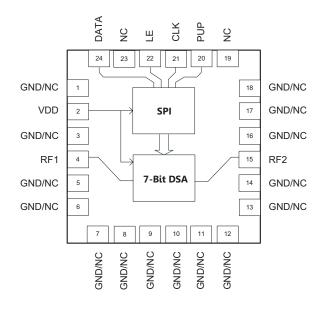


Serial Controlled Digital Step Attenuator, 50MHz to 4000MHz

Package: MCM, 24-Pin, 4.2mm x 4.2mm



Features

- Frequency Range 50MHz to 4000MHz
- 7-Bit, 31.75dB Range, 0.25dB Step
- High Linearity, IP3 > 50dBm
- 3V and 5V Logic Compatible
- Serial-to-Parallel Controller
- Serial Programming Interface
- Power-up Programming Modes
- On-chip ESD Protection Class 2 < 4000V
- Single Supply, 3V to 5V Operation
- Footprint Compatible with Most 24-Pin, 4mm x 4mm OFNs

Applications

- Transceiver IF Applications
- Cellular, PCS, GSM, UMTS, LTE,
- WiMax/WiFi
- Wireless Data, Satellite Terminals
- Test Equipment

Functional Block Diagram

Product Description

RFMD's RFSA2724 is a 7-bit digital step attenuator (DSA) that features high-linearity over the entire 31.75dB gain control range with excellent step accuracy in 0.25dB steps. The RFSA2724 is programmed via a serial mode control interface that is both 3V and 5V compatible. The RFSA2724 also offers a rugged Class 1B HBM ESD rating via on-chip ESD circuitry. The MCM package is footprint compatible with most 24-pin 4mm x 4mm QFN packages.

Ordering Information

RFSA2724SR 7" Sample reel with 100 pieces
RFSA2724SQ Sample bag with 25 pieces
RFSA2724TR13 13" Reel with 2500 pieces

RFSA2724PCK-410 50MHz to 4GHz PCBA with 5-piece sample bag

RFSA2724

Absolute Maximum Ratings

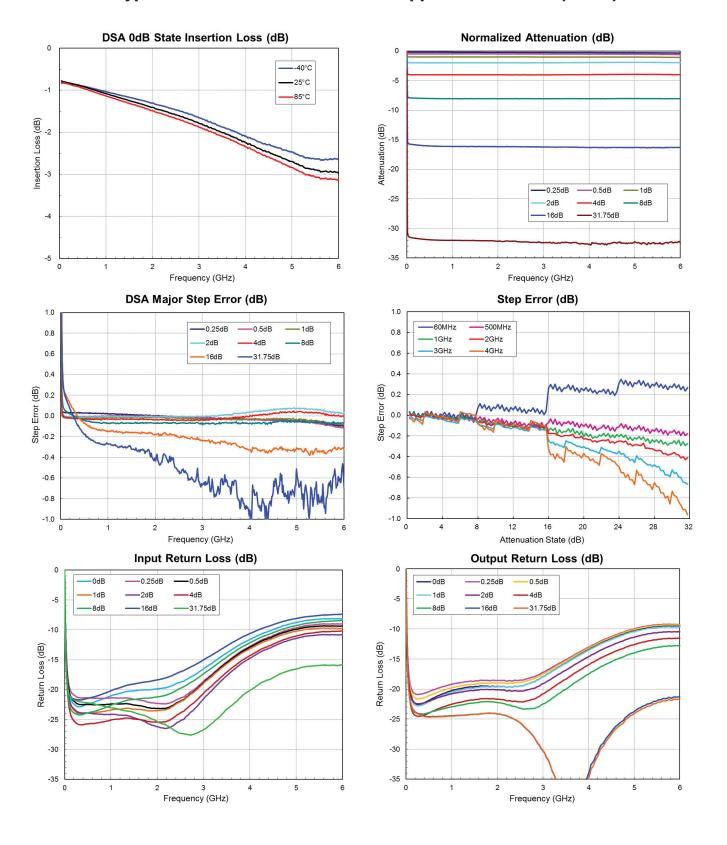
Parameter	Rating	Unit
Supply Voltage	+5.5	V
DC Supply Current	15	mA
Power Dissipation	83	mW
Max RF Input Power	27	dBm
Operating Temperature (T _{CASE})	-40 to +85	°C
Storage Temperature	-40 to +150	°C
Junction Temperature	150	°C
ESD Rating (HBM)	Class 2 (< 4000)	V
ESD Rating (CDM)	Class IV (> 1000)	V
Moisture Sensitivity Level	MSL3	

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Paramatar	Specification		Unit	Condition		
Parameter	Min.	Тур.	Max.	UIIIL	Condition	
Frequency Range	50		4000	MHz		
Insertion Loss		0.85 1.1 1.7 2.2		dB	150MHz, OdB attenuation 850MHz, OdB attenuation 2700MHz, OdB attenuation 3800MHz, OdB attenuation	
Gain Control Range		31.75		dB	0.25dB step size	
Step Accuracy	±(0.1 +	5.0% attenuation	setting)	dB		
Input IP3		50		dBm	100MHz to 4000MHz	
Input P0.1dB		25		dBm	1000MHz	
Return Loss		15		dB	DC to 3500MHz, all states	
Control Interface		7-bit, Serial			Serial Interface	
Settling Time		200		ns	t _{RISE} , t _{FALL} (10%/90% RF)	
Switching Speed		200		ns	t _{ON} , t _{OFF} (50% CTL to 10%/90% RF)	
Supply Voltage (V _{DD})	4.75	5.0	5.25	V		
Supply Current		7.5		mA		
Control Voltage (V _{CTL})		Low, $V_{CTL} = 0V$ to 0.8V High, $V_{CTL} = 2.0$ to V_{DD}		V		

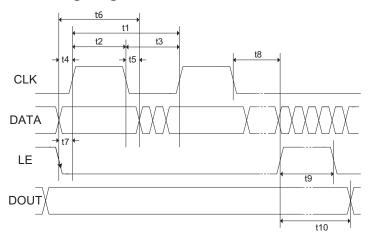

Notes

^{1.} $V_{DD} = 5V$, $V_{CTL} = 5V$, T = 25 °C.

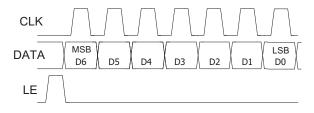
^{2.} IIP3 measured with P_{IN} = +10dBm/tone, 1MHz spacing

Typical Performance: Broadband Application Circuit (25°C)

Typical Performance: Broadband Application Circuit (25 °C)


Truth Table

Control Bit					Relative Gain		
C16	C8	C4	C2	C1	CO.5	C0.25	Setting
1	1	1	1	1	1	1	Max gain
1	1	1	1	1	1	0	-0.25dB
1	1	1	1	1	0	1	-0.5dB
1	1	1	1	0	1	1	-1dB
1	1	1	0	1	1	1	-2dB
1	1	0	1	1	1	1	-4dB
1	0	1	1	1	1	1	-8dB
0	1	1	1	1	1	1	-16dB
0	0	0	0	0	0	0	-31.75dB


Note: C0.25 = D0, C0.5 = D1, ..., C16 = D6 (for the purpose of the example below)

Serial Port Interface

SPI Timing Diagram

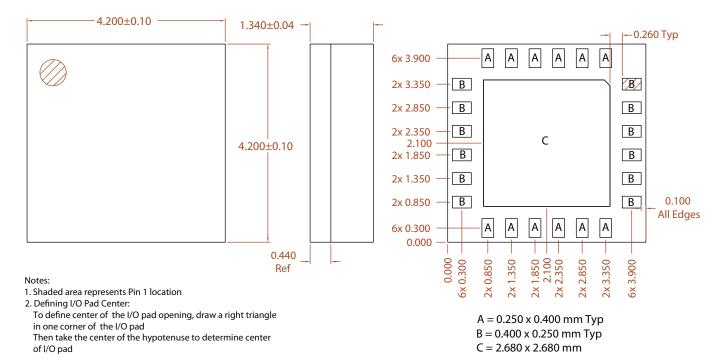
Programming example - 7 bit

SPI Timing Diagram Specifications

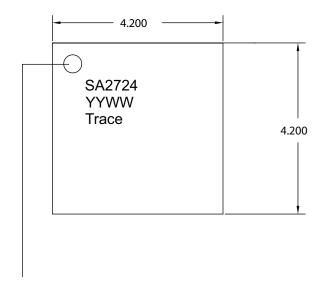
Parameter	Limit	Unit Comment	
t1	25	MHz max	CLK Frequency
t2	20	ns min	CLK High
t3	20	ns min	CLK Low
t4	5	ns min DATA to CLK Setup Tin	
t5	5	ns min DATA to CLK Hold Time	
t6	30	ns min DATA Valid	
t7	5	ns min LE to CLK Setup Time	
t8	5	ns min CLK to LE Setup Time	
t9	10	ns min LE Pulse Width	
t10	20	ns max Output Set	

Logic Voltage Levels			
State	Logic		
Low	0V to 0.8V		
High	2.0V to 5.0V		

RFSA2724

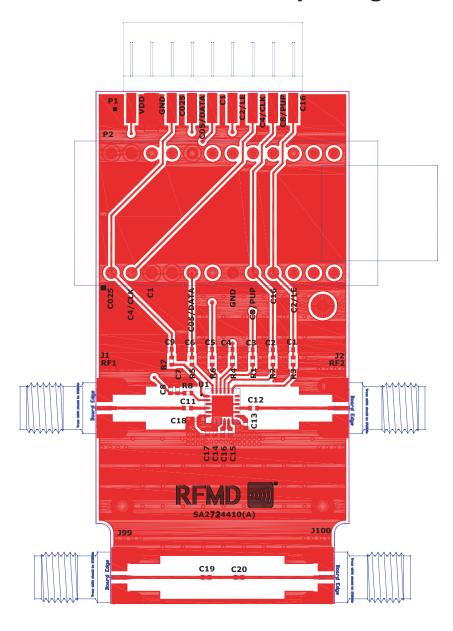

Pin Names and Description

Pin	Function	Description
1	NC	No Internal Connection. EVB can be ground or no connect.
2	VDD	Power Supply.
3	GND	DC and RF Ground.
4	RF1	RF Port. External DC Block Required.
5	GND	DC and RF Ground.
6	GND	DC and RF Ground.
7	GND	DC and RF Ground.
8	GND	DC and RF Ground.
9	GND	DC and RF Ground.
10	GND	DC and RF Ground.
11	GND	DC and RF Ground.
12	GND	DC and RF Ground.
13	GND	DC and RF Ground.
14	GND	DC and RF Ground.
15	RF2	RF Port. External DC Block Required.
16	GND	DC and RF Ground.
17	GND	DC and RF Ground.
18	GND	DC and RF Ground.
19	NC	No Internal Connection. EVB can be ground or no connect.
20	PUP	Power-up Programming Pin. Low = Max Attenuation (31.75dB) at power-up.
		High = Min Attenuation (OdB) at power-up.
21	CLK	Serial Clock.
22	LE	Latch Enable.
23	NC	No Internal Connection. EVB can be ground or no connect.
24	DATA	Serial Data.
EPAD	GND	DC and RF Ground. Must be soldered to EVB ground plane over a bed of vias for thermal and RF performance.


Power-up Programming Truth Table			
PUP Attenuator Setting			
Low	Attenuation at Max, 31.75dB		
High Attenuation at Min, OdB			

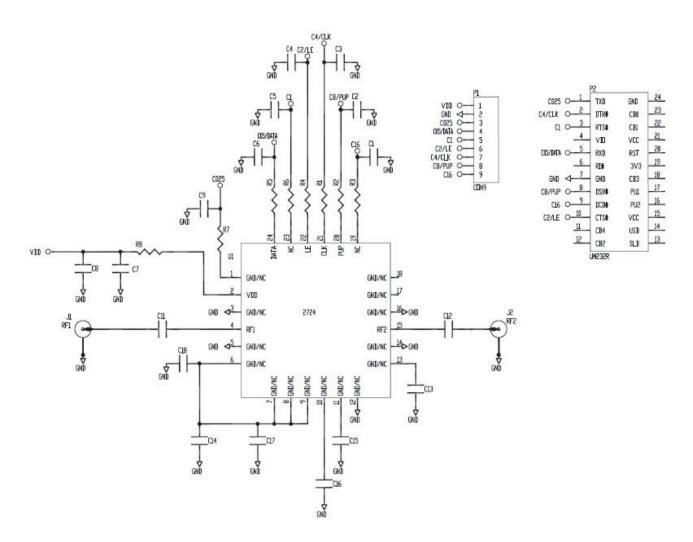
Package Outline Drawing

Branding Diagram


Pin 1 Indicator

Fill in the YYWW Notation with the Date Code YY = Year WW = Week

Trace to be assigned by SubCon



Evaluation Board Assembly Drawing

Evaluation Board Schematic

Evaluation Board Bill of Materials (BOM)

Description	Reference Designator	Manufacturer	Manufacturer's P/N
SA2714410(A)		Dynamic Details (DDI) Toronto	SA2714410(A)
Digital Step Attenuator 50MHz to 4000MHz	U1	RFMD	RFSA2724SB
CAP, 470pF, 10%, 50V, X7R, 0402	C11-C12	Murata Electronics	GRM155R71H471KA01E
CAP, 1000pF, 10%, 50V, X7R, 0402	C7	Taiyo Yuden (USA), Inc.	RM UMK105BJ102KV-F
RES, 0Ω, 0402	R1-R2, R4-R5, R8	Kamaya, Inc	RMC1/16SJPTH
CONN, SMA, END LNCH, UNIV, HYB MNT, FLT	J1-J2, J99-J100	Molex	SD-73251-4000
CONN, HDR, ST, PLRZD, 9-PIN	P1	ITW Pancon	MPSS100-9-C
CONN, SKT, 24-PIN DIP, .600", T/H	P2	Aries Electronics Inc.	24-6518-10
MOD, USB TO SERIAL UART, SSOP-28	M1 (See Note Below)	Future Technology Devices Int'l	UM232R
DNP	C1-C6, C8-C9, C13-C20	NA	NA
DNP	R3, R6-R7	NA	NA

Note: M1 should be mounted into P2 with respect to the Pin 1 alignment of M1 and P2