ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

3.3 V, 2 Channel, 2:1 Differential Mux/Demux

The NL3HS3124A is a 2 channel, 2–to–1 differential multiplexer / demultiplexer for USB 3.0, PCI Express Generation 3, or other high–speed serial interface applications. The NL3HS3124A can switch two differential signals to one of two locations. The device has minimal channel–to–channel skew as well as minimal channel–to– channel skew as well as minimal channel–to– channel crosstalk, making the device ideal for high–speed serial interface applications.

Features

- 2 Bidirectional Channel, 2 : 1 Differential Multiplexer/Demultiplexer
- High-speed Signal Switching for 8 Gbps Applications
- High Bandwidth: > 6.3 GHz at -3 dB
- Low Insertion Loss:
 - ◆ -0.5 dB at 100 MHz
 - $\bullet~-2.8~dB$ at 4.0 GHz
- Low Return Loss: -9.27 dB at 4 GHz
- Low Crosstalk: -35 dB at 4 GHz
- Low Off-state Isolation: -19 dB at 4 GHz
- Low Intra-pair Skew: 5 ps Typical
- Low Inter-pair Skew: 35 ps Maximum
- V_{DD} Operating Range: 3.0 V to 3.6 V
- Shutdown Pin (SD) for Power-saving Mode
- Standby Current less than 1 µA
- ESD Tolerance:
 - 4000 V HBM
 - 300 V MM
 - 2000 V CDM
- 2.5 mm x 4.5 mm QFN20 Package
- This Device is Pb–Free, Halogen–Free/BFR–Free and is RoHS–Compliant

Applications

- Routing of High-speed Differential Signals
 - USB 3.0
 - PCIe Gen3
 - DisplayPort 1.2
 - ◆ SATA 6 Gbps

ON Semiconductor®

www.onsemi.com

QFN20 MN SUFFIX CASE 485AA

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NL3HS3124AMNTW	G QFN20 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Connector

Figure 2. Block Diagram

Table 1. FUNCTION TABLE

SD	SEL	Function
L	L	An connected to Bn
L	Н	An connected to Cn
Н	Х	An, Bn and Cn in Hi–Z, Device in Shutdown

Figure 3. Pinout (Top Through View)

Table 2. PIN ASSIGNMENT	Table	2.	PIN	ASS	GNMENT
-------------------------	-------	----	-----	-----	--------

Pin Name	Pin	Туре	Description
A0P	3	I/O	Channel 0, Port A Differential Signal I/O
A0N	4	I/O	
A1P	7	I/O	Channel 1, Port A Differential Signal I/O
A1N	8	I/O	
B0P	19	I/O	Channel 0, Port B Differential Signal I/O
B0N	18	I/O	
B1P	17	I/O	Channel 1, Port B Differential Signal I/O
B1N	16	I/O	
C0P	15	I/O	Channel 0, Port C Differential Signal I/O
CON	14	I/O	
C1P	13	I/O	Channel 1, Port C Differential Signal I/O
C1N	12	I/O	
SEL	9	Input (CMOS)	Mux/Demux Select Pin
SD	2	Input (CMOS)	Shutdown Pin
V _{DD}	1, 6, 10	Power	Power
GND	5, 11, 20, Center Pad	Power	Ground

Table 3. MAXIMUM RATINGS

Symbol	Rating		Value	Unit
V _{DD}	Positive DC Supply Voltage		-0.5 to +4.6	V
V _{IN}	Digital Control Input Voltage (SEL, SD)		–0.5 to V _{DD} +0.5	V
Ts	Storage Temperature		-65 to +150	°C
ESD	ESD Performance			V
	HBM (JESD22–A114)	All Pins	4000	
	MM (JESD22–A115–A)	All Pins	300	
	CDM (JESD22–C101)	All Pins	2000	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit
V _{DD}	Positive DC Supply Voltage	3.0	3.3	3.6	V
V _{IN}	Digital Control Input Voltage (SEL, SD) (Note 1)	0		V _{DD}	V
V _{IS}	Differential Pin Input Voltage (An, Bn, Cn)	0		2.4	V
V _{IC}	V _{IC} Common–Mode Input Voltage (An, Bn, Cn)			2	V
V _{ID}	V _{ID} Differential Input Voltage (An, Bn, Cn), peak–to–peak			1.6	V
T _A	Operating Temperature	-40		85	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.1. Control input must be held High or Low. It must not float.

Table 5. DC ELECTRICAL CHARACTERISTICSVoltages referenced to GND. All typical values are at $T_A = 25^{\circ}C$ unless otherwise specified.

				T _A = −40°C to +85°C			
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Unit
V _{IH}	Input Voltage High	SEL, SD	3.0 - 3.6	2.0			V
V _{IL}	Input Voltage Low	SEL, SD	3.0 – 3.6			0.5	V
I _{IN}	Input Leakage Current	SEL, SD: $V_{IN} = 0 V \text{ or } V_{DD}$	3.6			±5	μΑ
I _{IS}	Switch Input Leakage Current	An, Bn, Cn: $V_{IS} = 0 V \text{ or } 2.4 V$	3.6			±10	μΑ
I _{DD}	Supply Current	Operating mode: SD = L	3.6		0.2	1	mA
		Shutdown mode: SD = H	3.6			1	μΑ

				T _A =	–40°C to +	85°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Unit
DDIL	Differential Insertion Loss	Channel OFF	3.0 - 3.6				dB
		f = 4 GHz			–19		
		f = 100 MHz			-47		
		Channel ON					
		f = 4 GHz			-2.8		
		f = 100 MHz			-0.5		
DDNEXT	Differential Near-End Crosstalk	Adjacent Channels ON	3.0 - 3.6				dB
		f = 4 GHz			-26		
		f = 100 MHz			-62		
BW	–3 dB Bandwidth		3.0 - 3.6		6.3		GHz
DDRL	Differential Return Loss	f = 4 GHz	3.0 - 3.6		-9.27		dB
		f = 100 MHz			-23.2		
R _{ON}	Switch ON Resistance (Note 2)	$VIS = 2 V, I_{IS} = 19 mA$	3.3		6		Ω
C _{IO(ON)}	ON-State Input/Output Capacitance	f = 2.5 GHz	3.0 - 3.6		2.03		рF

 Table 6. DYNAMIC CHARACTERISTICS
 Voltages referenced to GND. All typical values are at $T_A = 25^{\circ}C$ unless otherwise specified.

2. Measured by the voltage drop between A and B pins at the indicated current through the switch. ON resistance is determined by the lower of the voltage on the two (A or B ports).

				T _A = -40°C to +85°C			
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Unit
^t STARTUP	Startup Time	Supply Voltage Valid, or SD going Low to channel specified operating conditions	3.0 - 3.6			10	ms
t _{PD}	Propagation Delay	Port A to Port B or C, or vice-versa	3.0 - 3.6		60		ps
t _{PZH}	OFF–State to High Propagation Delay		3.0 - 3.6			300	ns
t _{PZL}	OFF–State to Low Propagation Delay		3.0 - 3.6			70	ns
t _{PHZ}	High to OFF–State Propagation Delay		3.0 - 3.6			50	ns
t _{PLZ}	Low to OFF–State Propagation Delay		3.0 - 3.6			50	ns
t _{sk(dif)}	Differential Skew	Intra-pair	3.0 – 3.6		5		ps
t _{sk}	Skew	Inter-pair	3.0 – 3.6			35	ps

Output 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control.

Output 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.

The outputs are measured one at a time with one transition per measurement.

Figure 4. Voltage Waveforms, Enable and Disable Times

 $\begin{array}{l} C_L = \mbox{load} \mbox{capacitance; includes jig and probe capacitance.} \\ R_T = \mbox{termination resistance; should be equal to } Z_0 \mbox{ of the pulse generator.} \\ \mbox{All input pulses are supplied by generators having the following characteristics:} \\ \mbox{PRR} \leq 5 \mbox{ MHz; } Z_0 = 50 \ \Omega; \ t_f \leq 2.5 \ ns; \ t_f \leq 2.5 \ ns. \end{array}$

Figure 5. Test Circuit for Switching Times

Figure 6. Test Circuit

Table 8. LOADING CONDITIONS FOR SWITCHING/TIMING TESTS

	Lo		
Test	CL	RL	Switch
t _{PLZ} , t _{PZL} (Output on B Side)	50 pF	200 Ω	2 x V _{IC}
t _{PHZ} , t _{PZH} (Output on B Side)	50 pF	200 Ω	GND
t _{PD}		200 Ω	Open

PACKAGE DIMENSIONS

QFN20, 2.5x4.5 MM CASE 485AA ISSUE B

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS b APPLIES TO PLATED TERMINAL AND IS MEASURED RETWIEFING
- DIMENSIONAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

FAD AS WELL AS III					
	MILLIMETERS				
DIM	MIN	MAX			
Α	0.80	1.00			
A1	0.00	0.05			
A3	0.20 REF				
b	0.20	0.30			
D	2.50	BSC			
D2	0.85	1.15			
E	4.50	BSC			
E2	2.85	3.15			
е	0.50 BSC				
K	0.20				
L	0.35	0.45			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all aws, regulations and safety requirements or standards, regardless of any support or applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative