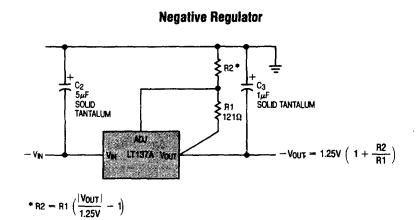


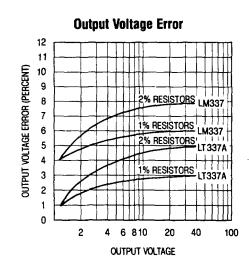
Negative Adjustable Regulator

FEATURES

- Guaranteed 1% Initial Voltage Tolerance
- Guaranteed 0.01%/V Line Regulation
- Guaranteed 0.5% Load Regulation
- Guaranteed 0.02%/W Thermal Regulation
- 100% Burn-in in Thermal Limit

APPLICATIONS

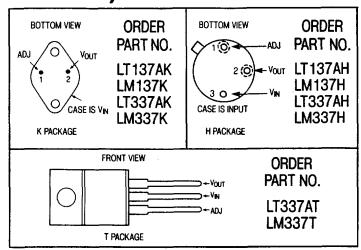

- Adjustable Power Supplies
- System Power Supplies
- Precision Voltage/Current Regulators
- On-Card Regulators


DESCRIPTION

The LT137A/LT337A negative adjustable regulators will deliver up to 1.5Amps output current over an output voltage range of -1.2V to -37V. Linear Technology has made significant improvements in these regulators compared to previous devices, such as better line and load regulation, and a maximum output voltage error of 1%.

Every effort has been made to make these devices easy to use and difficult to damage. Internal current and power limiting coupled with true thermal limiting prevents device damage due to overloads or shorts, even if the regulator is not fastened to a heat sink.

Maximum reliability is attained with Linear Technology's advanced processing techniques combined with a 100% burn-in in the thermal limit mode. This assures that all device protection circuits are working and eliminates field failures experienced with other regulators that receive only standard electrical testing.


ABSOLUTE MAXIMUM RATINGS

Power Dissipation	Internally Limited
Input to Output Voltage Differential	40V
Operating Junction Temperature Ra	inge
LT137A/LM137	-55°C to 150°C
LT337A/LM337	0°C to 125°C
Storage Temperature Range	
LT137A/LM137	-65°C to 150°C
LT337A/LM337	-65°C to 150°C
Lead Temperature (Soldering, 10 se	ec.) 300°C

PRECONDITIONING

100% THERMAL LIMIT BURN-IN

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS (See Note 1)

SYMBOL	PARAMETER	CONDITIONS		MIN	LT137A TYP	MAX	MIN	LM137 TYP	MAX	UNITS
V _{REF}	Reference Voltage	$ V_{IN} - V_{OUT} = 5V$, $I_{OUT} = 10$ mA, $T_j = 25$ °C		-1.238	-1.250	1.262	- 1.225	- 1.250	- 1.275	٧
		$3V \leqslant V_{IN} - V_{OUT} \leqslant 40V$ $10\text{mA} \leqslant I_{OUT} \leqslant I_{MAX}, P \leqslant P_{MAX}$	•	— 1.220	1.250	1.280	— 1.200	– 1.250	- 1.300	V
ΔV_{OUT}	Load Regulation	$10\text{mA} \leq I_{\text{OUT}} \leq I_{\text{MAX}}$, (See Note 2)								
Δl_{OUT}		$T_j = 25^{\circ}C, V_{OUT} \leq 5V$			5	25		15	25	m۷
		$T_i = 25^{\circ}C, V_{OUT} \ge 5V$	1		0.1	0.5		0.3	0.5	%
		V _{OUT} ≤ 5V	•		10	50		20	50	m۷
		V _{0UT} ≥ 5V	•		0.2	1.0		0.3	1.0	- %
ΔV _{OUT} ΔV _{IN}	Line Regulation		•		0.005 0.01	0.01 0.03		0.01 0.02	0.02 0.05	%/V %/V
	Ripple Rejection	$V_{OUT} = -10V$, $f = 120Hz$ $C_{ADJ} = 0$ $C_{ADJ} = 10\mu F$	•	60 70	66 80		66	60 77		dB dB
	Thermal Regulation	T _i = 25°C, 10msec Pulse	1		0.002	0.02		0.002	0.02	%/W
I _{ADJ}	Adjust Pin Current		•		65	100		65	100	μΑ
ΔI _{ADJ}	Adjust Pin Current Change	$\begin{array}{l} 10\text{mA} \leqslant I_{\text{OUT}} \leqslant I_{\text{MAX}} \\ 3V \leqslant V_{\text{IN}} V_{\text{OUT}} \leqslant 40V \end{array}$	•		0.2 1.0	2 5		0.5 2	5 5	μΑ μ
	Minimum Load Current	$ V_{\text{IN}} - V_{\text{OUT}} \leq 40V$	•		2.5	5.0		2.5	5.0	m.A
		$ V_{\text{IN}} - V_{\text{OUT}} \leq 10V$	•		1.2	3.0		1.2	3.0	m <i>A</i>
Isc	Current Limit	V _{IN} -V _{OUT} ≤ 15V, K and T Package H Package V _{IN} -V _{OUT} = 40V, K and T Package T _i = 25°C H Package	•	1.5 0.5 0.24 0.15	2.2 0.8 0.4 0.25	3.2 1.5 1.0 0.5	1.5 0.5 0.24 0.15	2.2 0.8 0.4 0.25		A A A
. 14	Time and an Ohabilia and Ohabilia	1) 20 0 111 dokago	-	0.10	0.20	0.0	0.15	U.25		
ΔV _{OUT} ΔTemp	Temperature Stability of Output Voltage (Note 4)	$T_{MIN} \leq T \leq T_{MAX}$	•		0.6	1.5		0.6		%
ΔV _{OUT} ΔTime	Long Term Stability	T _A = 125°C, 1000 Hours			0.3	1.0		0.3	1.0	%
e _n	RMS Output Noise (% of V _{OUT})	$T_A = 25^{\circ}C$, $10Hz \le f \le 10kHz$			0.003			0.003		%
ӨЈС	Thermal Resistance Junction to Case	H Package K Package			12 2.3	15 3.0		12 2.3	15 3.0	°C/W

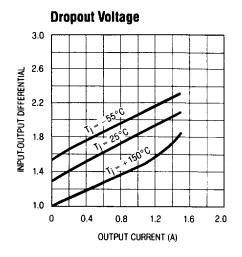
ELECTRICAL CHARACTERISTICS (See Note 1)

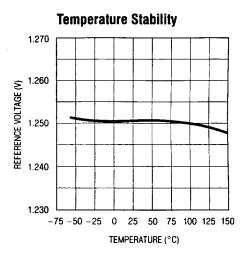
PARAMETER	CONDITIONS		MIN	LT337A TYP	MAX	MIN	LM337 TYP	MAX	UNITS
Reference Voltage	$ V_{IN} - V_{OUT} = 5V$, $I_{OUT} = 10$ mA, $I_{J} = 25$ °C		-1,238	-1.250	-1,262	- 1.213	— 1.250	- 1.287	٧
	$3V \leqslant \left V_{\text{IN}} - V_{\text{OUT}}\right \leqslant 40V$ $10\text{mA} \leqslant I_{\text{OUT}} \leqslant I_{\text{MAX}}, P \leqslant P_{\text{MAX}}$	•	-1.220	-1.250	1,280	1.200	- 1.250	- 1.300	v
Load Regulation	$10\text{mA} \leq I_{\text{OUT}} \leq I_{\text{MAX}}$, (See Note 2 &								
	$ ^{3)} T_{i} = 25^{\circ} C, V_{OUT} \leq 5V$	1	l	5	25		15	50	mV
	$T_i = 25^{\circ}C, V_{OUT} \ge 5V$			0.1	0.5		0.3	1.0	%
	V _{0UT} ≤ 5V	•		10	50		20	70	mV
	V _{0UT} ≥ 5V	•		0.2	1.0		0.3	1.5	%
Line Regulation	$3V \leq V_{IN} - V_{OUT} \leq 40V$, (See Note				1				
	2) T == 25°C			0.005	0.04		0.01	0.04	%/V
	1] = 25 0	•		0.01	0.01		0.02	0.07	%/V
Ripple Rejection	$V_{OUT} = -10V, f = 120Hz$								
	$C_{ADJ} = 0$ $C_{ADJ} = 10 \mu F$					66			dB dB
Thermal Regulation			10		0.02	- 00		0.04	%/W
Adjust Pin Current	7, 20 0, 1000	•		65	100		65	100	μА
Adjust Pin Current Change	10mA ≤ l _{out} ≤ l _{max}	•		0.2	2		0.5	5	μА
		•							<u>μ</u> Α
Minimum Load Current		1						ŀ	mA
Courant Limit		•		1.2	3			-6	mA
Current Limit	K and T Package	•	15	2.2	3.5	1.5	2.2		А
	H Package	•	0.5	8.0	1.5	0.5	0.8		A
	V _{IN} - V _{OUT} = 40V, K and T Package		0.24	0.5	1.0	0.15	0.4	- 1	А
<u> </u>	$T_j = 25^{\circ}C$ H Package		0.15	0.25	0.5	0.10	0.17		Α
Temperature Stability of Output							<u> </u>		
<u> </u>		•		0.6					%
				0.3	1.0		0.3	1.0	
RMS Output Noise (% of V _{OUT})	$T_A = 25^{\circ}C$, $10Hz \le f \le 10kHz$			0.003			0.003		%
Thermal Resistance	H Package		-	12	15		12	15	°C/W
Junction to Case				2.3					°C/W °C/W
	Reference Voltage Load Regulation Line Regulation Ripple Rejection Thermal Regulation Adjust Pin Current Adjust Pin Current Change Minimum Load Current Current Limit Temperature Stability of Output Voltage (Note 4) Long Term Stability RMS Output Noise (% of Vout)	$ V_{IN}-V_{OUT} = 5V, \ I_{OUT} = 10 mA, \ I_{J}=25^{\circ}C = 10 mA, \$	$ V_{IN} - V_{OUT} = 5V, \ _{OUT} = 10 mA, \ _{T_j} = 25^{\circ} C $ 3V $\leqslant V_{IN} - V_{OUT} \leqslant 40V \ _{10mA} \leqslant _{OUT} \leqslant _{MAX}, \ _{P \leqslant P_{MAX}} $ \$\bigsim \ \text{10mA} \leq _{OUT} \leq _{MAX}, \ _{P \leqslant P_{MAX}} \end{align*} \$\bigsim \] Load Regulation	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ V_{IN} - V_{OUT} = 5V, \ _{OUT} = 10 mA, \\ T_j = 25^{\circ} C $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

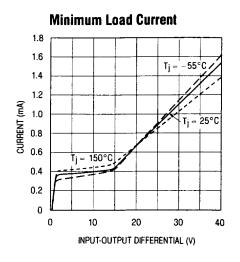
The \bullet denotes the specifications which apply over the full operating temperature range.

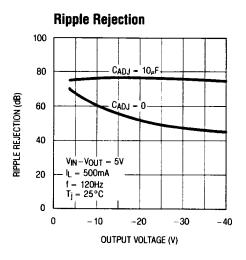
The shaded electrical specifications indicate those parameters which have been improved or guaranteed test limits provided for the first time

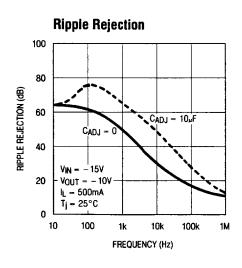
Note 1: Unless otherwise indicated, these specifications apply: $|V_{\text{IN}} - V_{\text{OUT}}| = 5V; \text{ and } I_{\text{OUT}} = 0.1 \text{A for the H package, } I_{\text{OUT}} = 0.5 \text{A for the K and T packages. Power dissipation is internally limited.}$ However, these specifications apply for power dissipation up to 2W for the H package and 20W for the K and T packages. $I_{\text{MAX}} = 1.5 \text{A}$ for the K and T packages, and 0.2A for the H package.

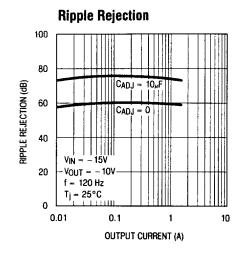

Note 2: Testing is done using a pulsed low duty cycle technique. See thermal regulation specifications for output changes due to heating effects. Load regulation is measured on the output pin at a point 1/8" below the base of the K and H package and at the junction of the wide and narrow portion of the lead on the T package.

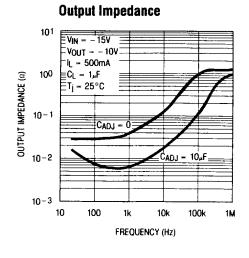

Note 3: Load Regulation for the LT337AT is the same as for LM337T.

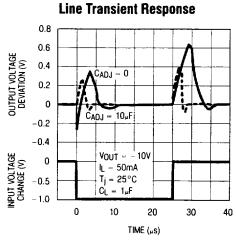

Note 4: Guaranteed on LT137A and LT337A, but not 100% tested in production.

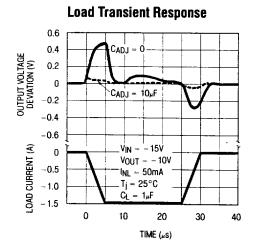


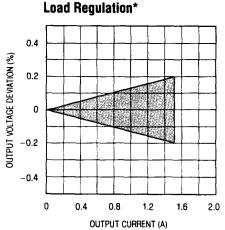

TYPICAL PERFORMANCE CHARACTERISTICS

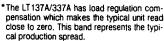


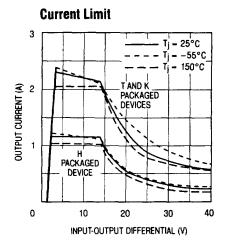


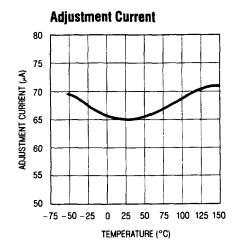












TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATION INFORMATION

Output Voltage: The output voltage is determined by two external resistors, $R_1 \& R_2$ (see Figure 1). The exact formula for the output voltage is:

$$V_{OUT} = V_{Ref} \left(1 + \frac{R_2}{R_1} \right) + I_{ADJ} (R_2)$$

Where: V_{Ref} = Reference Voltage, I_{ADJ} = Adjustment Pin Current. In most applications, the second term is small enough to be ignored, typically about 0.5% of V_{OUT} . In more critical applications, the exact formula should be used, with I_{ADJ} equal to $65\mu a$. Solving for R_2 yields:

$$R_2 = \frac{V_{\text{OUT}} - V_{\text{Ref}}}{\frac{V_{\text{Ref}}}{R_1} + I_{\text{ADJ}}}$$

Smaller values of R_1 and R_2 will reduce the influence of I_{ADJ} on the output voltage, but the no-load current drain on the regulator will be increased. Typical values for R_1 are between 100Ω and 300Ω , giving 12.5mA and 4.2mA no-load current respectively. There is an additional consideration in selecting R_1 , the minimum load current specification of the regulator. The operating current of the LT137A flows from input to output. If this current is not absorbed by the load, the output of the regulator will rise above the regulated value. The current drawn by R_1 and R_2 is normally high enough to

absorb the current, but care must be taken in no-load situations where R_1 and R_2 have high values. The maximum value for the operating current, which must be absorbed, is 5mA for the LT137A. If input-output voltage differential is less than 10V, the operating current that must be absorbed drops to 3mA.

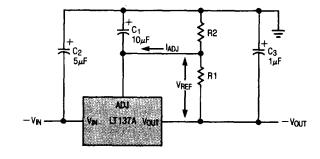


Figure 1

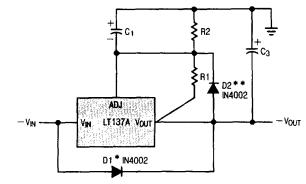
EXAMPLES:

- 1. A precision 10V regulator to supply up to 1Amp load current.
 - a. Select $R_1 = 100\Omega$ to minimize effect of I_{ADJ}

b. Calculate R₂ =
$$\frac{V_{OUT} - V_{Ref}}{\frac{V_{Ref}}{R_1} - I_{AOJ}} = \frac{10V - 1.25V}{\frac{1.25V}{100\Omega}} = 704\Omega$$

- 2. A 15V regulator to run off batteries and supply 50mA. V_{IN} MAX = 25V
 - a. To minimize battery drain, select R₁ as high as possible

$$R_1 = \frac{1.25V}{3mA} = 417\Omega$$
, use 404Ω , 1%


b. The high value for R_1 will exaggerate the error due to I_{ADJ} , so the exact formula to calculate R_2 should be used.

$$\begin{split} R_2 &= \frac{V_{0UT} - V_{Ref}}{\frac{V_{Ref}}{R_1} - I_{ADJ}} = \frac{15V - 1.25V}{\frac{1.25V}{404\Omega} - 65 \times 10^{-6}} = 4539\Omega \end{split}$$
 Use $R_2 = 4530\Omega$

Capacitors and Protection Diodes: An output capacitor, C3, is required to provide proper frequency compensation of the regulator feedback loop. A 1μ F or larger solid tantalum capacitor is generally sufficient for this purpose if the 1MHz impedance of the capacitor is 2Ω or less. High Q capacitors, such as Mylar, are not recommended because they tend to reduce the phase margin at light load currents. Aluminum electrolytic capacitors may also be used, but the minimum value should be 10μ F to ensure a low impedance at 1MHz. The output capacitor should be located within a few inches of the regulator to keep lead impedance to a minimum. The following caution should be noted: if the output voltage is greater than 6V and an output capacitor greater than $20\mu F$ has been used, it is possible to damage the regulator if the input voltage becomes shorted, due to the output capacitor discharging into the regulator. This can be prevented by using diode DI (see Figure 2) between the input and the output.

The input capacitor, C2, is only required if the regulator is more than 4 inches from the raw supply filter capacitor.

Bypassing the Adjustment Pin: The adjustment pin of the LT137A may be bypassed with a capacitor to ground, C1, to reduce output ripple, noise, and impedance. These parameters scale directly with output voltage if the adjustment pin is not bypassed. A bypass capacitor reduces ripple, noise, and impedance to that of a 1.25V regulator. In a 15V regulator for example, these parameters are improved by 15V/1.25V = 12 to 1. This improvement holds only for those frequencies where the impedance of the bypass capacitor is less than R₁. Ten microfarads is generally sufficient for 60Hz power line applications where the ripple frequency is 120Hz, since $X_c = 130\Omega$. The capacitor should have a voltage rating at least as high as the output voltage of the regulator. Values larger than 10μ F may be used, but if the output is larger than 25V, a diode, D2, should be added between the output and adjustment pins (see Figure 2).

- * D1 protects the regulator from input shorts to ground. It is required only when C3 is larger than 20 µF and V_{OUT} is larger than 6V.
- *D2 protects the adjust pin of the regulator from output shorts if C2 is larger than 10μF and V_{OUT} is larger than —25V.

Figure 2

Proper Connection of Divider Resistors: The LT137A has an excellent load regulation specification of 0.5% and is measured at a point 1/8" from the bottom of the package. To prevent degradation of load regulation, the resistors which set output voltage, R1 and R2, must be connected as shown in Figure 3. Note that the positive side of the load has a true force and sense (Kelvin) connection, but the negative side of the load does not.

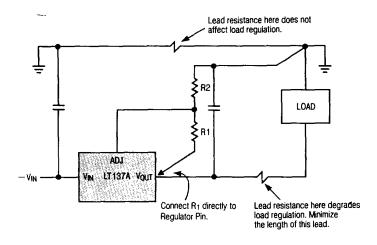
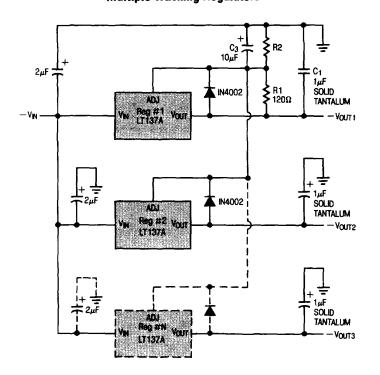


Figure 3

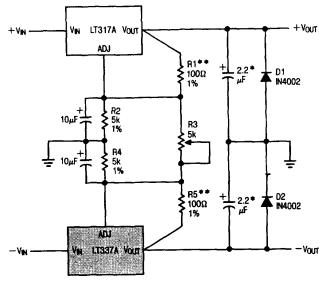
R1 should be connected *directly* to the output lead of the regulator, as close as possible to the specified point 1/8" from the case. R2 should be connected to the positive side of the load separately from the positive (ground) connection to the raw supply. With this arrangement, load regulation is degraded only by the resistance between the regulator output pin and the load. If R1 is connected to the load, regulation will be degraded.



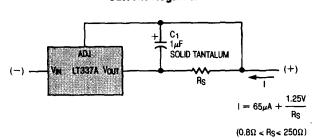
TYPICAL APPLICATIONS

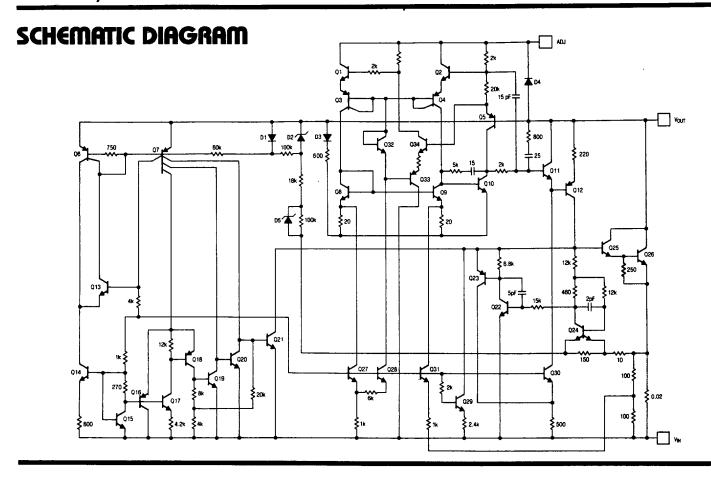
The output stability, load regulation, line regulation, thermal regulation, temperature drift, long term drift, and noise, can be improved by a factor of 6.6 over the standard regulator configuration. This assumes a zener whose drift and noise is considerably better than the regulator itself. The LM329B has 20PPM/°C maximum drift and about 10 times lower noise than the regulator.

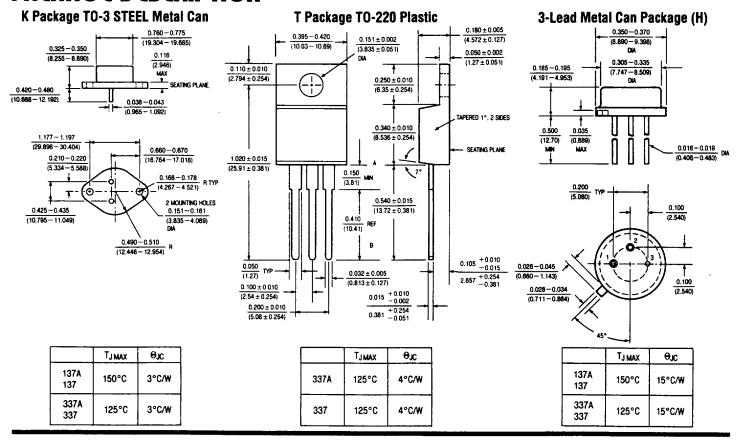
In the application shown below, regulators #2 to "N" will track regulator #1 to within ± 24 mV initially, and to ± 60 mV over all load, line, and temperature conditions. If any regulator output is shorted to ground, all other outputs will drop to ≈ -2 V. Load regulation of regulators 2 to "N" will be improved by $V_{OUT}/1.25$ V compared to a standard regulator, so regulator #1 should be the one which has the lowest load current.


Multiple Tracking Regulators

High Stability Regulator




Dual Tracking Supply \pm 1.25V to \pm 20V


- * Solid Tantalum
- **R₁ or R₅ may be trimmed slightly to improve tracking

Current Regulator

PACKAGE DESCRIPTION

