

а <u> Міскосні</u>р company

Vectron's VT-702 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, clipped sine wave or CMOS output, amalog temperature compensated oscillator, operating off either 5.0 or 3.3 volt supply, hermetically sealed 10 pad 7.0 x 5.0 mm ceramic package.

Features

- 5.000 52.000MHz Output Frequency
- ±0.280 ppm Temperature Stability
- Optional Frequency Tuning
- Fundamental Crystal Design
- Stratum 3 version available as a custom part number
- Hermetically Sealed Ceramic SMD package
- Product is compliant to RoHS directive and fully compatible with lead free assembly

Applications

- Femto Cells
- Base Stations
- IP Networking
- Global Posiitoning Systems
- Point to Point Radio
- Test and Measurement

Block Diagram

Specifications

Table 1. Electrical Performance, Clipped Sine Wave Option							
Parameter	Symbol	Min	Тур	Max	Units		
Output Frequency ¹ , Ordering Option	f _o	5		52	MHz		
Supply Voltage ² , Ordering Option	V _{DD}	+2	2.8, +3.0, +3.3, +	-5.0	V		
Supply Current	I _{DD}			3.5	mA		
Operating Temperature, Ordering Option	T _{op}	0/55, -10)/70, -20/70, -30	/85, -40/85	°C		
F	requency St	ability					
Stability Over T _{op} ⁴ Ordering Option	F _{STAB}	±0.05, ±	±0.10, ±0.20, ±0.	.28, ±0.50	ppm		
Frequency Tolerance ⁵	F _{TOL}			±2.0	ppm		
Power Supply Stability, ±5% change	F _{SUP}			±0.2	ppm		
Load Stability, ±10% change	F _{LOAD}			±0.2	ppm		
Aging / 1st year	F _{AGE}			±1.0	ppm		
Frequency	「uning (EFC)	, Ordering Opt	ion				
Tuning Range ⁶	PR	±5.	ppm				
Tuning Slope							
Control Voltage to reach Pull Range	Vc	0.5	1.5	2.5	V		
Control Voltage Impedance		100			Kohm		
RF Output (Clip	ped Sine W	ave) Ordering (Option				
Output Level	V _o p-p	0.8			V		
Output Load	C _L		10K II 10pF				
Start Up Time	t _{su}			2	ms		
Output Enable ⁷	V _{IH}	0.7*V _{DD}			V		
Output Disable	V _{IL}			0.3*V _{DD}	V		
	Phase Noi	ise ⁸	r	I	1		
Phase Noise ⁸ , 10MHz 10Hz			-99		dBc/Hz		
10Hz			-123				
1kHz			-143				
10kHz			-152				
100kHz			-155				

1. Refer to Table 8 for Standard Frequencies. Other Frequencies may be avilable upon request. Check with factory

2. Output DC-cut capacitor is optional.

3. The VT-702 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor

4. Referenced to the midpoint between minimum and maximum frequency value over the operating temperature range.

5. Frequency measured at 25 °C, 1 hour after 2 IR reflows.

6. Referenced to Mid Control Voltage

7. Output is Enabled if Enable / Disable pad is left Open or No Connect.

8. Measured using Agilent E5052 Signal Source Analyzer at 25 °C

Table 2. Electrical Performance, CMOS Optio	n				
Parameter	Symbol	Min	Тур	Max	Units
Output Frequency ¹ , Ordering Option	f _o	5	1	52	MHz
Supply Voltage ² , Ordering Option	V _{DD}	+	V		
Supply Current	I _{DD}			6.0	mA
Operating Temperature, Ordering Option	T _{OP}	0/55, -10)/70, -20/70, -30	/85, -40/85	°C
	Frequency St	ability			
Stability Over T _{OP} ⁴ Ordering Option	F _{STAB}	±0.05, =	±0.10, ±0.20, ±0	.28, ±0.50	ppm
Frequency Tolerance ⁵	F _{TOL}			±2.0	ppm
Power Supply Stability, ±5% change	F _{SUP}			±0.2	ppm
Load Stability, ±10% change	F _{LOAD}			±0.2	ppm
Aging / 1st year	F _{AGE}			±1.0	ppm
Frequ	iency Tuning (EFC)	, Ordering Opt	ion		
Tuning Range ⁶	PR	±5.	.0, ±8.0, ±10.0, ±	±12.0	ppm
Tuning Slope					
Control Voltage to reach Pull Range	Vc	0.5	1.5	2.5	V
Control Voltage Impedance		100			Kohm
RF	Output (CMOS), O	rdering Option			
Output Level High	V _{OH}	0.9*V _{DD}			V
Output Level Low	V _{OL}			0.1*V _{DD}	V
Output Load	C _L			15	pF
Duty Cycle		45		55	%
Start Up Time	T _{SUP}			2	ms
Rise / Fall Times	t _R / t _F			4	ns
Output Enable ⁷	V _{IH}	0.7*V _{DD}			V
Output Disable	V			0.3*V _{DD}	V
	Phase Noi	se ⁸	1	1	1
Phase Noise ⁸ , 10MHz			101		dBc/Hz
10Hz 100Hz			-101 -124		
100Hz 1kHz			-124 -144		
10kHz			-154		
100kHz			-156		

1. Refer to Table 8 for Standard Frequencies. Other Frequencies may be avilable upon request. Check with factory

2. Output DC-cut capacitor is optional.

3. The VT-702 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor

4. Referenced to the midpoint between minimum and maximum frequency value over the operating temperature range.

5. Frequency measured at 25 °C, 1 hour after 2 IR reflows.

6. Referenced to Mid Control Voltage

7. Output is Enabled if Enable / Disable pad is left Open or No Connect.

8. Measured using Agilent E5052 Signal Source Analyzer at 25 °C

Phase Noise, CMOS

Package Drawing

Dimensions in mm

Marking Information XXMXXX - Frequency (10M000) YY - Year of Manufacture

WW - Week of the Year

- T Manufacturing Location
- Pin 1 Indicator

Recommended Land Pattern

Table 3.	Table 3. Pinout								
Pin #	Symbol	Function							
1	NC No Connect								
2	NC	No Connect							
3	NC	No Connect							
4	GND	Ground							
5	OUT	RF Output							
6	NC No Connects								
7	NC	No Connect							
8	E/D Enable / Disable								
9	V _{DD} Supply Voltage								
10	NC	No Connect							

Enable/Disable Function

Enable/Disable Feature: The VT-702 has an enable/disable feature to which shuts down the oscillator and puts the output in to a high impdeance mode. If the Enable/Disable is left open or floating, the output is active**l.**

Clipped Sine Wave Output

Maximum Ratings

Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Although ESD protection circuitry has been designed into the VT-702, proper precautions should be taken when handling and mounting, Vectron employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

Table 4. Maximum Ratings			
Parameter	Symbol	Rating	Unit
Storage Temperature	T _{store}	-55/125	°C
Supply Voltage	V _{DD}	-0.6/6.0	V
Control Voltage	Vc	-0.6/V _{DD} +0.6	V
Enable/Disable Voltage	E/D	-0.6/V _{DD} +0.6	V
ESD, Human Body Model		1500	V
ESD, Charged Device Model		1000	V

Table 5. Environmental Compliance					
Parameter	Condition				
Mechanical Shock	MIL-STD-883 Method 2002				
Mechanical Vibration	MIL-STD-883 Method 2007				
Temperature Cycle	MIL-STD-883 Method 1010				
Solderability	MIL-STD-883 Method 2003				
Fine and Gross Leak	MIL-STD-883 Method 1014				
Resistance to Solvents	MIL-STD-883 Method 2015				
Moisture Sensitivity Level	MSL1				
Contact Pads	Gold over Nickel				

IR Reflow

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 5. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220C.

Table 6. Reflow Profile		
Parameter	Symbol	Value
PreHeat Time Ts-min Ts-max	t _s	200 sec Max 150°C 200°C
Ramp Up	R _{up}	3°C/sec Max
Time above 217C	t	150 sec Max
Time to Peak Temperature	t _{25C to peak}	480 sec Max
Time at 260C	t _P	30 sec Max
Time at 240C	t _{P2}	60 sec Max
Ramp down	R _{DN}	6°C/sec Max

Solderprofile:

Tape & Reel

Table 7. Tape and Reel Information												
Tape Dimensions (mm)				Reel Dimensions (mm)								
w	F	Do	Ро	P1	A	В	С	D	N	W1	W2	#/Reel
16	7.5	1.5	4	8	180	1.5	13	20.2	60	16.4	20.4	1000

Ordering Information

Table 8. Sta	Table 8. Standard Frequencies (MHz)								
10.000	12.800	16.384	19.200	20.000	25.000	26.000	40.000		

* Add **_SNPBDIP** for tin lead solder dip Example: VT-702-EFW-207A-26M000000_SNPBDIP

Revision History						
Revision Date	Approved	Description				
August 10, 2018	FB	Rev 0.4: Updated logo and contact information, added "SNPBDIP" ordering option				
October 29, 2018	FB Correct package drawing and specifications from rev Nov30 2015 version					

Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 email: sales.support@microsemi.com www.microsemi.com Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products, timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-lamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are beiever to be reliable to the rend verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or periver voided by Microsemi. It is the Buyer's responsibility to independently determine sublicity of any products and toeff, like the service of the reliable to the reliable to any other the reliable, whether with regard to such information is entirely with the Buyer. Microsemi does not grant, explicitly, cinense, or any other IP applicitly, compared to any forducts. Buyer shall not rely on any other IP applicitly, to any patert and the subject of any horduction. Information reliable, whether with regard to such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any patert and the subject of a such the application. Information reliable of any potent and by such information. Information reliable to such advection provided by such information. Information reliable to such advection reliable to a such advection and the such advection and the such advection and the service advection and the service advection and the reliable to any test and the such advection and the reliable to any test and the service advection and the reliable to any test and the reliable to any test and the reliable to any test advection. Information reliable to advection advection advection advection advection advection advection adve

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.