Schottky Barrier Diode

NSR02L40MX2W

Schottky barrier diodes are optimized for very low forward voltage drop and low leakage current and are used in a wide range of dc-dc converter, clamping and protection applications in portable devices. NSR02L40MX2W in a X2DFNW2 (0402) miniature package enables designers to meet the challenging task of achieving higher efficiency and meeting reduced space requirements.

Features

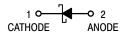
- Low Forward Voltage Drop
- Low Reverse Current
- Very High Switching Speed
- Small Body Outline Dimensions: 0.039" x 0.024" (1.00 mm x 0.60 mm)
- Low Body Height: 0.016" (0.40 mm)
- Wettable Flank Package for optimal Automated Optical Inspection (AOI)
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Buck and Boost dc-dc Converters
- Reverse Voltage and Current Protection
- Clamping & Protection

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	40	V
Forward Current (DC)	IF	200	mA
Non-Repetitive Peak Forward Surge Current	I _{FSM}	2.0	Α
ESD Rating: Human Body Model Machine Model	ESD	Class 1C Class A	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

40 V SCHOTTKY BARRIER DIODE

MARKING DIAGRAM

X2DFNW2 CASE 711BG

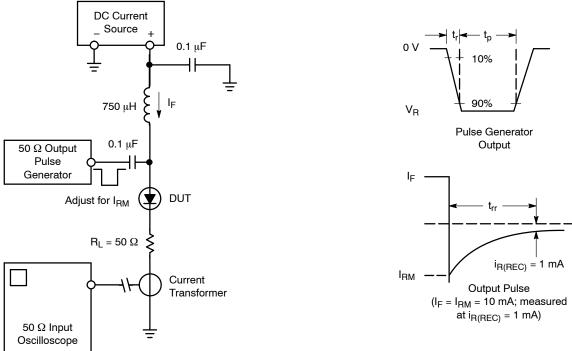
XX = Specific Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NSR02L40MX2WT5G	X2DFNW2 (Pb-Free)	8000 / Tape & Reel
NSVR02L40MX2WT5G	X2DFNW2 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NSR02L40MX2W

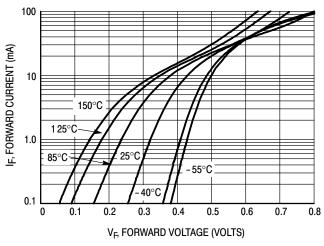

THERMAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Thermal Resistance Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C	R _{θJA} P _D			400 300	°C/W mW
Thermal Resistance Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C	R _{θJA} P _D			225 425	°C/W mW
Junction and Storage Temperature Range	T _J , T _{stg}			-55 to +150	°C

- Mounted onto a 4 in square FR-4 board 10 mm sq. 1 oz. Cu 0.06" thick single sided. Operating to steady state.
 Mounted onto a 4 in square FR-4 board 100 mm sq. 1 oz. Cu 0.06" thick single sided. Operating to steady state.

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_A = 25^{\circ}C \ unless \ otherwise \ noted)$

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Leakage (V _R = 25 V) (V _R = 40 V)	I _R		0.03 0.04	0.1 0.5	μΑ
Forward Voltage (I _F = 1 mA) (I _F = 10 mA) (I _F = 40 mA) (I _F = 100 mA)	V _F		0.32 0.43 0.62	0.38 0.50 0.80 1.20	V
Total Capacitance (V _R = 1.0 V, f = 1 MHz)	СТ		2.0	5.0	pF
Reverse Recovery Time (I _F = I _R = 10 mA, I _R = 1.0 mA)	t _{RR}		1.5	4.0	ns


- 1. DC Current Source is adjusted for a Forward Current (I_F) of 10 mA.
- Pulse Generator Output is adjusted for a Peak Reverse Recovery Current I_{RM} of 10 mA.
 Pulse Generator transition time << t_{rr}.
 IR(REC) is measured at 1 mA. Typically 0.1 X I_{RM} or 0.25 X I_{RM}.

- 5. t_p » t_{rr}

Figure 1. Recovery Time Equivalent Test Circuit

NSR02L40MX2W

TYPICAL CHARACTERISTICS

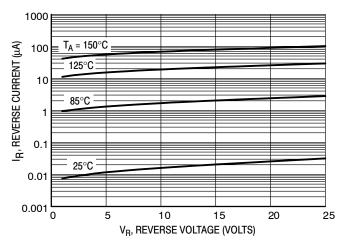


Figure 2. Typical Forward Voltage

Figure 3. Reverse Current versus Reverse Voltage

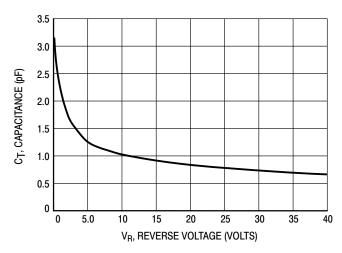
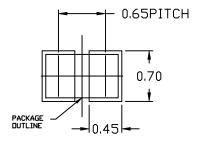


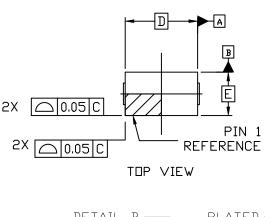
Figure 4. Typical Capacitance

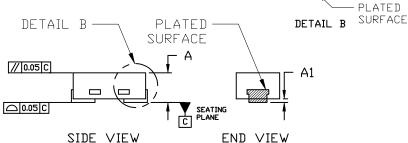
X2DFNW2 1.0x0.6, 0.65PCASE 711BG ISSUE C

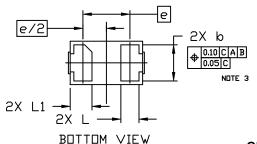

DATE 13 SEP 2019

NOTES:

-D1


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 APPLIES TO THE PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 FROM THE TERMINAL TIP.


	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	0.34	0.37	0.40	
A1			0.05	
b	0.45	0.50	0.55	
D	0.90	1.00	1.10	
D1			0.05	
Ε	0.50	0.60	0.70	
e	0.65 BSC			
L	0.22 REF			
L1	0.24	0.285	0.34	



RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the IIN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

XX = Specific Device Code M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON15241G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	X2DFNW2 1.0X0.6, 0.65P		PAGE 1 OF 1	

ON Semiconductor and a retrademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales