Presettable Counters

High-Performance Silicon-Gate CMOS

The MC74HC160A is identical in pinout to the LS160. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC160A is a programmable BCD counters with asynchronous Reset input.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 234 FETs or 58.5 Equivalent Gates
- These are Pb–Free Devices

Figure 1. Logic Diagram

Device	Count Mode	Reset Mode
HC160	BCD	Asynchronous

ON Semiconductor®

http://onsemi.com

PIN ASSIGNMENT

L			L
reset [1•	16	□ v _{cc}
сгоск [2	15	RIPPLE CARRY OUT
Р0 🛛	3	14	Q0
P1 [4	13] Q1
P2 [5	12] Q2
P3 [6	11] Q3
ENABLE P	7	10	ENABLE T
GND [8	9	LOAD

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

FUNCTION TABLE

	Inputs						
Clock	Reset*	Load	Enable P	Enable T	Q		
	L	Х	Х	Х	Reset		
<u>_</u>	Н	L	Х	Х	Load Preset Data		
	Н	Н	Н	Н	Count		
<i></i>	Н	Н	L	Х	No Count		
	Н	Н	Х	L	No Count		

*HC160 is an Asynchronous Reset Device.

H = High Level

L = Low Level

X = Don't Care

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±50	mA
P _D	Power Dissipation in Still Air, Plastic or Ceramic DIP† SOIC Package†	750 500	mW
T _{stg}	Storage Temperature	-65 to +150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

†Derating - SOIC Package: - 7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)			V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 3)	$V_{CC} = 2.0 V$ $V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$	0 0 0	1000 500 400	ns

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC} V	- 55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ I_{out} \leq 20 \; \mu \text{A} \end{array}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low-Level Input Voltage	$\label{eq:Vout} \begin{split} V_{out} &= 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ \left I_{out}\right &\leq 20 \ \mu\text{A} \end{split}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 2.4 \text{ m} \\ I_{out} \leq 4.0 \text{ mA} \\ I_{out} \leq 5.2 \text{ mA} \end{aligned} $	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$ \begin{array}{ll} V_{in} = V_{IH} \text{ or } V_{IL} & \begin{array}{l} I_{out} \leq 2.4 \text{ m} \\ I_{out} \leq 4.0 \text{ mA} \\ I_{out} \leq 5.2 \text{ mA} \end{array} $	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	± 0.1	± 1.0	± 1.0	μA
ICC	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC} \text{ or } GND$ $I_{out} = 0 \ \mu A$	6.0	4	40	160	μΑ

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

			Gu	aranteed Li	mit	
Symbol	Parameter	V _{CC} V	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle)* (Figures 3 and 8)	2.0 4.5 6.0	6.0 30 35	4.8 24 28	4.0 20 24	MHz
t _{PLH}	Maximum Propagation Delay, Clock to Q (Figures 3 and 8)	2.0 4.5 6.0	170 34 29	215 43 37	255 51 43	ns
t _{PHL}		2.0 4.5 6.0	205 41 35	255 51 43	310 62 53	
t _{PHL}	Maximum Propagation Delay, Reset to Q (HC160A Only) (Figures 4 and 8)	2.0 4.5 6.0	210 42 36	265 53 45	315 63 54	ns
t _{PLH}	Maximum Propagation Delay, Enable T to Ripple Carry Out (Figures 5 and 8)	2.0 4.5 6.0	160 32 27	200 40 34	240 48 41	ns
t _{PHL}		2.0 4.5 6.0	195 39 33	245 49 42	295 59 50	
t _{PLH}	Maximum Propagation Delay, Clock to Ripple Carry Out (Figures 3 and 8)	2.0 4.5 6.0	175 35 30	220 44 37	265 53 45	ns
t _{PHL}		2.0 4.5 6.0	215 43 37	270 54 46	325 65 55	
t _{PHL}	Maximum Propagation Delay, Reset to Ripple Carry Out (HC160A Only) (Figures 4 and 8)	2.0 4.5 6.0	220 44 37	275 55 47	330 66 56	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 3 and 8)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF

*Applies to noncascaded/nonsynchronously clocked configurations only. With synchronously cascaded counters, (1) Clock to Ripple Carry Out propagation delays, (2) Enable T or Enable P to Clock setup times, and (3) Clock to Enable T or Enable P hold times determine f_{max}. However, if Ripple Carry Out of each stage is tied to the Clock of the next stage (nonsynchronously clocked), the f_{max} in the table above is applicable. See Applications Information in this data sheet.

		Typical @ 25°C, V _{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Package)*	60	pF

*Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING REQUIREMENTS (Input $t_r = t_f = 6 \text{ ns}$)

			Gu	aranteed Li	mit	Unit
Symbol	Parameter	V _{CC} V	- 55 to 25°C	≤ 85 ° C	≤ 125°C	
t _{su}	Minimum Setup Time, Preset Data Inputs to Clock	2.0	150	190	225	ns
	(Figure 6)	4.5	30	38	45	
		6.0	26	33	38	
t _{su}	Minimum Setup Time, Load to Clock	2.0	135	170	205	ns
	(Figure 6)	4.5	27	34	41	
		6.0	23	29	35	
t _{su}	Minimum Setup Time, Enable T or Enable P to Clock	2.0	200	250	300	ns
	(Figure 7)	4.5	40	50	60	
		6.0	34	43	51	
t _h	Minimum Hold Time, Clock to Preset Data Inputs	2.0	50	65	75	ns
	(Figure 6)	4.5	10	13	15	
		6.0	9	11	13	
t _h	Minimum Hold Time, Clock to Load	2.0	3	3	3	ns
	(Figure 6)	4.5	3	3	3	
		6.0	3	3	3	
t _h	Minimum Hold Time, Clock to Enable T or Enable P	2.0	3	3	3	ns
	(Figure 7)	4.5	3	3	3	
		6.0	3	3	3	
t _{rec}	Minimum Recovery Time, Reset Inactive to Clock	2.0	125	155	190	ns
	(Figure 4)	4.5	25	31	38	
		6.0	21	26	32	
t _{rec}	Minimum Recovery Time, Load Inactive to Clock	2.0	125	155	190	ns
	(Figure 6)	4.5	25	31	38	
		6.0	21	26	32	
tw	Minimum Pulse Width, Clock	2.0	80	100	120	ns
	(Figure 3)	4.5	16	20	24	
		6.0	14	17	20	
t _w	Minimum Pulse Width, Reset	2.0	80	100	120	ns
	(Figure 4)	4.5	16	20	24	
		6.0	14	17	20	
t _r , t _f	Maximum Input Rise and Fall Times	2.0	1000	1000	1000	ns
	(Figure 3)	4.5	500	500	500	
		6.0	400	400	400	

FUNCTION DESCRIPTION

Loading

The HC160A is a programmable 4-bit synchronous counters that feature parallel Load, synchronous or asynchronous Reset, a Carry Output for cascading, and count-enable controls. The HC160A is a BCD counter with asynchronous Reset.

INPUTS

Clock (Pin 2)

The internal flip-flops toggle and the output count advances with the rising edge of the Clock input. In addition, control functions, such as loading occur with the rising edge of the Clock input.

Preset Data Inputs P0, P1, P2, P3 (Pins 3, 4, 5, 6)

These are the data inputs for programmable counting. Data on these pins may be synchronously loaded into the internal flip-flops and appear at the counter outputs. P0 (pin 3) is the least-significant bit and P3 (pin 6) is the most-significant bit.

OUTPUTS

Q0, Q1, Q2, Q3 (Pins 14, 13, 12, 11)

These are the counter outputs (BCD or binary). Q0 (pin 14) is the least-significant bit and Q3 (pin 11) is the most-significant bit.

Ripple Carry Out (Pin 15)

When the counter is in its maximum state (1001 for the BCD counters or 1111 for the binary counters), this output goes high, providing an external look–ahead carry pulse that may be used to enable successive cascaded counters. Ripple Carry Out remains high only during the maximum count state. The logic equation for this output is:

Ripple Carry Out =	Enable T • Q0 • $\overline{Q1}$ • $\overline{Q2}$ • Q3
	for BCD counters

CONTROL FUNCTIONS

Resetting

A low level on the Reset pin (pin 1) resets the internal flip-flops and sets the outputs (Q0 through Q3) to a low level. The HC160A resets asynchronously.

With the rising edge of the Clock, a low level on Load (pin 9) loads the data from the Preset Data Input pins (P0, P1, P2, P3) into the internal flip–flops and onto the output pins, Q0 through Q3. The count function is disabled as long as Load is low.

Although the HC160A is a BCD counters, they may be programmed to any state. If they are loaded with a state disallowed in BCD code, they will return to their normal count sequence within two clock pulses (see the Output State Diagram).

Count Enable/Disable

These devices have two count–enable control pins: Enable P (pin 7) and Enable T (pin 10). The devices count when these two pins and the Load pin are high. The logic equation is:

Count Enable = Enable $P \bullet$ Enable $T \bullet$ Load

The count is either enabled or disabled by the control inputs according to Table 1. In general, Enable P is a count–enable control; Enable T is both a count–enable and a Ripple–Carry Output control.

Table 1. COUNT ENABLE/DISABLE

Contr	ol Inputs	Result at Outputs				
Load	Enable P	Enable T	Q0 – Q3	Ripple Carry Out		
Н	Н	Н	Count	High when Q0-Q3 are max-		
L	Н	Н	No Count	imum*		
Х	L	Н	No Count	High when Q0 – Q3 are max- imum*		
Х	Х	L	No Count	L		

*Q0 through Q3 are maximum for the HC160A when Q3 Q2 Q1 Q0 = 1001.

Figure 2. Output State Diagrams HC160A BCD Counters

SWITCHING WAVEFORMS

Figure 5.

Figure 6.

*Includes all probe and jig capacitance

Figure 8.

Sequence illustrated in waveforms:

- 1. Reset outputs to zero.
- 2. Preset to BCD seven.
- 3. Count to eight, nine, zero, one, two, and three.

4. Inhibit.

Figure 9. MC74HC160A Timing Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC160ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC160ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74HC160ADTG	TSSOP-16*	96 Units / Rail
MC74HC160ADTR2G	TSSOP-16*	2500 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*This package is inherently Pb-Free.

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16		PAGE 1 OF 1		
ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding					

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-16	-	PAGE 1 OF 1			
ON Semiconductor and 🔟 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative