MOSFET - Power, Single N-Channel, SO8-FL 25 V, 0.68 mΩ, 365 A

NTMFS0D8N02P1E

Features

- Small Footprint (5x6mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

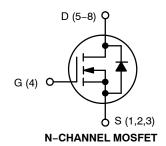
Applications

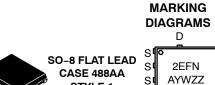
- DC-DC Converters
- Power Load Switch
- Notebook Battery Management

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	25	V
Gate-to-Source Voltage			V _{GS}	+16/ -12	V
Continuous Drain Current R _{BJC}		T _C = 25°C	I _D	365	Α
(Note 1)	Steady	T _C =85°C	1	263	
Power Dissipation $R_{\theta JC}$ (Note 1)	State	T _C = 25°C	P _D	139	W
Continuous Drain Current $R_{\theta JA}$		T _A = 25°C	I _D	55	Α
(Notes 1, 3)	Steady	T _A = 85°C	1	40	
Power Dissipation R _{θJA} (Notes 1, 3)	State	T _A = 25°C	P _D	3.2	W
Continuous Drain Current $R_{\theta,JA}$		T _A = 25°C	I _D	30	Α
(Notes 2, 3)	Steady	T _A = 85°C	1	21	
Power Dissipation R _{θJA} (Notes 2, 3)	State	T _A = 25°C	P _D	0.93	W
Pulsed Drain Current	T _A = 25°	'C, t _p = 10 μs	I _{DM}	762	Α
Single Pulse Drain-to-Source Avalanche Energy (I _L = 115.4 A _{pk} , L = 0.1 mH) (Note 4)			E _{AS}	666	mJ
Operating Junction and Storage Temperature Range			T _J , T _{STG}	–55 to +150	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using 1 in² pad size, 2 oz Cu pad.
- 2. Surface-mounted on FR4 board using minimum pad size, 2 oz Cu pad.
- 3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro-mechanical application board design. $R_{\theta JC}$ is determined by the user's board design.
- 4. 100% UIS tested at L = 1 mH, I_{AS} = 30.7 A.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
25.\/	0.68 mΩ @ 10 V	365 A
25 V	0.80 mΩ @ 4.5 V	305 A

CASE 488AA STYLE 1

2EFN = Specific Device Code = Assembly Location

Υ = Year W = Work Week = Lot Traceabililty

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

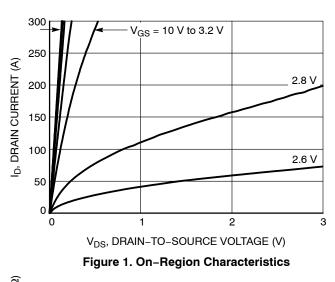
THERMAL RESISTANCE MAXIMUM RATINGS

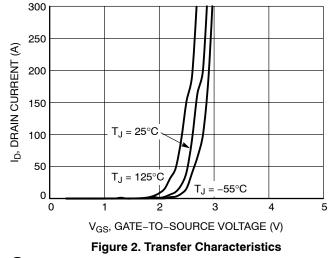
Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 1)	$R_{ heta JC}$	0.9	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	39	*C/VV
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	135	°C/W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$		25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 1 mA. ref to 25°C			16		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	
		V _{DS} = 20 V	T _J = 125°C			250	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = -	+16 V/–12 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D	= 2 mA	1.2		2.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 2 mA. ref	to 25°C		-4.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _I	_O = 46 A		0.44	0.68	
		V _{GS} = 4.5 V, I	_D = 43 A		0.54	0.80	mΩ
Forward Transconductance	9 _{FS}	$V_{DS} = 5 \text{ V}, I_{D}$	= 46 A		307		S
Gate Resistance	R_{G}	T _A = 25°	C		0.48		Ω
CHARGES AND CAPACITANCES					•	•	•
Input Capacitance	C _{ISS}	V _{GS} = 0 V, V _{DS} = 13 V, f = 1 MHz			8600		pF
Output Capacitance	C _{OSS}				2285		
Reverse Transfer Capacitance	C _{RSS}				129		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 13 V; I _D = 46 A			52		- nC
Threshold Gate Charge	Q _{G(TH)}				10		
Gate-to-Source Charge	Q_{GS}				21		
Gate-to-Drain Charge	Q_{GD}				9		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 13 V; I _D = 46 A			116		nC
SWITCHING CHARACTERISTICS, V _{GS} =	4.5 V (Note 6)				1	1	
Turn-On Delay Time	t _{d(ON)}				45		
Rise Time	t _r	V _{GS} = 4.5 V, V _E	ne = 13 V.		24		ns
Turn-Off Delay Time	t _{d(OFF)}	I _D = 46 A, R _G	$= 6.0 \Omega$		68		
Fall Time	t _f	1			20		1
SWITCHING CHARACTERISTICS, V _{GS} =	10 V (Note 6)						•
Turn-On Delay Time	t _{d(ON)}				23		
Rise Time	t _r	V_{GS} = 10 V, V_{DS} = 13 V, I_{D} = 46 A, R_{G} = 6.0 Ω			6.8		1
Turn-Off Delay Time	t _{d(OFF)}				123		ns
Fall Time	t _f				19		1
DRAIN-SOURCE DIODE CHARACTERIS	TICS	•					
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.77	1.2	
		V _{GS} = 0 V, I _S = 46 A			0.62		V

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS						
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/μs,		64		ns
Reverse Recovery Charge	Q _{RR}	I _S = 46 A		87		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

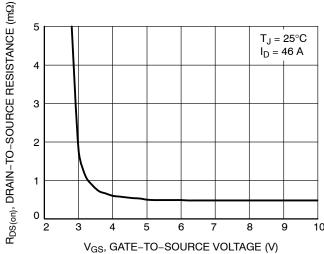


Figure 3. On-Resistance vs. Gate-to-Source Voltage

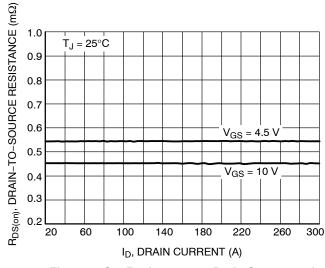


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

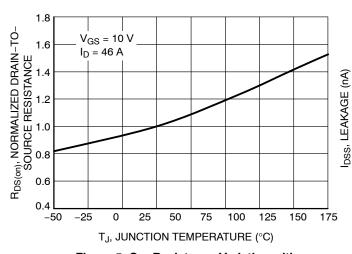


Figure 5. On–Resistance Variation with Temperature

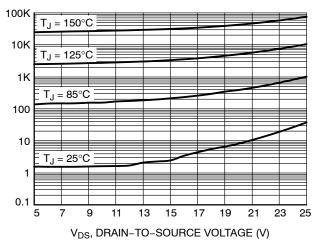


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

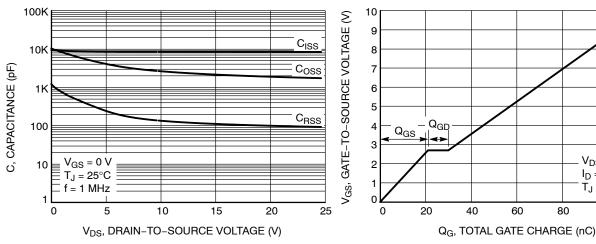


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

60

80

 $V_{DS} = 13 V$

I_D = 46 A

T_J = 25°C

100

120

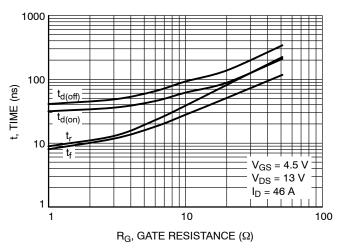


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

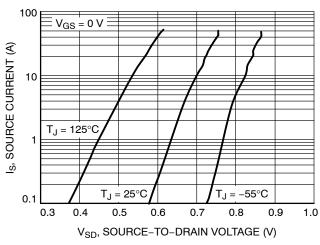


Figure 10. Diode Forward Voltage vs. Current

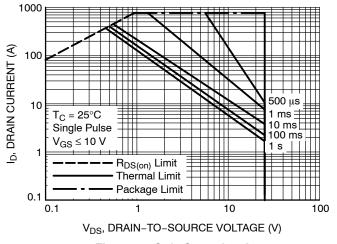


Figure 11. Safe Operating Area

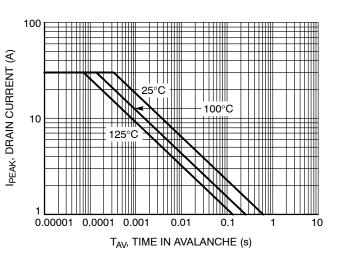


Figure 12. Maximum Drain Current vs. Time in **Avalanche**

TYPICAL CHARACTERISTICS

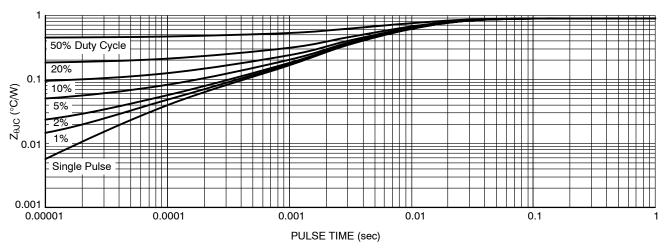


Figure 13. Thermal Impedance

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMFS0D8N02P1ET1G	2EFN	DFN5 (Pb-Free)	1500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N

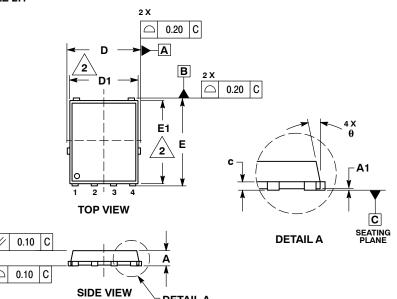
DATE 25 JUN 2018

NOTES:

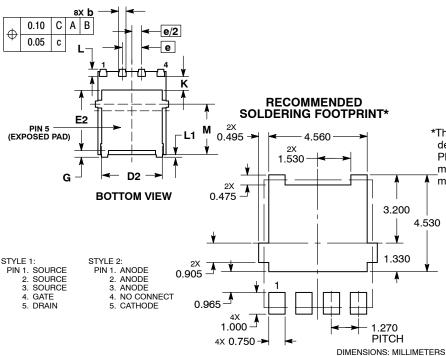
- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETER. DIMENSION D1 AND E1 DO NOT INCLUDE
- MOLD FLASH PROTRUSIONS OR GATE BURRS

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.90	1.00	1.10	
A1	0.00		0.05	
b	0.33	0.41	0.51	
С	0.23	0.28	0.33	
D	5.00	5.15	5.30	
D1	4.70	4.90	5.10	
D2	3.80	4.00	4.20	
E	6.00	6.15	6.30	
E1	5.70	5.90	6.10	
E2	3.45	3.65	3.85	
е		1.27 BSC	;	
G	0.51	0.575	0.71	
K	1.20	1.35	1.50	
L	0.51	0.575	0.71	
L1	0.125 REF			
M	3.00	3.40	3.80	
θ	0 °		12 °	

GENERIC MARKING DIAGRAM*



XXXXXX = Specific Device Code


= Assembly Location Α

Υ = Year W = Work Week = Lot Traceability ZZ

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales