DATA SHEET # SkelMod 51V ϵ - + 51 V DC nominal voltage - + Ultra-low ESR - + Long lifetime 1 million duty cycles - + Integrated Ultracapacitor Management System for effective cell balancing - + CAN bus communication - + Natural cooling - + High Power output - + IP65 Protection | SMA51V177FAF TECHNICAL SPECIFICATIONS | UNIT | VALUE | |---|--|--| | Electrical Rated voltage V _R Surge voltage Minimum monitoring voltage Rated capacitance DC 10ms ESR (~AC 100Hz) rated DC 1s ESR (~AC 0.1 Hz), rated Maximum series voltage Maximum peak current (for 1 s duration) ¹ Short circuit current Maximum stored energy ² Cells in total Cell type | V
V
F
mΩ
MDC
A
kA
Wh
pcs. | 51
54
9
177
3.3
4.0
850
2643
11.6
63.9
18
SCA3200 | | Life Life at 51 V and maximum operating temperature Life at 48 Volt and Maximum Operating Temperature Shelf life @ RT, uncharged Projected cycle life @ RT between 51 V and 25.5 V Projected cycle life @ RT between 48 V and 24 V Capacitance decrease 20% from rated value; resistance increase 100% from rated value | 1500 h
2500 h
10 years
1 000 000 c
2 000 000 d | | | Temperature Operating temperature range Ultracapacitor Management System Cell balancing method Temperature reading Voltage monitoring/balancing Communication interface Nominal auxiliary supply voltage | -40 °C to +65 °C Controlled Resistive Balancing 4 NTC sensors Individual Cell CAN bus 2.0B 24 V | | | Auxiliary supply voltage Auxiliary supply current Connectors Power connector | 16-33 V
max. 0.02 A
Ø 9 mm Trou | | Communications connector Phoenix Contact Male M12 A coded 8-pos ### **Standards** International protection marking Isolation protection Vibration protection EMC immunity EMC emissions IEC 60529, IP65 EN60664-1, OV2 ISO 16750-3, Table 14 IEC EN 61000-6-2, UNECE R-10 IEC EN 61000-6-3, UNECE R-10 | SMA51V177FAF TECHNICAL SPECIFICATIONS | UNIT | VALUE | |--|------------------------------|------------------------------------| | Energy Max stored energy ² Specific energy ³ Energy density ⁴ | Wh
Wh/kg
Wh/L | 63.9
4.0
5.0 | | Nominal Power (calculated from DC 10ms ESR, for comparison) Power (matched impedance) ⁵ Practical specific power (matched impedance) ⁶ Practical power density (matched impedance) ⁷ | kW
kW/kg
kW/L | 197.0
12.5
15.5 | | Practical Power (calculated from DC 1s ESR, for engineering) Power (matched impedance) ⁵ Practical specific power (matched impedance) ⁶ Practical power density (matched impedance) ⁷ | kW
kW/kg
kW/L | 162.6
10.3
12.8 | | Thermal Parameters (based on DC Is ESR) Thermal resistance given at ΔT 30 °C (R_{th}) ⁸ Thermal capacitance (C_{th}) Maximum continuous current (ΔT 15 °C) Maximum continuous current (ΔT 30 °C) Maximum continuous current (ΔT 40 °C) | °C/W
kJ/°C
A
A
A | 0.33
16.85
102
150
177 | | Physical Parameters Typical mass Volume Length x width x height | kg
L
mm | 15.8
12.7
418 x 194 x 188 | 418 | Maximum peak current(1s)= $\frac{C^{\times 1}/2^{\times V}}{C^{\times}ESR+1s}$ | 2 E _{stored} = $\frac{\frac{1}{2} \times C \times V^{2}}{3600}$ | 3 E _{specific} = $\frac{E_{stored}}{mass}$ | |---|---|--| | ${}^{4}E_{density} = \frac{E_{stored}}{volume} \qquad {}^{5}P_{max} = \frac{V^{2}}{4 \times ESR}$ | 6 P _{specific} = $\frac{P_{max}}{mass}$ | 7 P _{density} = $\frac{P_{max}}{volume}$ | | 8 R _{th} = $\frac{\Delta T}{DC \text{ Is ESR} \times ^{2}}$ | | | # Standard markings - Name of Manufacturer, Part number, Serial number, Rated voltage - Rated capacitance, Negative and positive terminals, Warning marking - + Total energy in watt-hours #### Notes - * All information provided on this data sheet and all subsequent ultracapacitors sales and testing are subject to Standard Terms of Service (ToS) available on www.skeletontech.com, document *General Terms of Sale for Skeleton Technologies OÜ* - * For ultracapacitors, the power values are often calculated using nominal resistance values (DC 10 ms ESR). For engineering purposes, practical values based on total resistance (DC 1s ESR) are preferred. - Mounting Recommendation: Please refer to the user manual for installation recommendations. ## Skeleton Technologies GmbH Sales and Headquarters Schücostraße 8, 01900 Großröhrsdorf, Germany info@skeletontech.com www.skeletontech.com