver mode flag
		0 Receiver mode.
		1 Transmitter mode.
)	RXACK	Rx ACK flag
		0 Rx ACK is not received.
		1 Rx ACK is received.

IC0.CR=0x4000_A014

ICn.SAR I²C Slave Address Register

ICn.SAR is an 8-bit read/write register. It shows the address in Slave Mode.

						IC0.SA	AR=0x4000_A000
7	6	5	4	3	2	1	0
			SVAD				GCEN
			0x00				0
			RW				RW
	7	SVAD	7-bit Slave Addr	ress			
	1						
	0	GCEN	General call ena	able bit			
			0 General	call is disabled.			
			1 General	call is enabled.			

ICn.CR I²C Control Register

ICn.CR is an 8-bits read/write register. The register can be set to configure I2C operation mode and simultaneously allowed for I2C transactions to be kicked off.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						INTDFI		Ħ		SOFTRST	INTEN	ACKEN		STOP	START
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						R	w	R		RW	RW	RW		RW	RW
			9 8 7 5	INTDEL	27	1 2 * 2 4 * 3 8 * Interrup 0	ICnSC ICnSC ICnSC ICnSC t status errupt i errupt i	ELL ELL ELL bit s inactive		address	s and c	lata tra	nsfer (o	r DATA	and
			5	SOFTRE	51	0 So	ft Rese	t is disa t is enat							
			4	INTEN			errupt i	s disable							
			3	ACKEN		ACK en 0 AC	able bit K is no	s enable in Rece t sent af nt after	eiver mo fter rece	eiving da	ata.				
			1	STOP		Stop er transmis 0 Sto		ill be sto							

		1 Stop is enabled. When this bit is set, transmission will be stopped.
0	START	Transmission start bit in master mode.
		0 Waits in slave mode.
		1 Starts transmission in master mode.

Figure 14.2 INTDEL in Master Mode

ICn.SCLL I²C SCL LOW Duration Register

ICnSCLL is a 16-bit read/write register. SCL LOW time can be set by writing this register in Master Mode.

													IC0.SDL	_L=0x40	00_A018
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SC	LL							
							0xF	FFF							
							R	w							
•															
			15	SCLL	SCI	LOW	duration	value.							

Figure 14.3 SCL LOW Timing

ICn.SCLH I²C SCL HIGH Duration Register

ICnSCLH is a 16-bit read/write register. SCL HIGH time will be set by writing this register in Master Mode.

													IC0.SDL	H=0x40	00_A010
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SC	LH							
							0xF	FFF							
							R	w							
			15	SCLH	SCI	_ HIGH	duratior	n value.							
					SCI	_H = (F	PCLK * S	SCLH[1	5:0])+	3 PCLK	ís				

0 Default value is 0xFFFF.

Figure 14.4 SCL LOW Timing

ICn.SDH SDA Hold Register

ICnSDH is a 15-bit read/write register. SDA HOLD time is set by writing this register in Master Mode.

													IC0.SD	H=0x40	00_A02
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								SDH							
	4							0x3FFF							
								RW							
			14	SDH	SD/	A HOLE) time se	etting va	lue.						
					SDI	H = (P0	CLK * SI	DH[14:0])+4F	PCLKs					
			0		Def	ault val	ue is 0x	3FFF.							

Figure 14.5 SDA HOLD Timing

Functional Description

I²C Bit Transfer

The data on the SDA line must be stable during the "H" period of the clock. The "H" or "L" state of the data line can only change when the clock signal on the SCL line is "L"; see Figure 14.6.

Figure 14.6 I²C Bus Bit Transfer

START/Repeated START/STOP

Within the procedure of the I²C-bus, unique situations arise which are defined as START(S) and STOP(P) conditions; see Figure 14.7.

An "H" to "L" transition on the SDA line while SCL is "H" is one such unique case. This situation indicates a START condition. An "L" to "H" transition on the SDA line while SCL is "H" defines a STOP condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition.

The bus is busy if a repeated START(Sr) is generated instead of a STOP condition. In this respect, the START(S) and repeated START(Sr) conditions are functionally identical. For the remainder of this document therefore, the S symbol will be used as a generic term to represent both the START and repeated START conditions, unless Sr is particularly relevant.

Detection of START and STOP conditions by devices connected to the bus is easy if they incorporate the necessary interfacing hardware. However, microcontrollers with no such interface have to sample the SDA line at least twice per clock period to sense the transition.

Figure 14.7 START and STOP Condition

Data Transfer

Every byte put on the SDA line must be 8-bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte must be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first; see Figure 14.8. If a slave can't receive or transmit another complete byte of data until it has performed some other function, for example servicing an internal interrupt, it can hold the clock line SCL "L" to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL.

A message which starts with such an address can be terminated by generation of a STOP condition, even during the transmission of a byte. In this case, no acknowledgement is generated.

Figure 14.8 I²C Bus Data Transfer

Acknowledge

Data transfer with acknowledgement is obligatory. The acknowledge-related clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse.

The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable "L" during the "H" period of this clock pulse; see Figure 14.9. Set-up and hold times must also be taken into account.

When a slave doesn't acknowledge the slave address (for example, it's unable to receive or transmit because it's performing some real-time function), the data line must be left "H" by the slave. The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

If a slave-receiver acknowledges the slave address but cannot receive any more data bytes later during the transfer, the master must again abort the transfer. This is indicated by the slave generating the not-acknowledge on the first byte to follow. The slave leaves the data line "H" and the master generates a STOP or a repeated START condition.

If a master-receiver is involved in a transfer, it must signal the end of data to the slave-transmitter by not generating acknowledge on the last byte that was clocked out of the slave. The slave-transmitter must release the data line to allow the master to generate a STOP or repeated START condition.

Figure 14.9 I²C Bus Acknowledgement

Synchronization

All masters generate their own clock on the SCL line to transfer messages on the I²C-bus. Data is only valid during the "H" period of the clock. A defined clock is therefore needed for the bit-by-bit arbitration procedure to take place.

Clock synchronization is performed using the wired-AND connection of I²C interfaces to the SCL line. This means that an "H" to "L" transition on the SCL line will cause the devices concerned to start counting off their "L" period and, once a device clock has gone "L", it will hold the SCL line in that state until the clock "H" state is reached; see Figure 14.10. However, the "L" to "H" transition of this clock may not change the state of the SCL line if another clock is still within its "L" by the device with the longest "L" period. Devices with shorter "L" periods enter an "H" wait-state during this time.

When all devices concerned have counted off their "L" period, the clock line will be released and go "H". There will then be no difference between the device clocks and the state of the SCL line, and the devices will start counting their "H" periods. The first device to complete its "H" period will again pull the SCL line "L".

Figure 14.10 Clock Synchronization During the Arbitration Procedure

Arbitration

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition within the minimum hold time of the START condition which results in a defined START condition to the bus.

Arbitration takes place on the SDA line, while the SCL line is at the "H" level, in such a way that the master which transmits "H" level, while another master is transmitting "L" level will switch off its DATA output stage because the level on the bus doesn't correspond to its own level.

Arbitration can continue for many bits. Its first stage is comparison of the address bits. If the masters are each trying to address the same device, arbitration continues with comparison of the data-bits if they are master-transmitter or acknowledge-bits if they are master-receiver. Because address and data information on the I²C-bus is determined by the winning master, no information is lost during the arbitration process.

A master that loses the arbitration can generate clock pulses until the end of the byte in which it loses the arbitration. If a master also incorporates a slave function and it loses arbitration during the addressing stage, it's possible that the winning master is trying to address it. The losing master must therefore switch over immediately to its slave mode.

Figure 14.11 shows the arbitration procedure for two masters. Of course, more may be involved (depending on how many masters are connected to the bus). As soon as there is a difference between the internal data level of the master generating Device1 Dataout and the actual level on the SDA line, its data output is switched off, which means that a "H" output level is then connected to the bus. This will not affect the data transfer initiated by the winning master.

Figure 14.11 Arbitration Procedure Between Two Masters

I²C Operation

I²C supports the interrupt operation. After interrupt is serviced, IIF(ICnSR[10]) flag is set. ICnSR shows I²Cbus status information and SCL line stays "L" before the register is written as a certain value. The status register can be cleared by writing a zero.

Master Transmitter

The master transmitter shows the flow of the transmitter in Master Mode (see Figure 14.12).

Figure 14.12 Transmitter Flowchart in Master Mode

Master Receiver

The master receiver shows the flow of the receiver in Master Mode (see Figure 14.13).

Figure 14.13 Receiver Flowchart in Master Mode

Slave Transmitter

The slave transmitter shows the flow of the transmitter in Slave Mode (see Figure 14.14).

Figure 14.14 Transmitter Flowchart in Slave Mode

Slave Receiver

The slave receiver shows the flow of the receiver in Slave Mode (see Figure 14.15).

Figure 14.15 Receiver Flowchart in Slave Mode

15. Motor Pulse Width Modulator

Introduction

The Motor Pulse Width Modulator (MPWM) is a 16-bit programmable motor controller with the following features:

- 6-channel outputs for motor control
- 16-bit counter
- Dead-time supports
- Protection event and over voltage event handling
- 6 ADC trigger outputs
- Interval interrupt mode
- Up-down count mode

Figure 15.1 Block Diagram

Pin Description

		Table 15.1 External Signals
Pin Name	Туре	Description
MP0UH	0	MPWM 0 Phase-U H-side output
MP0UL	0	MPWM 0 Phase-U L-side output
MP0VH	0	MPWM 0 Phase-V H-side output
MP0VL	0	MPWM 0 Phase-V L-side output
MP0WH	0	MPWM 0 Phase-W H-side output
MP0WL	0	MPWM 0 Phase-W L-side output
PRTIN0	I	MPWM 0 Protection Input
OVIN0	ļ	MPWM 0 Over-voltage Input

Table 15.1 External Signals

Registers

The base address of MPWM is $0x4000_4000$. Table 15.2 shows the register memory map.

Name	Offset	Туре	Description	Reset Value
MP0.MR	0x0000	RW	MPWM Mode register	0x0000_0000
MP0.OLR	0x0004	RW	MPWM Output Level register	0x0000_0000
MP0.FOLR	0x0008	RW	MPWM Force Output register	0x0000_0000
MP0.PRD	0x000C	RW	MPWM Period register	0x0000_0002
MP0.DUH	0x0010	RW	MPWM Duty UH register	0x0000_0001
MP0.DVH	0x0014	RW	MPWM Duty VH register	0x0000_0001
MP0.DWH	0x0018	RW	MPWM Duty WH register	0x0000_0001
MP0.DUL	0x001C	RW	MPWM Duty UL register	0x0000_0001
MP0.DVL	0x0020	RW	MPWM Duty VL register	0x0000_0001
MP0.DWL	0x0024	RW	MPWM Duty WL register	0x0000_0001
MP0.CR1	0x0028	RW	MPWM Control register 1	0x0000_0000
MP0.CR2	0x002C	RW	MPWM Control register 2	0x0000_0000
MP0.SR	0x0030	R	MPWM Status register	0x0000_0000
MP0.IER	0x0034	RW	MPWM Interrupt Enable	0x0000_0000
MP0.CNT	0x0038	R	MPWM counter register	0x0000_0001
MP0.DTR	0x003C	RW	MPWM dead time control	0x0000_0000
MP0.PCR0	0x0040	RW	MPWM protection 0 control register	0x0000_0000
MP0.PSR0	0x0044	RW	MPWM protection 0 status register	0x0000_0080
MP0.PCR1	0x0048	RW	MPWM protection 1 control register	0x0000_0000
MP0.PSR1	0x004C	RW	MPWM protection 1 status register	0x0000_0000
-	0x0054	-	Reserved	-
MP0.ATR1	0x0058	RW	MPWM ADC Trigger reg1	0x0000_0000
MP0.ATR2	0x005C	RW	MPWM ADC Trigger reg2	0x0000_0000
MP0.ATR3	0x0060	RW	MPWM ADC Trigger reg3	0x0000_0000
MP0.ATR4	0x0064	RW	MPWM ADC Trigger reg4	0x0000_0000
MP0.ATR5	0x0068	RW	MPWM ADC Trigger reg5	0x0000_0000
MP0.ATR6	0x006C	RW	MPWM ADC Trigger reg6	0x0000_0000

Table 15.2 MPWM Register Map

MP0.MR MPWM Mode Register

The PWM Operation Mode register is a 16-bit register.

15	MOTORB	0	Motor mode
		1	Normal mode
7	UAO	0	Update will be executed at designated timing.
		1	Update all duty, period register at once.
			When UPDATE set, Duty and Period registers are updated after two PWM clocks
5	TUP	0	Period, duty values are not updated at every period match.
		1	Period, duty values are updated at every period match.
4	BUP	0	Period, duty values are not updated at every bottom match
		1	Period, duty values are updated at every bottom match
2	MCHMOD	00	2 channels symmetric mode
1			Duty H decides toggle high/low time of H-ch
			Duty L decides toggle high/low time of L-ch
		01	1 channel asymmetric mode
			Duty H decides toggle high time of H-ch
			Duty L decides toggle low time of H-ch
			L channel become the inversion of H channel
		10	1 channel symmetric mode
			Duty H decides toggle high/low time of H-ch
			L channel become the inversion of H channel
		11	Not valid (same with 00)
0	UPDOWN	0	PWM Up count mode (only available when MOTORB='1')
		1	PWM Up/Down count mode (This bit should be '1' i MOTORB='0')

After initial PWM period and duty setting is completed, the UAO bit should be set once for updating the setting value into the internal operating registers. This action will help to transfer the setting data from the user interface register to the internal operating register. The UAO bit should stay at set state for at least 2-PWM clock periods. Otherwise, the update command can be missed and the internal registers will keep the previous data.

MCHMOD in the MP0.MR field is only effective when MOTORB in MP0.MR is a clear "0". Otherwise, the MCHMOD field value will be ignored internally and will retain a "00" value.

UPDOWN in the MP0.MR field is only effective when MOTORB in MP0.MR is set to "1". Otherwise, the UPDOWN field value will be ignored internally and will retain a "1" value. In the motor mode, the counter is always an up-down count operation.

MP0.OLR MPWM Output Level Register

The PWM Port Mode register is a 16-bit register.

		0		9			MP0.OL	.R=0x4000
7	6		5	4	3	2	1	0
			WHL	VHL	UHL	WLL	VLL	ULL
0	0		0	0	0	0	0	0
			RW	RW	RW	RW	RW	RW
		5	WHL	0	Default Level			
				1	Inverted Level			
		4	VHL	0	Default Level			
				1	Inverted Level			
		3	UHL	0	Default Level			
				1	Inverted Level			
		2	WLL	0	Default Level			
				1	Inverted Level			
		1	VLL	0	Default Level			
				1	Inverted Level			
		0	ULL	0	Default Level			
				1	Inverted Level			

The normal level is defined in each operating mode as shown in Table 15.3.

Table 15.3. MPWM Register Map

PWM Output	Level	NORM	AL mode	MOTOR mode
	Level	UP mode	UPDOWN mode	MOTOR Mode
WH	Default level	LOW	HIGH	LOW
٧٧Ħ	Active level	HIGH	LOW	HIGH
10/1	Default level	LOW	LOW	HIGH
WL	Active level	HIGH	HIGH	LOW
VH	Default level	LOW	HIGH	LOW
VП	Active level	HIGH	LOW	HIGH
VL	Default level	LOW	LOW	HIGH
VL	Active level	HIGH	HIGH	LOW
UH	Default level	LOW	HIGH	LOW
UN	Active level	HIGH	LOW	HIGH
UL	Default level	LOW	LOW	HIGH
UL	Active level	HIGH	HIGH	LOW

The polarity control block is shown in Figure 15.2. The example shown is for WH signal polarity control.

i.

Figure 15.2. Polarity Control Block

MP0.FOLR MPWM Force Output Level Register

The PWM Force Output register is an 8-bit register. The PWM output level can be forced by an abnormal event occurring externally or from a user-intended condition. When the forced condition occurs, each PWM output level which is programmed in the FOLR register will be forced.

MP0.FOLR=0x4000_4008

i.

7	6	5	4	3	2	1	0
		WHFL	VHFL	UHFL	WLFL	VLFL	ULFL
0	0	0	0	0	0	0	0
		RW	RW	RW	RW	RW	RW

5 WHFL Select WH Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'H' 4 VHFL Select VH Output Force Level 0 Output Force Level is 'H' 3 UHFL Select UH Output Force Level 0 Output Force Level is 'H' 3 UHFL Select UH Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'H' 0 Output Force Level is 'H' 0 Output Force Level is 'H' 0 Output Force Level is 'H' 1 Output Force Level is 'H' 1 Output Force Level is 'H' <t< th=""><th></th><th></th><th></th></t<>			
1 Output Force Level is 'H' 4 VHFL Select VH Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'H' 3 UHFL Select UH Output Force Level is 'H' 3 UHFL Select UH Output Force Level is 'H' 0 Output Force Level is 'L' 1 Output Force Level is 'H' 0 Output Force Level is 'L' 0 Output Force Level is 'L'	5	WHFL	Select WH Output Force Level
4 VHFL Select VH Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'H' 3 UHFL Select UH Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'L' 1 Output Force Level is 'L' 2 WLFL Select WL Output Force Level is 'L' 1 Output Force Level is 'H' 0 Output Force Level is 'L' 0 Output Force Level is 'L' 0 Output Force Level is 'L'			0 Output Force Level is 'L'
0 Output Force Level is 'L' 1 Output Force Level is 'H' 3 UHFL Select UH Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'L' 2 WLFL Select WL Output Force Level is 'L' 1 Output Force Level is 'L' 0 Output Force Level is 'L' 0 Output Force Level is 'L'			1 Output Force Level is 'H'
1 Output Force Level is 'H' 3 UHFL 2 WLFL 2 WLFL 2 Select WL Output Force Level is 'L' 1 Output Force Level is 'H' 1 VLFL Select VL Output Force Level is 'L' 1 Output Force Level is 'L' 0 Output Force Level is 'L' 0 Output Force Level is 'L'	4	VHFL	Select VH Output Force Level
3 UHFL Select UH Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'H' 2 WLFL Select WL Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'L' 1 Output Force Level is 'H' 1 VLFL Select VL Output Force Level is 'H' 1 VLFL 0 Output Force Level is 'L' 1 Output Force Level is 'L' 1 Output Force Level is 'L' 1 Output Force Level is 'L' 0 ULFL Select UL Output Force Level is 'H' 0 Output Force Level is 'L' 0 Output Force Level is 'L'			0 Output Force Level is 'L'
0 Output Force Level is 'L' 1 Output Force Level is 'H' 2 WLFL Select WL Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'H' 1 VLFL Select VL Output Force Level is 'H' 1 VLFL Select VL Output Force Level is 'L' 1 Output Force Level is 'L' 0 Output Force Level is 'H'			1 Output Force Level is 'H'
1 Output Force Level is 'H' 2 WLFL Select WL Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'H' 1 VLFL Select VL Output Force Level is 'L' 1 Output Force Level is 'H' 1 VLFL Select VL Output Force Level is 'L' 1 Output Force Level is 'L' 1 Output Force Level is 'H' 0 ULFL Select UL Output Force Level is 'L' 0 Output Force Level is 'L'	3	UHFL	Select UH Output Force Level
2 WLFL Select WL Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'H' 1 VLFL Select VL Output Force Level is 'L' 0 Output Force Level is 'L' 1 Output Force Level is 'L' 1 Output Force Level is 'L' 1 Output Force Level is 'L' 0 Output Force Level is 'H' 0 Output Force Level is 'H' 0 Output Force Level is 'L' 0 Output Force Level is 'L'			0 Output Force Level is 'L'
0 Output Force Level is 'L' 1 Output Force Level is 'H' 1 VLFL Select VL Output Force Level is 'L' 0 Output Force Level is 'L' 1 Output Force Level is 'L' 0 Output Force Level is 'H' 0 ULFL Select UL Output Force Level 0 Output Force Level is 'L'			1 Output Force Level is 'H'
1 Output Force Level is 'H' 1 VLFL 0 Output Force Level is 'L' 1 Output Force Level is 'H' 0 ULFL 0 Output Force Level is 'L' 0 Output Force Level is 'H'	2	WLFL	Select WL Output Force Level
1 VLFL Select VL Output Force Level 0 Output Force Level is 'L' 1 Output Force Level is 'H' 0 ULFL Select UL Output Force Level is 'L' 0 Output Force Level is 'H'			0 Output Force Level is 'L'
0 Output Force Level is 'L' 1 Output Force Level is 'H' 0 ULFL 0 Output Force Level 0 Output Force Level is 'L'			1 Output Force Level is 'H'
1 Output Force Level is 'H' 0 ULFL 2 Select UL Output Force Level 0 Output Force Level is 'L'	1	VLFL	Select VL Output Force Level
0 ULFL Select UL Output Force Level 0 Output Force Level is 'L'			0 Output Force Level is 'L'
0 Output Force Level is 'L'			1 Output Force Level is 'H'
	0	ULFL	Select UL Output Force Level
1 Output Force Level is 'H'			0 Output Force Level is 'L'
			1 Output Force Level is 'H'

MP0.CR1 MPWM Control Register 1

The PWM Control Register 1 is a 16-bit register.

Basically, PRDIRQ and BOTIRQ are generated every period. However, the interrupt interval can be controlled from 0 to 8 periods. When IRQN.CR1 = 0, the interrupt is requested every period; otherwise, the interrupt is requested every (IRQN+1) times of period.

MP0.CR2 MPWM Control Register 2

The PWM Control Register 2 is an 8-bit register.

PWMEN should be "1" to start PWM counter

MP0.PRD MPWM Period Register

The PWM Period Register is a 16-bit register.

-	-		9										MP0.P	RD=0x4	0004000
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PER	IOD							
							0x0	002							
							R	w							
				_											
				15	PEF	riod	1	6-bit P\	VM per	iod. It sł	nould be	e larger	than 0x0	010	
				0			(lf Duty i	s 0x000	00, PWN	1 will no	t work)			

MP0.DUH MPWM Duty UH Register

The PWM U channel duty register is a 16-bit register.

													MP0.DU	JH=0x40	00_401
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							דוום	YUH							
							DUI	гоп							
							0x0	001							
							R	w							
				15	DU	TY UH	1	6-bit P	VM Dut	y for UH	l output				
				0			ľ	t should	be larg	er than	0x0001				
							(lf Duty i	s 0x000	0, PWN	/I will no	t work)			

MP0.DVH MPWM Duty VH Register

The PWM V channel duty register is a 16-bit register.

				- 3									MP0.D	/H=0x40	00_40
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DUT	ү үн							
							0x0	001							
							R	w							
				15	DU'	TY VH	1	6-bit P	NM Dut	y for VI	l output				
				0			ľ	t should	l be larg	er than	0x0001				
							(If Duty i	s 0x000	0, PWN	/I will no	t work)			

MP0.DWH MPWM Duty WH Register

The PWM W channel duty register is a 16-bit register.

													MP0.DV	/H=0x40	00_401
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DUT	Y WH							
							0x0	001							
							R	W							
				15	DU	TY WH	1	6-bit P	NM Dut	y for WI	H output	t.			
				0			lt	t should	l be larg	er than	0x0001				
							(If Duty	s 0x000	00, PWN	1 will no	t work)			

MP0.DUL MPWM Duty UL Register

The PWM U channel duty register is a 16-bit register.

	-		,	- 0 - 10									MP0.DU	JL=0x40	00_401
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DUT	YUL							
							0x0	001							
							R	W							
				15	DU'	TY UL	1	6-bit P	NM Dut	y for UL	. output.				
				0			l	t should	l be larg	er than	0x0001				
							(If Duty	s 0x000	0, PWN	1 will no	t work)			

MP0.DVL MPWM Duty VL Register

The PWM V channel duty register is a 16-bit register.

			,	U U		0							MP0.D	VL=0x40	00_402
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DUT	Y VL							
							0x(0001							
							R	W							
				15	DU	TY VL		16-bit P\	VM Dut	y for VL	output.				
				0				t should		-	-				
							(if Duty i	s 0x000	0, PWN	1 will no	t work)			

MP0.DWL MPWM Duty WL Register

The PWM W channel duty register is a 16-bit register.

				- 3			.						MP0.DV	VL=0x40	00_4024
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DUT	YWL							
							0x0	001							
							R	w							
				15	DU	TY WL	1	6-bit P\	VM Dut	y for W	L output				
				0			li	t should	be larg	er than	0x0001				

MP0.IER MPWM Interrupt Enable Register

The PWM Interrupt Enable Register is an 8-bit register.

MP0.IER=0x4000_4034

	7	6	5	4	3	2	1	0
	PRDIEN	BOTIEN	WHIE	VHIE	UHIE	WLIE	VLIE	ULIE
ľ	0	0	0	0	0	0	0	0
	RW	RW	RW	RW	RW	RW	RW	RW

7	PRDIEN	PWM Counter Period Interrupt enable
		0 interrupt disable
		1 interrupt enable
6	BOTIEN	PWM Counter Bottom Interrupt enable
		0 interrupt disable
		1 interrupt enable
5	WHIE	WH Duty or ATR6 Match Interrupt enable
	ATR6IE	0 interrupt disable
		1 interrupt enable
4	VHIE	VH Duty or ATR5 Match Interrupt enable
	ATR5IE	0 interrupt disable
		1 interrupt enable
3	UHIE	UH Duty or ATR4 Match Interrupt enable
	ATR4IE	0 interrupt disable
		1 interrupt enable
2	WLIE	WL Duty or ATR3 Match Interrupt enable
	ATR3IE	0 interrupt disable
		1 interrupt enable
1	VLIE	VL Duty or ATR2 Match Interrupt enable
	ATR2IE	0 interrupt disable
		1 interrupt enable
0	ULIE	UL Duty or ATR1 Match Interrupt enable
	ATR1IE	0 interrupt disable
		1 interrupt enable

(if Duty is 0x0000, PWM will not work)

MP0.SR=0x4000_4030

MP0.IER[5:0] control bits are shared by duty match interrupt event and ADC trigger match interrupt event. When ADC trigger mode is disabled, the interrupt is generated by the duty match condition. In other cases, the interrupt is generated by the ADC trigger counter match condition. The ADC trigger mode is selected by the ATMOD bit field in the ATRm register.

MP0.SR MPWM Status Register

The PWM Status Register is a 16-bit register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DOWN		IRQCNT						PRDIF	BOTIF	DWHIF ATR6F	DVHIF ATR5F	DUHIF ATR4F	DWLIF ATR3F	DVLIF ATR2F	DULIF ATR1F
0	L	000		0	0	0	0	0	0	0	0	0	0	0	0
RW		RW						RW	RW	RW	RW	RW	RW	RW	RW
				15	DOW	'N	0	Cui	rent PV	VM Cou	nt mode	e is Up			
							1	Cu	rent PV	VM Cou	nt mode	e is Dow	/n		
				14	IRQC	NT		Inte	errupt co	ount nur	nber of	period r	natch		
				12				(Int	erval Pl	RDIRQ	mode)				
				7	PRDI	F						(write "1	l" to clea	ar flag)	
							0				red				
							1								
				6	BOTI	F						g(write "	1" to cle	ear flag)	
											ed				
							1						<i>"</i> · · · ·		<u>, </u>
				5					-		-			-)
					Image: Construct of the second seco	sabled)									
									-		ea				
				4	וחיום	9 8 7 6 5 4 3 2 1 0	oor floo	<u> </u>							
				4					-		-)
					/////	,	0						was als	abicaj	
									-		ou				
				3	DUH	F	-				rrupt fla	a(write	"1" to cl	ear flag)
									-						, ,
							0							-	
							1	Inte	errupt oc	curred					
				2	DWL	IF		PW	/M duty	WL inte	errupt fla	ag(write	"1" to cl	ear flag)
			1 Interrupt occurred 3 DUHIF PWM duty UH interrupt flag(write "1" to clear flag ATR4F (Duty interrupt is enabled if ATR4 was disabled) 0 No interrupt occurred 1 Interrupt occurred 2 DWLIF ATR3F (Duty interrupt is enabled if ATR3 was disabled) 0 No interrupt occurred 0 No interrupt is enabled if ATR3 was disabled) 0 No interrupt occurred											abled)	
							0	No	interrup	ot occuri	ed				
							1								
				1					-						
					ATR2	2F			-			if ATR2	was dis	abled)	
						DIF PWM Period Interrupt flag(write "1" 0 No interrupt occurred 1 Interrupt occurred 1 </td <td></td> <td></td> <td></td>									
			ATR3F 1 DVLIF ATR2F 0 DULIF						-				(41) (-	<u> </u>	
			0 No interrupt occurred 1 Interrupt occurred 0 DULIF PWM duty UL interrupt flag(write "1" to clear flag)												
					AIR1	F			-	-		ITAIR1	was dis	sabled)	
									-		ed				
							1	inte	errupt oc	curred					

MP0.DTR=0x4000_403C

MP0.SR[5:0] status bits are shared by the duty match interrupt event and the ADC trigger match interrupt event. When ADC trigger mode is disabled, the interrupt is generated by the duty match condition. In other cases, the interrupt is generated by the ADC trigger counter match condition. The ADC trigger mode is selected by the ATMOD bit field in the ATRm register.

MP0.CNT MPWM Counter Register

The PWM Counter register is a 16-bit Read-Only register.

			eg.ete.				, .eg.et						MP0.CM	NT=0x40	00_4038
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CI	NT							
							0x0	000							
							R	w							
1															I
					CNT		F	WM Co	ounter V	alue					

MP0.DTR MPWM Dead Time Register

The PWM Dead Time register is a 16-bit register.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0						
DTEN	PSHRT						DTCLK				Ę	5									
0	0	0	0	0	0	0	0	A D O 0x00 W RW Dead-time function enable 2-channel symmetric mode does not support dead time unction. It should be disabled in 2 channel symmetric mode. D Disable Dead-time function 1 Enable Dead-time function Protect short condition 1 Protect short condition 1 Protect short condition 1 Consult and the end of the end													
RW							RW														
1				15	DTEN	1	Dea	Y E 0 0x00 RW RW Dead-time function enable 2-channel symmetric mode does not support dead tim function. It should be disabled in 2 channel symmetric mode. 0 Disable Dead-time function 1 Enable Dead-time function Protect short condition This function is effective only for 2 channel symmetric mode. 0 Enable Dead-time function This function is effective only for 2 channel symmetric mode. 0 Enable output short protection function. (Turn off both output when both H-side and L-side ar a ctive.) Disable output short protection function.													
							Y J 0 0x00 RW RW Dead-time function enable 2-channel symmetric mode does not support dead time function. It should be disabled in 2 channel symmetric mode. 0 Disable Dead-time function 1 Enable Dead-time function 1 Enable Dead-time function Protect short condition Protect short condition This function is effective only for 2 channel symmetric mode side at same time. L-side is always opposite of H-side. 0 Enable output short protection function. (Turn off both output when both H-side and L-side at active.) Disable output short protection function. 0 Dead time counter uses PWM CLK/4 1 Dead time counter uses PWM CLK/16														
							 0 Disable Dead-time function 1 Enable Dead-time function Protect short condition 														
				14	PSHF	۲۲	Protect short condition														
							 Disable Dead-time function Enable Dead-time function Protect short condition This function is effective only for 2 channel symmetric mode. For 1 channel mode, never activated on both H-side and L-side at same time. L-side is always opposite of H-side. Enable output short protection function. 														
							0	Enable	output	short pr	otection	functio	on.								
							1			output	when t	ooth H-	side an	d L-side	e are						
							•	Disable	e output	short p	rotectior	n functio	on.								
				8	DTCL	K	Dea	d-time p	rescale	r											
							0	Dead t	ime cou	nter use	es PWM	CLK/4									
							1	Dead t	ime cou	nter use	es PWM	CLK/1	6								
				7	DT			1 Dead time counter uses PWM CLK/16 Dead Time value (Dead time setting makes output delay of 'low to high transition' in normal polarity)													
				0			0x01	l ∼0xFF	: Dead	time											

Protect short condition is only for internal PWM level, not for external PWM level. When the internal signal of H-side and L-side are the same high level, the protection short function operates to force both H-side and L-side to low level.

MP0.PCR MPWM Protection 0,1 Control Register

The PWM Protection Control register is a 16-bit register.

MP0.PCR0=0x4000_4040,MP0.PCR1=0x4000_4048

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PROT0EN	PROT0POL					PROTD		PROTIE		WHPROTM	VHPROTM	UHPROTM	WLPROTM	VLPROTM	ULPROTM
0	0				<u>-</u>	000		0		0	0	0	0	0	0
RW	RW					RW		RW		RW	RW	RW	RW	RW	RW

15	PROT0EN	Enable Protection Input 0
14	PROT0POL	Select Protection Input Polarity
		0: Low-Active
		1: High-Active
10	PROTD	Protection Input debounce
8		0 – no debounce
_		1~7 – debounce by (MPWMCLK * PROTD[2:0])
7	PROTIE	Protection Interrupt enable
		0 Disable protection interrupt
		1 Enable protection interrupt
5	WHPROTM	Activate W-phase H-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value
4	VHPROTM	Activate V-phase H-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value
3	UHPROTM	Activate U-phase H-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value
2	WLPROTM	Activate W-phase L-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value
1	VLPROTM	Activate V-phase L-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value
0	ULPROTM	Activate U-phase L-side protection output
		0 Disable Protection Output
		1 Enable Protection Output with FOR value

MP0.PSR MPWM Protection 0,1 Status Register

The PWM Protection Status register is a 16-bit register. This register indicates which outputs are disabled. Users can set the output masks manually.

When writing a value, if PROTKEY is not written, the written values are ignored.

MP0.PSR0=0x4000_4044,MP0.PSR1=0x4000_404C

I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				PRO	TKEY				PROTIF		WHPROT	VHPROT	UHPROT	WLPROT	VLPROT	ULPROT
					-				0		0	0	0	0	0	0
				W	10				RC		RW	RW	RW	RW	RW	RW
					15	PROT	TKEY				Access	-				
					8			(PSR0 ke	ey is <mark>0x</mark> (rite the <mark>CA</mark> and PROTKE	PSR1 k	key is <mark>0</mark> ×	tion flag (<mark>AC</mark>)		
					7	PROT	ΓIF	F 0 1	No	Protecti	upt statu on Inter Interrup	rupt	ed			
					5	WHP	ROT	<u>م</u> 0 1	Pro	tection i	e H-side not occu occurree	urred.		g output e	nabled	
					4	VHPF	ROT	0 0 1	Pro	tection i	e H-side not occu occurre	urred.		output e	nabled	
					3	UHPF	ROT	<u>م</u> 0 1	Pro	tection i	e H-side not occu occurre	urred.	-	output e	nabled	
					2	WLPF	ROT	<u>م</u> 0 1	Pro	tection i	e L-side not occu occurre	urred.	-	output e	nabled	
					1	VLPR	OT		ctivate Pro	V-phase tection i	e L-side not occu	protect urred.	ion flag	output e		
					0	ULPR	ROT		ctivate Pro	U-phase tection i	e L-side not occu	protect urred.	ion flag	output e		

If the PROTEN bit in MP.PCR register is enabled, on any asserting signal on the external protection pins, the PWM output is prohibited with output values defined in MP.FOLR register. Additionally, users can prohibit the output manually by writing the designated value into the MP.PSR register.

MP0.ATRm MPWMn ADC Trigger Counter m Register

MP0.ATR1	MPWM ADC Trigger Counter 1 Register
MP0.ATR2	MPWM ADC Trigger Counter 2 Register
MP0.ATR3	MPWM ADC Trigger Counter 3 Register
MP0.ATR4	MPWM ADC Trigger Counter 4 Register
MP0.ATR5	MPWM ADC Trigger Counter 5 Register
MP0.ATR6	MPWM ADC Trigger Counter 6 Register

The PWM ADC Trigger Counter register is a 32-bit register.

MP0.ATR1=0x4000_4058 MP0.ATR2=0x4000_405C MP0.ATR3=0x4000_4060 MP0.ATR4=0x4000_4064 MP0.ATR5=0x4000_4068 MP0.ATR6=0x4000_406C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												ΑΤUDΤ		ATCNT 0 0x0000 X RW Trigger register update mode RW 0 ATCNT 1 Trigger value applied at period match event (at the same time with period and duty registers update 1 Trigger register update mode When this bit set, written Trigger register values are set to trigger compare block after two PWM clocks (throu synchronization logic) ADC trigger Mode register 00 ADC trigger Disable 01 01 Trigger out when up count match 10 Trigger out when down count match																	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)								0x0	0000)						
												RW		RW									R	w							
•									19		ATU																				
												0 ADC trigger value applied at period match event																			
														1										nd	duty	/ reg	giste	ers i	upda	ate)	
																		•		•				er	reai	ster	val	ues	are	sei	nt
																									-						
								_																						_	
									17	1	АТМ	OD		ADC	trig	gger	Мс	ode	reg	ister											
									16				00 ADC trigger Disable																		
													01 Trigger out when up count match																		
								_	45		ATO	00 Trigger out when up-down count match NT ADC Trigger counter																			
									15 0	1	ATC	NI		(it sl																	

Functional Description

The MPWM includes 3 channels, each of which controls a pair of outputs. In normal PWM mode, each channel runs independently. Six PWM outputs can be generated.

Each PWM output is built with various settings. Figure 15.3 shows the diagram for generating PWM.

Figure 15.3. PWM Output Generation Chain

Normal PWM UP Count Mode Timing

In normal PWM mode, each channel runs independently. Six PWM outputs can be generated. An example of the waveform is shown in Figure 15.4. Before PSTART is activated, the PWM output stays at the default value L. When PSTART is enabled, the period counter starts up count up to the MP0.PRD count value. In the first period, the MPWM does not generate a PWM pulse.

The PWM pulse is generated from the second period. The active level is derived at the start of the counter value during duty value time.

Figure 15.4. UP Count Mode Waveform (MOTORB=1, UPDOWN=0)

Normal PWM UP/DOWN Count Mode Timing

The basic operation of UP/DOWN count mode is the same as UP count mode except the one period is twice that in UP count mode. The default active level is opposite in a pair PWM output. This output polarity can be controlled by the MP0.OLR register.

Figure 15.5. UP/DOWN Count Mode Waveform (MOTORB=0, MCHMOD=0, UPDOWN=1)

Motor PWM 2-Channel Symmetric Mode Timing

The motor PWM operation has three types of operating modes – 2-channel symmetric mode, 1-channel symmetric mode, and 1-channel asymmetric mode.

Figure 15.6 shows an example of a 2-channel symmetric mode waveform.

Figure 15.6. 2-Channel Symmetric Mode Waveform (MOTORB=0,MCHMOD=00)

The default start level of both H-side and L-side is low. For the H-side, PWM ouput level is changed to active level when the duty level is matched in up count period and is returned to the default level when the duty level is matched in down count period.

The symmetrical feature appears in each channel which is controlled by the corresponding DUTY register value.

Motor PWM 1-Channel Asymmetric Mode Timing

The 1 channel asymmetric mode makes asymmetric duration pulses which are defined by the H-side and Lside DUTY register. Therefore, the L-side signal is always the negative signal of the H-side. During up count period, the H-side DUTY register matching condition generates the active level pulse and during down count period, the L-side DUTY register matching condition generates the default level pulse.

The default start level of both H-side and L-side is low. For the H-side, PWM ouput level is changed to active level when the H-side duty level is matched in up count period and is returned to the default level when the L-side duty level is matched in down count period.

When the PSTART is set, the L-side PWM output is changed to the active level, then the L-side PWM output is the inverse output of the H-side output.

Motor PWM 1-Channel Symmetric Mode Timing

The 1-channel symmetric mode generates a symmetric duration pulse which is defined by the H-side DUTY register. Therefore, the L-side signal is always the negative signal of H-side. During up count period, the H-side DUTY register matching condition generates the active level pulse and during down count period, the H-side DUTY register matching condition also generates the default level pulse.

Figure 15.8. 1-Channel Symmetric Mode Waveform (MOTORB=0,MCHMOD=10)

The default start level of both H-side and L-side is low. For the H-side, PWM ouput level is changed to active level when the H-side duty level is matched in up count period and is returned to the default level when the H-side duty level is matched again in down count period.

When the PSTART is set, the L-side pwm output is changed to the active level, then the L-side PWM output is the inverse output of H-side output.

PWM Dead-Time Operation

To prevent an external short condition, the MPWM provides a dead-time function. This function is only available in the Motor PWM mode. When either theH-side or L-side output changes to active level, an amount of dead-time is inserted if the DTEN.MP.DTR bit is enabled.

The duration of dead-time is decided by the value in the DT.MP.DTR[7:0] field.

When DTCLK = 0, the dead-time duration = DT[7:0] * (PWM clock period * 4)

When DTCLK = 1, the dead-time duration = DT[7:0] * (PWM clock period * 16)

When the PWM counter reaches the duty value, the PWM output is masked and the dead-time counter starts to run. When the dead-time counter reaches the value in the DT[7:0] register, the output mask is disabled.

Figure 15.9. PWM Dead-time Operation Timing Diagram (Symmetric Mode)

Figure 15.10 displays an example of dead-time operation in 1-channel asymmetric mode.

Figure 15.10. PWM Dead-Time Operation Timing Diagram (Asymmetric Mode)

The dead-time function is not available for 2-channel symmetric mode. Therefore, the dead condition is generated by each channel's duty control.

MPWM Dead-time Timing Examples for Special Conditions

Figure 15.11 shows the operation of dead-time.

In normal dead-time, dead-time masking is activated at duty match time and the dead-time counter runs. When the dead-time counter reaches the dead time value, the mask is disabled.

Figure 15.11. Normal Dead-Time Operation (T_{DUTY}>T_{DT})

The following figures display special-case scenarios of dead time configurations.

Figure 15.12. Minimum H-Side Pulse Timing (T_{DUTY}<T_{DT}<2xT_{DUTY})

Figure 15.13. Zero H-Side Pulse Timing (T_{DT}>2xT_{DUTY})

Figure 15.14. Minimum L-Side Pulse Timing (T_{DT}<Period-T_{DUTY})

Figure 15.15. Zero L-Side Pulse Timing (T_{DT}>Period-T_{DUTY})

Figure 15.16. H-Side Always On (T_{DUTY}=Period: Dead-Time Disabled)

Figure 15.17. L-Side Always On (T_{DUTY}='0': Dead-Time Disabled)

Symmetrical Mode vs Asymmetrical Mode

In symmetrical mode, the waveform is symmetrical on both sides of the mid-point of the period. The duty comparison is performed twice in both up and down count period.

Figure 15.18. Symmetrical PWM Timing

In asymmetrical mode, the waveform is not symmetrical from the mid-point of the period. The duty comparison of H-side is performed in both up count period. The duty comparison of L-side is performed in both down count period.

Figure 15.19. Asymmetrical PWM Timing and Sensing Margin

ADC Triggering Function

Six ADC trigger timing registers are provided. This dedicated register creates a trigger signal to start the ADC conversion. The conversion channel of ADC is defined in the ADC control register.

Figure 15.20. ADC Triggering Function Timing Diagram

Figure 15.21 shows an example of ADC data acquisition.

Figure 15.21. An Example of ADC Aquisition Timing by Event from MPWM

Interrupt Generation Timing

Each timing event can make an interrupt request to the CPU.

Figure 15.22. Interrupt Generation Timing

16. 12-Bit A/D Converter

Introduction

The A/D Converter (ADC) block consists of two independent ADC units. Features include:

- 11 channels of analog inputs (each ADC has 8 input channels)
- Single and Continuous conversion mode
- Up to 8 times sequential conversion supports
- Software trigger supports
- 4 internal trigger sources supports (PWMs, timers)
- Adjustable sample and hold time
- DMA transfers

Figure 16.1 Block Diagram

Pin Description

	Table	e 16.1 External Signal
Pin Name	Туре	Description
VDD	Р	Analog Power(3.0V~5V)
VSS	Р	Analog GND
AN0	А	ADC Input 0
AN1	А	ADC Input 1
AN2	А	ADC Input 2
AN3	А	ADC Input 3
AN4	А	ADC Input 4
AN5	А	ADC Input 5
AN6	А	ADC Input 6
AN7	А	ADC Input 7
AN8	А	ADC Input 8
AN9	А	ADC Input 9
AN10	А	ADC Input 10

Registers

The base addresses of the ADC units are shown in Table 16.2.

Table 16.2 ADC Base Address

Name	Base Address
ADC0	0x4000_B000
ADC1	0x4000_B100

Table 16.3 ADC Register Map

Name	Offset	Туре	Description	Reset Value
ADn.MR	0x0000	RW	ADC Mode register	0x00
ADn.CSCR	0x0004	RW	ADC Current Sequence/Channel register	0x00
ADn.CCR	0x0008	RW	ADC Clock Control register	0x80
ADn.TRG	0x000C	RW	ADC Trigger Selection register	0x00
-	0x0010	-	Reserved	
-	0x0014	-	Reserved	
ADn.SCSR	0x0018	RW	ADC Burst mode channel select	0x00
ADn.CR	0x0020	RW	ADC Control register	0x00
ADn.SR	0x0024	RW	ADC Status register	0x00
ADn.IER	0x0028	RW	ADC Interrupt Enable register	0x00
ADn.DDR	0x002C	R	ADCn DMA Data Register	0x00
ADn.DR0	0x0030	R	ADCn Sequence 0 Data register	0x00
ADn.DR1	0x0034	R	ADCn Sequence 1 Data register	0x00
ADn.DR2	0x0038	R	ADCn Sequence 2 Data register	0x00
ADn.DR3	0x003C	R	ADCn Sequence 3 Data register	0x00
ADn.DR4	0x0040	R	ADCn Sequence 4 Data register	0x00
ADn.DR5	0x0044	R	ADCn Sequence 5 Data register	0x00
ADn.DR6	0x0048	R	ADCn Sequence 6 Data register	0x00
ADn.DR7	0x004C	R	ADCn Sequence 7 Data register	0x00

AD*n*.MR ADC*n* Mode Register

The ADC Mode registers are 32-bit registers.

This register configures ADC Operation Mode. This register configures the ADC Operation Mode and should be written first before the other ADC registers are written.

																		AD	0.M	R=0×	400	0_E	3000	, AI)1.I	/R=	0x40	000_B1
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15 14	13 12	11	10	9	8	7	6	5	4	3	2	1
														DMAEN	DMACH	CTCEI	0.01			SEQCNT		ADEN	ARST		AUMUN			TRGSEL
												1		0x0	0x0	0	x0			0x0	C)x0	0x0	0	x0	<u> </u>		0x0
								1						RW	RW	R	w			RW	F	۲W	RW	R	w			RW
							17		DM	AEN	٧	[DMA	ena	able	bit – sl	hould b	e set	to '	1' wł	nen	AD	CEN	\ ='	1'.			
												C	onv	ersi	on (also in	on is i seque)C rece	ential	mo	de)	and	in	terru	ıpt	rec			
							16		DM	ACH	-					el option			2									
												٧	Vhe	n Dl	MAC	CH is se	et, Cha r half w						DMA	da	ta v	vill l	be lo	cated
												(Char	nnel	info	rmatior	n is at A	\Dn.[DDR	[19	16]	in	defa	ult.	(DN	ЛАС	CH is	s low)
							15		STS	SEL					-	ne Sele												
							12					Ν	/CL	Ксу	/cles	5	ld circu		•	•		be	com	ne (2 +	S1	SEL	_[3:0])
																	time is				es							
							10 8		SEC	QCN	١T	ŀ	f AD	MO	D is	2'h0 a	n in a s nd SE(QCN-	T is		3'h0	, C	SEC	٥N	will	be	incre	eased
													000			gle mod	rigger e	event	•	10	0	5		56		enc		AD
												C	00		Uni	gie mot					0	-	onve			5110	0	ΛD
												C	01		2 con	seq versior	uence		AD	10	1	6 co	onve		•	enc	e	AD
												C	10		3 con	seq versior	uence		AD	11	0	7 co	onve			enc	e	AD
												C	11		4 con	seq versior	uence		AD	11	1	8 co	onve		-	enc	e	AD
							7		ADI	EN		C				C disab												
												1				C enab												
							6		AR	ST		C)			-	end of	-										
												_					ASTA					aç	jain					
							5		ADI		<u> </u>	1	0				the end			ence	•							
							5 4		אט	VIUI			0)1			-	ersion											
							r						0			served	0101011	mout										
													1			served												
							1		TRO	GSE	L		0				ger Dis	ablec	l/So	ft-Tr	gae	er C	nlv					
																3	-						,					
							0					C)1		Tim	er Eve	nt Trigg	jer										
													0 0				nt Trigg	-	r									

If ADCMOD is set for Burst Mode, the ADC channels are controlled by SEQ0CH ~ SEQ7CH. Sequential Mode always starts from SEQ0CH.(In 3 sequential mode, Analog inputs of channels which are assigned at SEQ0CH, SEQ1CH, and SEQ2CH are converted sequentially).

Figure 16.2 Analog Channel Block Diagram

ADn.CSCR ADCn Current Sequence/Channel Register

ADC Current Sequence/Channel registers are 7-bit registers. This register consists of Current Sequence Numbers (CSEQN) and Current Active Channel values. CSEQN can be written to set the current sequence number immediately. This register should be written first before ADn.SCSR is written.

7	6		5	4		3	2	1	0
		CS	BEQN				CA	СН	
		()x0		•		0>	(0	
		F	RW				R	0	
		7	CSEQN		Curron	t Soguon	ce Number , car	a writa whan n	ot obucy
		4	COEQN		0000	-	t Sequence is 0		ot abusy
		-			0000		t Sequence is 0		
					0001		t Sequence is 2		
					0010		t Sequence is 3		
					0100		t Sequence is 3		
					0100		t Sequence is 5		
					0110		t Sequence is 6		
					0111		t Sequence is 7		
		3	CACH			t Active C			
		0			0000		nannel 0 is activ	e	
					0001		nannel 1 is activ		
					0010	ADC ch	nannel 2 is activ	e	
					0011	ADC cł	nannel 3 is activ	e	
					0100	ADC cł	nannel 4 is activ	e	
					0101	ADC cł	nannel 5 is activ	е	
					0110	ADC cł	nannel 6 is activ	e	
					0111	ADC cł	nannel 7 is activ	е	
					1000	reserve	ed		
					1001	reserve	ed		
					1010	reserve	ed		
					1011	reserve	ed		
					1100	reserve	ed		
					1101	reserve	ed		
					1110	reserve	ed		
					1111	reserve	ed		

AD0.CSCR=0x4000_B004, AD1.CSCR=0x4000_B104

AD*n*.CCR ADC*n* Clock Control Register

ADC Control Registers are 16-bit registers.

AD0.CCR1=0x4000_	B008,	AD1.CCR1=0x4000	_B108
------------------	-------	-----------------	-------

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCPDA				CLKDIV				ADCPD	EXTCLK	CLKINVT					
0	-			0x00				1	0	0				-	
RW				RW				RW	RW	RW					
				15	AD	CPDA					save po otional b				
				14	CLI	KDIV	ŀ	ADC clo	ck divide	er when	EXTCL	.K is '0'.			
				8			A	ADC clo	ck = sys	stem clo	ck/CLKI	DIV			
							(CKDIV=	0 : ADC	clock=	system o	clock			
							(CKDIV=	1 : ADC	clock=	stop				
				7	AD	CPD	ŀ	ADC Po	wer Dov	vn					
							() – ADC	normal	mode					
							1	– ADC	Power	Down n	node				
				6	EX	TCLK	S	Select if	ADC us	es exte	rnal cloo	ck.			
							() – interi	nal clocl	k(CKDI)	/ enable	ed)			
							1	– exter	nal cloc	k(SCU	clock)				
				5	CLI	KINVT	[Divided	clock inv	/ersion(optional	bit)			
							() – duty	ratio of	divided	clock is	larger t	han 50%	%	
							1	– duty	ratio of	divided	clock is	less tha	an 50%		
							1	– duty	ratio of	divided	clock is	less tha	an 50%		

AD*n*.TRG ADC Trigger Selection Register

The ADC Trigger registers are 32-bit registers.

In Single/Burst Mode, all the bit fields are used. In Burst Conversion mode, only the BSTTRG bit field (bit3~bit0) is used.

AD0.TRG=0x4000_B00C, AD1.TRG=0x4000_B10C

SEQTRG7	SEQTRG6	SEQTRG5	SEQTRG4	SEQTRG3	SEQTRG2	SEQTRG1	SEQTRG0
							BSTTRG
0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0
RW	RW	RW	RW	RW	RW	RW	RW

30	SEQTRG7	8 th Sequence Trigger Source
28		
26	SEQTRG6	7 th Sequence Trigger Source
24		
22	SEQTRG5	6 th Sequence Trigger Source
20		
18	SEQTRG4	5 th Sequence Trigger Source
16		
14	SEQTRG3	4 th Sequence Trigger Source
12		
10	SEQTRG2	3 rd Sequence Trigger Source
8		
6	SEQTRG1	2 nd Sequence Trigger Source
4		
2	SEQTRG0	1 st Sequence Trigger Source
0	BSTTRG	Burst conversion Trigger Source

Value	Timer (TRGSEL '2'h1)	MPWM0 (TRGSEL '2'h2)
0	Timer 0	MP0ATR1
1	Timer 1	MP0ATR2
2	Timer 2	MP0ATR3
3	Timer 3	MP0ATR4
4	Timer 8	MP0ATR5
5	Timer 9	MP0ATR6
6	-	BOTTOM
7	-	PERIOD

AD*n*.SCSR ADC Sequence Channel Selection Register

The ADC Burst Mode Channel Select Register is a 32-bit register.

AD0.SCSR=0x4000_B018, AD1.SCSR=0x4000_B118

SEQ7CH	SEQ6CH	SEQ5CH	SEQ4CH	SEQ3CH	SEQ2CH	SEQ1CH	SEQ0CH
0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0
RW	RW	RW	RW	RW	RW	RW	RW
		31 \$	SEQ7CH	8 th conversion se	equence channe	el selection	
		28					
		27 \$	SEQ6CH	7 th conversion se	equence channe	el selection	
		24					
			SEQ5CH	6 th conversion se	equence channe	el selection	
		20					
			SEQ4CH	5 th conversion se	equence chann	el selection	
		16					
			SEQ3CH	4 th conversion se	equence chann	el selection	
		12					
		11 \$	SEQ2CH	3 rd conversion se	equence chann	el selection	
		8					
			SEQ1CH	2 nd conversion s	equence chann	el selection	
		4					
		3 3		1 st conversion se			
		0		This channel sho	ould be used for	r Sinale mode	

AD*n*.CR ADCn Control Register

The ADCn Control Register controls start or stop ADC conversion operations. This register is an 8-bit register.

ADn.SR ADCn Status Register

The ADC Status Register is a 32-bit register.

7	6		5	4	3	2	1	0			
EOC	ABUSY	DO	/RUN	DMAIRQ	TRGIRQ	EOSIRQ	-	EOCIRQ			
0	0		0	0	0	0	-	0			
RO	RO	F	RO	RO	RC	RC	-	RC			
		7	EOC	;	ADC End	l-of-Conversion	flag				
					(Start-of- bit,not A		de by ADC_CL	K clears this			
		6	ABU	SY	ADC con	version busy fla	ıg				
		5	DOV	RUN	DMA overrun flag (not interrupt)						
					(DMA AC	K didn't come u	until end of next	conversion			
		4	DMA	IRQ	DMA don	e received (DN	IA transfer is co	mpleted)			
		3	TRG	IRQ	ADC Trig	ger interrupt fla	g(Write "1" to cl	ear flag)			
					(0: no int	/ 1: int occurred	d)				
		2	EOS	IRQ		will be set up ' to clear flag)	on final end of	a sequence			
					0 Non	ie.					
					1 End	-of-Sequence(b	ourst) Interrupt o	occurred			
		0	EOC	IRQ	sequence for compl to clear fl	e occurs. Use the etion in single of ag)	each conversion nis bit when poll conversion mod	ing the ADC			
					0 Non	-					
					1 End	-of-Conversion	Interrupt occurr	ed			

AD0.SR=0x4000_B024, AD1.SR=0x4000_B124

AD*n*.IER Interrupt Enable Register

Four interrupts are provided for ADC operations. Each interrupt can be enabled by writing **1** to the corresponding bit in the ADn.IER register.

AD0.IER=0x4000_B028, AD1.IER=0x4000_B128

7	6	5	;	4	3	2	1	0
				DMAIRQE	TRGIRQE	EOSIRQE		EOCIRQE
		÷		0	0	0		0
				RW	RW	RW		RW
		4	DMAI	RQE [DMA done interr	upt enable		
				C): interrupt disat	ble		
				1	: interrupt enab	le		
		3	TRGI	RQE A	DC trigger con	version interrup	t enable	
		2	EOSI	RQE A	DC sequence	rupt enable		
		0	EOCI	RQE A	DC single conv	version interrupt	enable	

ADn.DDR ADCn DMA Data Register

The ADC DMA Data Register is a 16-bit register. This register is a temporary register only for DMA transfer (A/D conversion data of just completed conversion).

									A	D0.DDR	=0x4000	0_B02C,	AD1.DD	R=0x400	00_B120
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				ADC	DMA Ten	nporary	Data						ADM	ACH	
					0x0	00						I	0	x0	
					R								F	R	
				15	ADDN	IAR		ADC cor	nversion	result o	data (12	2-bit)			
				4							-				
				3	ADMA	ACH	1	ADC dat	a chanr	nel indic	ator				
				0											

AD*n*.DR ADC*n* Sequence Data Register 0~7

ADC Data Registers are 16-bit registers holding the ADC conversion from the result register.

AD0.DR0=0x4000_B030, AD0.DR1=0x4000_B034, AD0.DR2=0x4000_B038, AD0.DR3=0x4000_B03C AD0.DR4=0x4000_B040, AD0.DR5=0x4000_B044, AD0.DR6=0x4000_B048, AD0.DR7=0x4000_B04C AD1.DR0=0x4000_B130, AD1.DR1=0x4000_B134, AD1.DR2=0x4000_B138, AD1.DR3=0x4000_B13C AD1.DR4=0x4000_B140, AD1.DR5=0x4000_B144, AD1.DR6=0x4000_B148, AD1.DR7=0x4000_B14C

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					ADCI	ΔΑΤΑ									
					0x0	000									
					F	R									
				15	ADC	DATA	A	ADC cha	annel 0~	7 data	(12-bit)				
				4											

Functional Description

ADC Single Mode Timing

ADC conversion is started when ADCn.CR.ASTART is written as '1' in single conversion mode. After ADCnCR.ASTART is set, Start of Conversion (SOC) will be activated in 3 ADC clocks, ADCn.SR.EOCIRQ will be set in 2 ADC clocks, and 2 PCLKs after the End of Conversion.

Figure 16.3. ADC Single Mode Timing (when ADCn.MR.AMOD = '0')

ADC Sequential Mode Timing Diagram

There are two sources to start conversion in burst mode: – TRG event (TIMER and MPWM) and ASTART. When TRGSEL is set as the timer event trigger or MPWM event trigger, the conversion is started by the trigger of ADn.TRG.BSTTRG (And.TRG[3:0]). For example, ADC conversion will be started by the trigger of TIMER9 if ADn.TRG.BSTTRG is set as TIMER9. Once the BSTTRG's trigger events occur, the ADC will convert all channels defined in sequence (And.MR.SEQCNT contains the number of channels to convert). See Figure 16.5.

Figure 16.4. ADC Burst Mode Timing (When ADCn.MR.AMOD = '1')

Figure 16.5. ADC Trigger Timing in Burst Mode (SEQCNT = 3'b111, 8 Sequence Conversion)

ADC Sequential Conversion Mode Timing Diagram

To set sequential conversion mode, ADn.MR.AMOD is 2'b00 and ADn.MR.SEQCNT is not 2'b00.

The operation of sequential mode is almost the same as burst mode. The difference is the source of SOC. Each SOC is made by the trigger of the SEQTRGx as each SEQCNT. See Figure 16.7.

Figure 16.6. ADC Sequential Mode Timing (When ADn.MR.AMOD = 0 and ADn.MR.SEQCNT \neq 0)

17. Electrical Characteristics

DC Characteristics

Absolute Maximum Ratings

Absolute maximum ratings are limiting values of operating and environmental conditions which should not be exceeded under the worst possible conditions.

Parameter	Symbol	Min	Max	Unit
Power Supply (VDD)	VDD	-0.5	+6	V
Analog Power Supply (AVDD)	AVDD	-0.5	+6	V
VDC Output Voltage	VDD18			V
Input High Voltage		-	VDD+0.5	V
Input Low Voltage		VSS - 0.5	-	V
Output Low Current per pin	I _{OL}		2.5	mA
Output Low Current Total	Σ I _{OL}		25	mA
Output High Current per pin	I _{OH}		- 2.5	mA
Output Low Current Total	Σ I _{OH}		25	mA
Input Main Clock Range		0.4	8	MHz
Operating Frequency		-	48	MHz
Storage Temperature	Tst	-55	+125	°C
Operating Temperature	Тор	-40	+85	°C

Table	17.1	Absolute	Maximum	Ratings
Table		Absolute	maximum	naungo

DC Characteristics

Table 17.2 Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Supply Voltage	VDD		3.0		5.5	V
Supply Voltage	AVDD		3.0	5.0	5.5	V
		MOSC	4		8	MHz
Operating Frequency	FREQ	INTOSC		1		MHz
		PLL	4		80	MHz
Operating Temperature	Тор	Тор	-40		+85	°C

Table 17.3 DC Electrical Characteristics (VDD = +5V, Ta = 25°C)

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Input Low Voltage	VIL	Schmitt input	-	-	0.2VDD	V
Input High Voltage	VIH	Schmitt input	0.8VDD	-	-	V
Output Low Voltage	VOL	IOL = 10mA	-	-	VSS+1	V
Output High Voltage	VOH	IOH = -3mA	VDD-1	-	-	V
Output Low Current	IOL		-	-	3	mA
Output High Current	ЮН		-3	-		mA
Input High Leakage	IIH				4	uA
Input Low Leakage	IIL		-4			
Pull-up Resister	RPU	Rmax:VDD=3. 0V Rmin:VDD=5V	30	-	70	kΩ

Current Consumption

	-	1		î		
Parameter	Symbol	Condition	Min	Typical	Max	Unit
Normal Operation	IDD _{NORMAL}	ROSC=RUN MXOSC=8MHz HCLK=48MHz	20	20	-	mA
Sleep Mode	IDD _{SLEEP}	ROSC=RUN MXOSC=STOP HCLK =48MHz	-	8.3	-	mA

Table 17.4. Current Consumption in Each Mode (Temperature: +25°C)

Note: UART en, 1 port toggle @5V

POR Electrical Characteristics

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Operating Voltage	VDD18		1.6	1.8	2.0	V
Operating Current	IDD _{PoR}	Typ. <6uA If always on	-	60	-	nA
POR Set Level	VR _{PoR}	VDD rising (slow)	1.3	1.4	1.55	V
POR Reset Level	VF _{PoR}	VDD falling (slow)	1.1	1.2	1.4	V

Table 17.5 POR Electrical Characteristics (Temperature: -40 ~ +85°C)

LVD Electrical Characteristics

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Operating Voltage	VDD		1.7		5	V
Operating Current	IDD _{LVD}	Typ. <6uA when always on	-	1	-	mA
LVD Set Level 0	VLVD0	VDD falling (slow)	1.6	1.8	2.0	V
LVD Set Level 1	VLVD1	VDD falling (slow)	2.0	2.2	2.5	V
LVD Set Level 2	VLVD2	VDD falling (slow)	2.5	2.7	3.0	V
LVD Set Level 3	VLVD3	VDD falling (slow)	3.9	4.3	4.6	V

Table 17.6. LVD Electrical Characteristics (Temperature: -40 ~ +85°C)

VDC Electrical Characteristics

Table 17.7 VDC Electrical Characteristics (Temperature: -40 ~ +85°C)

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Operating Voltage	VDD _{VDC}		3.0	-	5.5	V
VDC Output Voltage		@RUN	1.62	1.8	1.98	V
VDC Oulput Voltage	VOOTVDC	@STOP	1.4	1.8	2.0	V
Regulation Current	I _{OUT}				100	mA
Drop-out Voltage	VDROP _{VDC}	VDDVDC=3.0V IOUT=100mA	-	-	200	mV
Current Consumption		@RUN	-	100	150	uA
Current Consumption	IDD _{STOP}	@STOP	-	1	2	uA

External OSC Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating Voltage	VDD		3.0	-	5.5	V
IDD		@4MHz/5V	-	240		uA
Frequency	OSCF _{req}		4	8	10	MHz
Output Voltage	OSC _{VOUT}		1.2	2.4	-	V
Load Capacitance	LOAD _{CAP}		5	22	35	pF

 Table 17.8
 External OSC Characteristics (Temperature: -40 ~ +85°C)

PLL Electrical Characteristics

Table 17.9 PLL Electrical Characteristics (Temperature: -40 ~ +85°C)

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Operating Voltage	VDD _{PLL}		3.0		5.5	V
Output Frequency	FOUT		4		48	MHz
Operating Current	IDD _{PLL}	@50MHz		1.3		mA
Duty	FOUT _{DUTY}		40	-	60	%
P-P Jitter	JITTER	@Lock			500	Ps
VCO	VCO		20		80	MHz
Input Frequency	FIN		4		8	MHz
Locking time	LOCK				1	ms

ADC Electrical Characteristics

Parameter	Symbol	Condition	Min	Typica I	Max	Unit
Operating Voltage	AVDD		3.0	5	5.5	V
Reference Voltage	AVREF		3.0	5	5.5	V
Resolution				12		Bit
Operating Current	IDDA				2.8	mA
Analog Input Range			0		AVDD	V
Conversion Rate				-	1.6	Msps
Operating Frequency	ACLK				25	MHz
DC Accuracy	INL			±2.5		LSB
	DNL			±1.0		LSB
Offset Error				±1.5		LSB
Full Scale Error				±1.5		LSB
SNDR	SNDR			68		dB
THD				-70		dB

Table 17.10. ADC Electrical Characteristics (Temperature: -40 ~ +85°C)

DNL: Maximum deviation between actual steps and the ideal one.

INL: Integral Linearity Error: maximum deviation between any actual transition and the end point

18. Package

Figure 18.1 displays the LQFP-48 package dimension and Figure 18.2 shows the LQFP-32 package dimension.

LQFP-48 Package

Figure 18.1 Package Dimension (LQFP-48 7X7)

LQFP-32 Package

Figure 18.2 Package Dimension (LQFP-32 7X7)

19. Ordering Information

Table 19.1 identifies the basic features and package styles available for the Z32F0641 MCU.

Device	Flash Size	SRAM	UART	SPI	I ² C	MPWM	ADC	I/O Ports	Package
Z32F06410AES	64 KB	8 KB	2	1	1	1	2-unit 11 channel	44	LQFP-48
Z32F06410AKS	64 KB	8 KB	2	1	1	1	2-unit 8 channel	30	LQFP-32

Table 19.1 Ordering Information for the Z32F0641 MCU

Zilog part numbers consist of a number of components, which are described below using part number Z32F06410AES as an example.

