

STA8088TG

GPS/Galileo/Glonass/QZSS tracker

Data brief

Features

- STMicroelectronics[®] 3rd generation positioning receiver with 32 Tracking channels and 2 fast acquisition channels compatible with GPS, Galileo and Glonass systems
- Hosted optimized architecture where host resources are available to execute
 - Positioning Software
 - ST-AGPS
 - Dead Reckoning SW
- Embedded RAM enough for running acquisition/tracking tasks (Flashless solution)
- TCXO Clock Out Available
- Embedded RF Front-End with separate GPS/Galieo/QZSS and Glonass IF outputs
- Embedded low noise amplifier
- -162 dBm indoor sensitivity (tracking mode)
- Fast TTFF < 1 s in Hot start and 35 s in Cold Start
- High performance ARM946 MCU (up to 208 MHz)
- 256 Kbyte embedded SRAM
- 2 UARTs
- 3 Embedded 1.8 V voltage regulators
- I/O level selectable 1.8 V or 3.3 V

DocID022668 Rev 5

1/15

For further information contact your local STMicroelectronics sales office.

- Operating Condition:
 V_{DD12}: 1.2 V ±10%
 - V_{DD18/RF18}: 1.8 V ±5%
 - V_{LPVR} 1.62 V to 3.6 V
 - V_{ddIO}: 1.8 V ±5%; 3.3 V ±10%
- ST Automotive Grade compliant
- Packages:
 - VFQFPN56 (7x7x0.85mm) 0.4 mm Pitch
- Ambient temperature range: -40/+85°C

Description

STA8088TG is a host based positioning receivers IC working on multiple constellations (GPS/Galileo/Glonass/QZSS).

STA8088TG family enables telematic and handset manufacturers to differentiate in the market by providing the best performing solution at lowest system cost.

The device is offered with a complete GNSS firmware which performs all GNSS operations including tracking, acquisition, navigation and data output compatible with different Host operating Systems.

Contents

1	Ove	rview
2	Pin	description
	2.1	Block diagram
	2.2	VFQFPN56 pin configuration7
	2.3	Power supply pins
	2.4	Main function pins
	2.5	Test/emulated dedicated pins9
	2.6	RF front-end pins
	2.7	Port 0 pins
	2.8	Port 1 pins
3	Pacl	cage and packing information 11
	3.1	ECOPACK [®] packages11
	3.2	VFQFPN56 package information11
4	Orde	ering information
5	Revi	sion history

List of tables

Table 1.	Power supply pins	3
Table 2.	Main function pins	3
	Test/emulated dedicated pins	
	RF front-end pins)
Table 5.	Port 0 pins)
	Port 1 pins	
Table 7.	VFQFPN56 7 x 7 x 0.85 mm package dimensions	
Table 8.	Document revision history	ŀ

List of figures

Figure 1.	STA8088TG system block diagram	6
Figure 2.	VFQFPN56 connection diagram (bottom view)	7
Figure 3.	VFQFPN56 package dimension 1	2
Figure 4.	Ordering information scheme 1	3

57

1 Overview

STA8088TG is a highly integrated System-On-Chip device designed for positioning systems applications.

The embedded SRAM combined with a high performance ARM946 microprocessor allows the running of acquisition/tracking tasks without the need of external Flash.

The RF Front-End and GNSS engines are able to support simultaneously GPS/Galileo/Glonass and QZSS navigation systems.

The device is power supplied with 1.8 V and uses three on-chip voltage regulators to internally supply the RF front-End, core logic and the backup logic. In order to reduce the power consumption the chip can be directly powered with 1.2 V bypassing the embedded voltage regulators which will be put in power down mode. I/O lines are compatible with 1.8 V and 3.3V.

The chip, using STMicroelectronics CMOSRF Technology, is housed in VFQFPN56 (7 x 7 x 0.85 mm) package.

The ST Automotive Grade devices (see *Figure 4: Ordering information scheme*) with in addition to AEC-Q100 qualification include a set of production flow methodology targeting zero defect per million. They, fulfilling high quality and service level automotive market requirements, are the ideal solution for in-dash navigation and OEM telematic application.

STA8088TG family enables telematic and handset manufacturers to differentiate in the market by providing the best performing solution at lowest system cost.

2 Pin description

2.1 Block diagram

Figure 1. STA8088TG system block diagram

2.2 VFQFPN56 pin configuration

Figure 2. VFQFPN56 connection diagram (bottom view)

2.3 Power supply pins

Symbol	I/O	Functions	VFQFN56
VDD18_MVR[1,2]	Pwr	Digital supply voltage for main voltage regulator (1.8 V)	31,4
VDD12_MVR[1,2,3]	Pwr	Digital supply voltage for core circuitry (1.2 V). When using the MVR, this pin shall not be driven by an external voltage supply, but a capacitance shall be connected between these pins and GND to guarantee on-chip voltage stability.	22,47,30
VDD_LPVR	Pwr	Digital supply voltage for low power voltage regulator (1.62 - 3.6 V)	29
VDD12_LPVR	Pwr	Digital supply voltage for backup logic (1.2 V). When using the LPVR, this pin shall not be driven by an external voltage supply, but a capacitance shall be connected between these pins and GND to guarantee on-chip voltage stability.	21
VDD_IOR1	Pwr	Digital supply voltage for I/O ring 1 (1.8 or 3.3V)	44
VDD_IOR3	Pwr	Digital supply voltage for I/O ring 3 (1.8V)	45
VDD_IOR5	Pwr	Digital supply voltage for I/O ring 5 (3.3V)	52
VRF18_RFVR	Pwr	Analog supply voltage for RF voltage regulator (1.8V)	13
VRF12OUT_RFVR	Pwr	RF voltage regulator 1.2V output	12
VRF12_LNA	Pwr	Analog supply voltage for LNA (1.2V)	8
VRF12_RFA	Pwr	Analog supply voltage for RFA (1.2V)	14
VRF12_MIX	Pwr	Analog supply voltage for Mixer (1.2V)	16
VRF12_IF	Pwr	Analog supply voltage for IF (1.2V)	17
VRF12_RFVCO	Pwr	Analog supply voltage for VCO (1.2V)	18
VRF12_RFADC	Pwr	Analog supply voltage for RF ADC (1.2V)	7
GND_LNA	GND	Analog supply ground for LNA	10
GND	GND	Analog and digital supply ground	EP

Table 1. Power supply pins

2.4 Main function pins

Table 2. Main function pins

Symbol	I/O voltage	I/O	Functions	VFQFPN56
STDBYn	1.2V	I	When low, the chip is forced in Standby Mode - All pins in high impedance except the ones powered by Backup supply	24
STDBYOUT	1.2V	0	When low, indicates the chip is in Standby Mode	23
RSTn ⁽¹⁾	1.2V	I	Reset Input with Schmitt-Trigger characteristics and noise filter.	25
WAKEUP ⁽²⁾	1.2V	I	WAKEUP from STANDBY mode	26

· · · · · · · · · · · · · · · · · · ·					
Symbol	I/O voltage	I/O	Functions	VFQFPN56	
RTC_XTI	1.5V (Max)	I	Input of the 32KHz oscillator amplifier circuit and input of the internal real time clock circuit.	27	
RTC_XTO	1.5V (Max)	0	Output of the oscillator amplifier circuit.	28	
PPS_OUT	VDD_IOR1	0	Pulse per second output	33	
TCXO_OUT	VDD_IOR3	0	Buffered TCXO output	46	

 Table 2. Main function pins (continued)

1. When RSTn is de-asserted, pin WAKEUP must be low.

2. The WAKEUP pulse must be longer than 500 $\mu s.$

2.5 Test/emulated dedicated pins

Symbol	I/O voltage	I/O	Functions	VFQFPN56	
TDO	VDD_IOR5	0	JTAG test data out	50	
TDI	VDD_IOR5	I	JTAG test data in	53	
тск	VDD_IOR5	I	JTAG test clock	56	
TMS	VDD_IOR5	I	JTAG test mode select	2	
TRSTn ⁽¹⁾	VDD_IOR5	I	JTAG test circuit reset	3	
TP_IF_P	VRF12_IF	0	Diff.test point for IF – positive	5	
TP_IF_N	VRF12_IF	0	Diff.test point for IF – negative	6	

Table 3. Test/emulated dedicated pins

1. If JTAG interface is not used, pin TRSTn must be asserted low.

2.6 RF front-end pins

Table 4. RF front-end pins

Symbol	I/O voltage	I/O	Functions	VFQFPN56
LNA_IN	VRF12_LNA	I	Low noise amplifier input	9
LNA_OUT	VRF12_LNA	0	Low noise amplifier output	11
RFA_IN	VRF12_RFA	I	RF amplifier input	15
XTAL_IN	VRF12_RFDig	I	Input side of crystal oscillator or TCXO input	19
XTAL_OUT	VRF12_RFDig	0	Output side of crystal oscillator	20

2.7 Port 0 pins

Port 0 consists of a 32-bit bidirectional I/O port (only 3-bit are used in STA8088TG).

It can be either used as general purpose Input or Output port, or configured according to the associated alternate functions.

Symbol	I/O voltage	I/O	Mode	Functions	VFQFPN56
		ю	Default	GPIO.0: General Purpose IO	
P0.0	VDD_IOR1	I	A	PPS_IN: Pulse Per Second Input	32
		0	В	PPS_OUT: Pulse Per Second Output	
P0.14	VDD IOR1	0	Default	UART0_RTS: UART0 request to send	35
F 0.14	VDD_IOI(I	Ю	А	GPIO.14: General Purpose IO	
P0.15 VDD IOR1	I	Default	UART0_CTS: UART0 clear to send	36	
10.15		Ю	Α	GPIO.1: General Purpose IO	

Table 5. Port 0 pins

2.8 Port 1 pins

Port 1 consists of a 32-bit bidirectional I/O port (only 4-bit are used in STA8088TG).

It can be either used as general purpose Input or Output port, or configured according to the associated alternate functions.

Symbol	I/O Voltage	I/O	Mode	Functions	VFQFPN56
P1.4	VDD IOR1	Ι	Default	UART2_RX: UART 2 Rx data	34
F 1.4	VDD_IORI	I/O	A	GPIO36: general purpose I/O	- 34
D1 5	P1.5 VDD_IOR1	I/O	Default	UART2_TX / BOOT_0: UART 2 Tx data / ARM Boot 0	37
F1.5		I/O	А	GPIO37: general purpose I/O	- 57
P1.6	VDD IOR1	I	Default	UART0_RX: UART 0 Rx data	38
F1.0	PI.6 VDD_IORI		A	GPIO38: general purpose I/O	
P1.7 VDD IOR1	VDD IOR1	I/O	Default	UART0_TX / BOOT_1: UART 0 Tx data / ARM Boot 1	39
		I/O	А	GPIO39: general purpose I/O	- 39

Table 6. Port 1 pins

3 Package and packing information

3.1 ECOPACK[®] packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

ECOPACK[®] is an ST trademark.

3.2 VFQFPN56 package information

Symbol	Min.	Тур.	Max					
Common dimensions								
A	0.80	0.85	0.90					
A1	0	0.01	0.05					
A2	0.60	0.65	0.70					
A3		0.20 REF						
b	0.15	0.20	0.25					
D		7.00 BSC						
D1	6.75 BSC							
D2	5.0	5.1	5.2					
E		7.00 BSC						
E1		6.75 BSC						
E2	5.0	5.1	5.2					
е		0.40 BSC						
θ	0°		12°					
L	0.30	0.40	0.50					
Ν		56						
Nd		14						
Ne	14							
Р	0.24	0.42	0.60					

Table 7. VFQFPN56 7 x 7 x 0.85 mm package dimensions

Figure 3. VFQFPN56 package dimension

DocID022668 Rev 5

4 Ordering information

Figure 4. Ordering information scheme

5 Revision history

Date	Revision	Changes			
26-Jan-2012	1	Initial release.			
17-Feb-2012	2	Updated <i>Features</i> list. <i>Table 7: VFQFPN56 7 x 7 x 0.85 mm package dimensions:</i> – Q, R: removed rows Added <i>Table 8: VFQFPN56 8 x 8 x 0.85 mm package dimensions</i> Upfated <i>Figure 4: Ordering information scheme</i>			
05-Dec-2012	3	3 Updated Figure 2: VFQFPN56 connection diagram (bottom view) Table 2: Main function pins: - STDBYOUT: added row			
16-Sept-2013	4	Updated Disclaimer			
24-Sep-2014	5	Updated <i>Features</i> list. Updated <i>Chapter 1: Overview</i> <i>Table 2: Main function pins:</i> – RSTn, WAKEUP: added note <i>Table 3: Test/emulated dedicated pins:</i> – TRSTn: added note Removed <i>Table 8: VFQFPN56 8 x 8 x 0.85 mm package dimensions</i> Updated <i>Figure 4: Ordering information scheme</i>			

Table 8. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

DocID022668 Rev 5