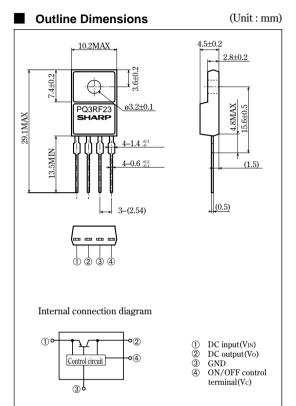
PQ3RF23/PQ3RF33


3.3V Output, High Output Current (2A, 3.5A) Type Low Power-loss Voltage Regulators

Features

- 3.3V output
- High output current 2A type:PQ3RF23 3.5A type:PQ3RF33
- Compact resin full-mold package (TO-220 package)
- Low power-loss (Dropout voltage:MAX. 0.5V)
- High-precision output voltage type Output voltage precision:±2.5%
- Built-in ON/OFF control function
- Built-in overcurrent protection, overheat protection function

Applications

• Power supplies for various electronic equipment such as personal computers

Absolute Maximum Ratings

Absolute Maximum Ratings (T						
Parameter	Symbol	Rating	Unit			
*1 Input voltage	Vin	10		V		
*1 ON/OFF control terminal voltage	Vc	10		V		
Output aumont	Io	PQ3RF23	2	A		
Output current	10	PQ3RF33	3.5			
Power dissipation(No heat sink)	P _{D1}	PQ3RF23	1.5	W		
Fower dissipation(two fleat slifk)	FD1	PQ3RF33	1.8] ''		
Power dissipation (With infinite heat sink)	P_{D2}	18		W		
*2 Junction temperature	Tj	150		°C		
Operating temperature	Topr	-20 to +80		°C		
Storage temperature	Tstg	-40 to +150		°C		
Soldering temperature	Tsol	260(For 10s.)		°C		

^{*1} All are open except GND and applicable terminals.

• Please refer to the chapter " Handling Precautions ".

^{*2} Overheat protection may operate at 125<=T|<=150°C.

Electri	cal	Char	acter	istics

(Unless otherwise specified, conditions shall be Io=1.0A[PQ3RF23]/Io=1.5A[PQ3RF33], V_{IN}=5V, Ta=25°C)

Parame	eter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage		Vo	-	3.218	3.3	3.382	V
Load regulation	PQ3RF23	RegL	Io=5mA to 2.0A	-	0.2	2	- %
	PQ3RF33		Io=5mA to 3.5A	_	0.2	2	
Line regulation		RegI	V _{IN} =4 to 10V	-	0.5	2.5	%
Temperature coefficient of output voltage		TcVo	T _j =0 to 125°C	_	±0.02	1	%/°C
Ripple rejection		RR	-	45	55	ı	dB
Dropout voltage	PQ3RF23	V _i -o	*3, Io=2.0A	_	_	0.5	V
	PQ3RF33		*3, Io=3.0A	-	-	0.5	
*4 ON-state voltage for control		Vc(on)	-	2	-	ı	V
ON-state current for control		Ic(on)	Vc=2.7V	-	-	20	μΑ
OFF-state voltage	for control	V _{C(OFF)}	-	-	_	0.8	V
OFF-state current for control		Ic(off)	Vc=0.4V	_	_	-0.4	mA
Quiescent current		I_{q}	Io=0A	_	_	10	mA

^{*3} Input voltage shall be the value when output voltage is 95% in comparison with the initial value.

Fig. 1 Test Circuit

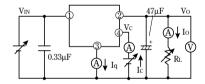


Fig. 2 Test Circuit of Ripple Rejection

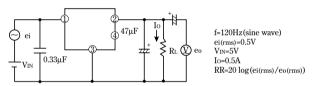
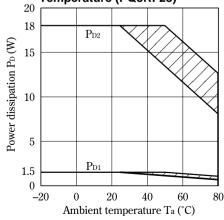
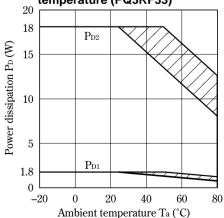




Fig. 3 Power Dissipation vs. Ambient Temperature (PQ3RF23)

Note) Oblique line portion: Overheat protection may operate in this area.

Fig. 4 Power dissipation vs. Ambient temperature (PQ3RF33)

Note) Oblique line portion: Overheat protection may operate in this area.

^{*4} In case of opening control terminal @,output voltage turns on.

Fig. 5 Overcurrent Protection Characteristics (PQ3RF23)

Fig. 7 Output Voltage Deviation vs. Junction Temperature (PQ3RF23)

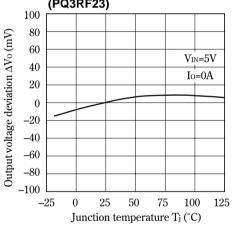


Fig. 9 Output Voltage vs. Input Voltage (PQ3RF23)

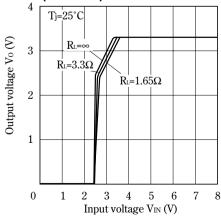


Fig. 6 Overcurrent Protection Characteristics (PQ3RF33)

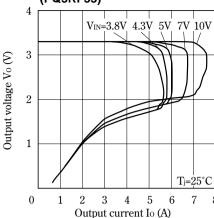


Fig. 8 Output Voltage Deviation vs. Junction Temperature

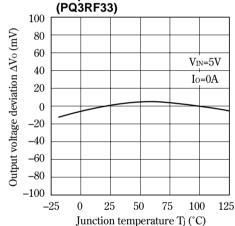


Fig.10 Output Voltage vs. Input Voltage (PQ3RF33)

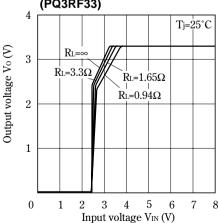


Fig.11 Circuit Operating Current vs. Input Voltage (PQ3RF23)

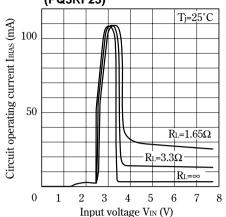


Fig.13 Dropout Voltage vs. Junction Temperature

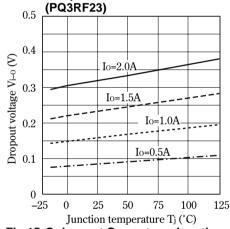


Fig.15 Quiescent Current vs. Junction Temperature

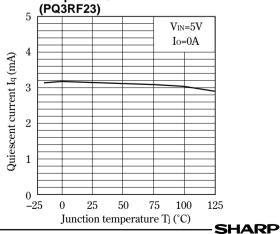


Fig.12 Circuit Operating Current vs. Input Voltage (PQ3RF33)

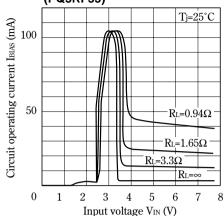


Fig.14 Dropout Voltage vs. Junction Temperature

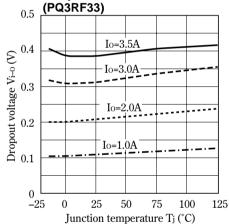


Fig.16 Quiescent Current vs. Junction Temperature

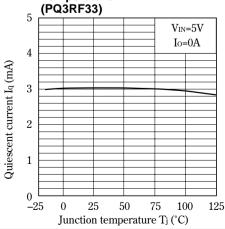


Fig.17 Ripple Rejection vs. Input Ripple Frequency

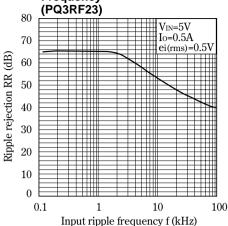


Fig.19 Ripple Rejection vs. Output Current (PQ3RF23)

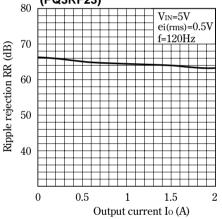


Fig.21 Output Peak Current vs. Junction Temperature (PO3RF23)

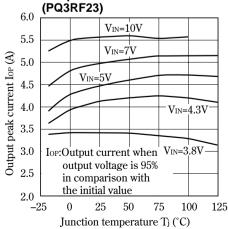


Fig.18 Ripple Rejection vs. Input Ripple Frequency

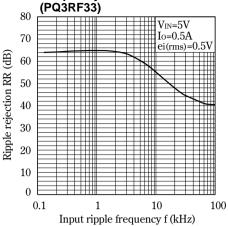


Fig.20 Ripple Rejection vs. Output Current (PQ3RF33)

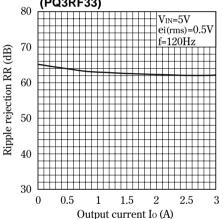
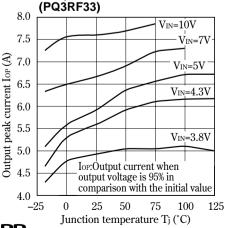
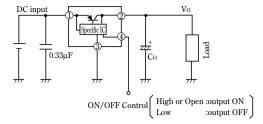




Fig.22 Output Peak Current vs. Junction Temperature

SHARP

■ Typical Application

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP
 devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
 no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
 SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
 reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
 described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
 also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
 caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
 specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.
 - (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - --- Space applications
 - --- Telecommunication equipment [trunk lines]
 - --- Nuclear power control equipment
 - --- Medical and other life support equipment (e.g., scuba).
- Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications
 other than those recommended by SHARP or when it is unclear which category mentioned above controls the
 intended use.
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.