

GSID150A120S3B1 IGBT Module

Features:

- Low Saturation Voltage: $V_{CE (sat)}$ = 1.80V @ I_C = 150A , T_C=25 $^{\circ}$ C
- Low Switching Loss
- 100% RBSOA Tested (2×lc)
- Low Stray Inductance
- Lead Free, Compliant with RoHS Requirement

Applications:

- Welding Machine/ Cutting Machine
- Induction Heating
- Ultrasonic Device
- PV System
- SMPS

Maximum Rated Values of IGBT(T_C=25°C unless otherwise specified)

V _{CES}	Collector-Emitter Blocking Voltage	1200	V	
V _{GES}	Gate-Emitter Voltage	±20	V	
		T _C = 80°C	150	А
IC	I _C Continuous Collector Current	T _C = 25℃	300	А
I _{CM}	Repetitive Peak Collector Current $T_J = 175^{\circ}C$		300	А
t _{sc}	Short Circuit Withstand Time	>10	μs	
P _D	Maximum Power Dissipation per IGBT	ximum Power Dissipation per IGBT $\begin{array}{c} T_{C} = 25^{\circ}C \\ T_{Jmax} = 175^{\circ}C \end{array}$		W

Electrical Characteristics of IGBT (T_c=25 $^\circ\!\!\!\mathrm{C}$ unless otherwise specified)

Static characteristics

Symbol	Description	Conditions		Min	Тур	Max	Unit
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	IC = 1mA, VCE = VGE		3.5	4.5	5.0	V
N	(sat) Collector-Emitter Saturation Voltage $I_{C} = 150A$, $V_{C} = -15V$	T _J = 25℃		1.80	2.00	V	
V _{CE(sat)}		V _{GE} = 15V	T _J = 125℃		1.90	2.10	V
I _{CES}	Collector-Emitter Leakage Current	V _{GE} = 0V, V _{CE} = V _{CES} , T _J = 25℃				1	mA
I _{GES}	Gate-Emitter Leakage Current	V _{GE} = ±20V, V _{CE} = 0V, T _J = 25℃				200	nA
Cies	Input Capacitance	V _{CE} = 25V, V _{GE} = 0V , f =1MHz			14.0		nF
C _{oes}	Output Capacitance				1.0		nF

Switching Characteristics

emening	Onuruotonistios							
t _{d(on)}	Turn-on Delay Time	Гіте			850		ns	
۲d(on)	Turn-on Delay Time		T _J = 125℃		850		113	
	D. T.		T _J = 25℃		170			
t _r	Rise Time		T _J = 125℃		170		ns	
			T _J = 25℃		825		ns	
t _{d(off)}	Turn-off Delay Time	N/ 0001/1 450A	T _J = 125℃		890			
		- V _{CC} = 600V,I _C =150A, R _G = 15 Ω,V _{GE} = ±15V, Inductive Load	T _J = 25℃		165			
t _f	Fall Time		T _J = 125℃		195		ns	
F	Turn on Ouitabing Laga		T _J = 25℃		13.7		ml	
E _{on}	Turn-on Switching Loss		T _J = 125℃		15.7		mJ	
F	Turn off Switching Loop		T _J = 25℃		8.7		ml	
E _{off}	Turn-off Switching Loss		T _J = 125℃		12.0		mJ	
Qg	Total Gate Charge		T _J = 25℃		1650		nC	
RBSOA	Reverse Bias Safe Operation Area	I _C =300A,V _{CC} =960V,Vp=12 Rg = 15Ω, V _{GE} =+15V to 0		Trapezoid				
SCSOA	Short Circuit Safe Operation Area	V _{CC} = 300V, V _{GE} = 15V, T _J = 150℃		10			μs	
$R_{ extsf{ heta}JC}$	IGBT Thermal Resistance: June	Junction-To-Case			0.16		°C/W	

Maximum Rated Values of Diode (T_C=25°C unless otherwise specified)

V _{RRM}	Repetitive Peak Reverse Voltage	1200	V
I _F	Diode Continuous Forward Current	150	А
I _{FM}	Diode Maximum Forward Current	300	А

Electrical Characteristics of Diode (T_C =25°C unless otherwise specified)

Symbol	Description	Conditions		Min	Тур	Max	Unit
N	Forward Voltage	I _F = 150A , V _{GE} = 0V	T _J = 25℃		2.2	2.4	V
V _{FM}			T _J = 125℃		2.4		
I _{rr}	Peak Reverse Recovery Current		T _J = 25℃		60		A
		$I_F = 150A,$ di/dt =970A/µs, $V_{rr} = 600V,$ $V_{GE} = -15V$	T _J = 125℃		90		
	Reverse Recovery Charge		T _J = 25℃		7.2		– μC
Q _{rr}			T _J = 125℃		15.0		
-	Reverse Recovery Energy		T _J = 25℃		2.9		
E _{rec}			T _J = 125℃		6.0		mJ
$R_{ extsf{ heta}JC}$	Diode Thermal Resistance: Junction-To-Case				0.28		°C/W

Module

Symbol	Description		Min	Тур	Max	Unit
V _{iso}	Isolation Voltage(All Terminals Shorted)	f = 50Hz, 1minute			2500	V
TJ	Maximum Junction Temperature				175	°C
T _{JOP}	Maximum Operating Junction Temperature Range		-40		+150	°C
T _{stg}	Storage Temperature		-40		+125	°C
R _{ecs}	Case-To-Sink (Conductive Grease Applied)			0.1		°C/W
т	Power Terminals Screw:M6		4.0		6.0	N∙m
т	Mounting Screw:M6		4.0		6.0	N∙m
G	Weight			230		g

Internal Circuit

Package Outline (Unit: mm):

Revision History

Date	Revision	Notes
4/13/2015	1.0	Initial release
01/03/2020	1.1	Applied company name change

<u>Notes</u>

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented March, 2013. RoHS Declarations for this product can be obtained from the Product Documentation sections of www.SemiQ.com.

REACh Compliance

REACh substances of high concern (SVHC) information is available for this product. Since the European Chemicals Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact our office at SemiQ Headquarters in Lake Forest, California to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

SemiQ Inc., reserves the right to make changes to the product specifications and data in this document without notice. SemiQ products are sold pursuant to SemiQ's terms and conditions of sale in place at the time of order acknowledgement.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control.

SemiQ makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SemiQ assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using SemiQ products.

To obtain additional technical information or to place an order for this product, please contact us. The information in this datasheet is provided by SemiQ. SemiQ reserves the right to make changes, corrections, modifications, and improvements of datasheet without notice.