MASW-007074

GaAs SP3T Absorptive Switch with ASIC Driver, DC-3.0 GHz

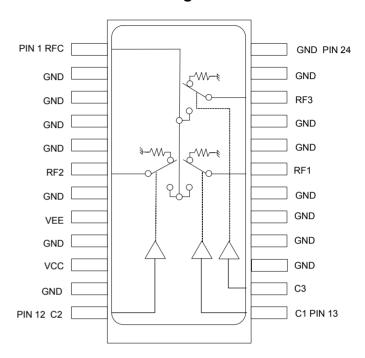
Rev. V4

Features

- Typical Isolation: 32 dB (2,000 MHz)
- Typical Insertion Loss: 2.0 dB (2,000 MHz)
- Integral ASIC TTL/CMOS Driver
- Low DC Power Consumption
- 50 Ohm Nominal Impedance
- · Tape and Reel Packaging Available
- · Test Boards Available
- Lead-Free SOW-24 Package
- 100% Matte Tin Plating over Copper
- · Halogen-Free "Green" Mold Compound
- 260°C Reflow Compatible
- RoHS* Compliant Version of SW65-0214

Description

The MASW-007074 is a GaAs MMIC absorptive SP3T switch with an integral silicon ASIC driver. This device is in a 24-lead plastic package. This switch offers excellent broadband performance and repeatability from DC to 3 GHz, while maintaining low DC power dissipation.


The MASW-007074 is ideally suited for wireless infrastructure applications. Also available in ceramic package with improved performance.

Ordering Information

Part Number	Package		
MASW-007074-000100	Bulk Packaging		
MASW-007074-0001TR	1000 piece reel		
MASW-007074-0001TB	Sample Test Board		

Note: Reference Application Note M513 for reel size information.

Functional Block Diagram

Pin Configuration

Pin No.	Function	Pin No.	Function
1	RFC	13	C1
2	GND	14	C3
3	GND	15	GND
4	GND	16	GND
5	GND	17	GND
6	RF2	18	GND
7	GND	19	RF1
8	V _{EE}	20	GND
9	GND	21	GND
10	V _{CC}	22	RF3
11	GND	23	GND
12	C2	24	GND

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

GaAs SP3T Absorptive Switch with ASIC Driver, DC-3.0 GHz

Rev. V4

Electrical Specifications: $T_A = 25$ °C, $Z_0 = 50\Omega$

Parameter	Test Conditions	Units	Min	Тур	Max
Insertion Loss	DC - 3.0 GHz	dB	_	2.0	2.3
Isolation (All arms off)	DC - 3.0 GHz	dB	30	32	_
VSWR	DC - 3.0 GHz On Off	_	_	1.7:1 2.2:1	2.4:1 2.4:1
$T_{rise} T_{fall} \ T_{on} T_{off} \ Transients$	10%/90%, 90%/10% ¹ 50% TTL to 90%/10% RF In-band (peak to peak)	ns ns mV		15 50 50	50 150 150
1 dB Compression	.05 GHz .5 - 3.0 GHz	dBm dBm	_	+20 +27	_
Input IP ₃	Two tone inputs 0.05 GHz up to +5 dBm 0.5 - 3.0 GHz	dBm dBm	_	+35 +46	_
V _{CC}	_	V	+4.5	+5.0	+5.5
V_{EE}	_	V	-8.0	-5.0	-4.75
V _{IL} V _{IH}	LOW-level input voltage HIGH-level input voltage	V V	0.0 2.0	_	0.8 5.0
lin (Input Leakage Current)	Vin = V _{CC} or GND	uA	-1.0	_	1.0
Icc (Quiescent Supply Current)	Vcntrl = V _{CC} or GND	uA	_	250	400
Δlcc (Additional Supply Current Per TTL Input Pin)	V _{CC} = Max, Vcntrl = V _{CC} - 2.1 V	mA	_	_	1.0
lee	VEE min to max, Vin = V_{IL} or V_{IH}	mA	-1.0	-0.2	_

^{1.} Decoupling capacitors (.01 µF) are required on the power supply lines.

Absolute Maximum Ratings ^{2,3}

Parameter	Absolute Maximum		
Max. Input Power 0.05 GHz 0.5 - 3.0 GHz ⁴	+27 dBm +34 dBm		
V _{CC}	-0.5V ≤ V _{CC} ≤ +7.0V		
V _{EE}	$-8.5V \le V_{EE} \le +0.5V$		
V _{CC} - V _{EE}	-0.5V ≤ V _{CC} - V _{EE} ≤ 14.5V		
Vin ⁵	$-0.5V \le Vin \le V_{CC} + 0.5V$		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +125°C		

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM does not recommend sustained operation near these survivability limits.
- 4. When the RF input is applied to the terminated port, the absolute maximum power is +30 dBm.
- Standard CMOS TTL interface, latch-up will occur if logic signal is applied prior to power supply.

Handling Procedures

Please observe the following precautions to avoid damage:

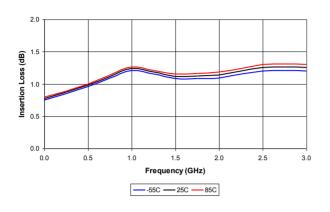
Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

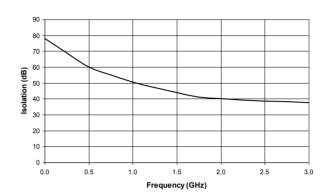
Truth Table

TTL Control Input		RF Common To:			
C1	C2	C3	RF1	RF2	RF3
1	0	0	On	Off	Off
0	1	0	Off	On	Off
0	0	1	Off	Off	On

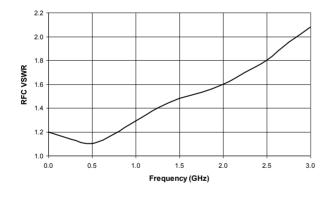
0 = TTL Low; 1 = TTL High

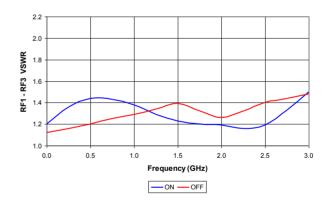


GaAs SP3T Absorptive Switch with ASIC Driver, DC-3.0 GHz


Rev. V4

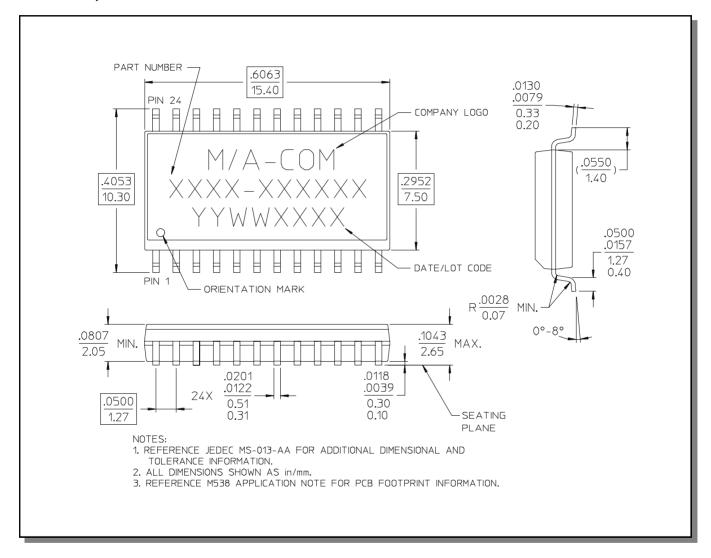
Typical Performance Curves


Insertion Loss vs. Frequency


Isolation Loss vs. Frequency

RFC VSWR vs. Frequency

RF1-RF3 VSWR vs. Frequency



GaAs SP3T Absorptive Switch with ASIC Driver, DC-3.0 GHz

Rev. V4

Lead-Free, SOW-24[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations.

MASW-007074

GaAs SP3T Absorptive Switch with ASIC Driver, DC-3.0 GHz

Rev. V4

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.