

S1D13517 Display Controller Technical Manual

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2008 - 2009, All rights reserved.

Table of Contents

Chapter	[•] 1 Introduction
1.1	Scope
1.2	Overview Description
Chapter	[•] 2 Features
2.1	Frame Buffer
2.2	Host Interface
2.3	Input Data Formats
2.4	Display Mode
2.5	Display Support
2.6	Display Features
2.7	Clock Source
2.8	Power Supply
2.9	Miscellaneous
Chapter	⁷ 3 System Diagrams
Chapter	[•] 4 Block Diagram
	5 Display Data Path
-	6 Pinout Diagram
6.1	Pin-Out
6.2	Pin Descriptions
	5.2.1 Host Interface
-	5.2.2 LCD Interface
6	5.2.3 SDRAM Interface
6	0.2.4 Clocks
6	0.2.5 Miscellaneous
6	5.2.6 Power
6.3	Pin Structure
6	5.3.1 Input Pin
6	0.3.2 Output Pin
6	B.3.3 Bi-directional Pin
6.4	Configuration Options
6.5	Host Interface Data Pin Mapping
6.6	Host Interface Control Pin Mapping
6.7	LCD Interface Pin Mapping
Chapter	7 D.C. Characteristics
7.1	Absolute Maximum Rating
7.2	Recommended Operating Conditions

7.3 Ele	ctrical Characteristics
Chapter 8 A	.C. Characteristics
8.1 Clo	ck Timing
8.1.1	Input Clocks
8.1.2	PLL Clock
8.1.3	Clock Output
8.1.4	Spread Spectrum (SS) Clock
8.2 Res	et Timing
8.3 Pov	ver Sequence Timing
8.3.1	Power-on Sequence Timing
8.3.2	Power-off Sequence Timing
8.4 Hos	t Interface Timing
8.4.1	Indirect Intel80 Bus
8.4.2	Indirect ALE Bus
8.4.3	Hi-Z Definition of transition time to Hi-Z state
8.5 SD	RAM Interface Timing
8.6 LC	D Interface Timing
8.6.1	LCD Panel Power-on Sequence
8.6.2	LCD Panel Power-off Sequence
8.6.3	LCD Panel Timing
8.6.4	LCD Interface Timing
Chapter 9 C	locks
9.1 Clo	ck Descriptions
9.2 Clo	ck Function
9.3 Clo	ck Control
9.4 Sof	tware Reset
Chapter 10	Registers
10.1 Reg	sister Mapping
	ister Set
-	sister Descriptions
-	Read-Only Configuration Registers
10.3.2	Clock Configuration Registers
10.3.3	Panel Configuration Registers
10.3.4	
10.3.5	5 Input Mode Registers
10.3.6	
10.3.7	
10.3.8	-
10.3.9	PWM Registers

10.3.10 SDRAM Control Registers	84
10.3.11 Alpha-Blend Registers	88
10.3.12 Interrupt Registers	92
Chapter 11 Host Interface	94
11.1 Indirect Interface	94
11.1.1 Register Write Procedure	95
11.1.2 Register Read Procedure	96
11.1.3 Memory Write (New Window) Procedure	96
11.1.4 Memory Write (Update Window) Using Existing Window Coordinates	98
11.2 Color Formats	99
11.2.1 8-bit 16bpp mode (RGB 5:6:5)	99
11.2.2 8-bit 24bpp mode (RGB 8:8:8)	100
11.2.3 16-bit 16bpp mode (RGB 5:6:5)	101
11.2.4 16-bit 24bpp mode 1 (RGB 8:8:8)	102
11.2.5 16-bit 24bpp mode 2 (RGB 8:8:8)	103
11.3 PCLK vs. Input Data Rate	104
Chapter 12 Display Functions	106
12.1 Display Window	106
12.1.1 Display Buffer Configuration	106
12.1.2 Write Window Settings	107
12.2 Transparency	108
12.3 Rotation and Mirror	108
12.3.1 180° Rotation	108
12.3.2 Mirror	109
12.3.3 180° Rotation and Mirror	109
12.4 Picture-in-Picture	110
12.4.1 Picture-in-Picture Window Settings	110
12.4.2 Picture-in-Picture Window Display Start Address	112
12.5 Double Buffer Display	112
12.6 Alpha-Blend	113
12.6.1 Alpha-Blend (2 Input Mode)	
12.6.2 Alpha-Blend (1 Input Mode)	114
12.6.3 Alpha-Blend Window Settings	116
12.6.4 Alpha-Blend Processing Time	
12.6.5 Alpha-Blend Programming Sequence	116
Chapter 13 SDRAM Interface	119
13.1 SDRAM Initialization	119
13.2 SDRAM Connection	119
13.3 SDRAM Commands	120

13.3.1 MRS Command
13.3.2 Read / Write Command
13.3.3 Auto Refresh Command
13.3.4 Self Refresh Command
13.3.5 Power Down Command
13.3.6 Controller Status
13.4 Memory Data
13.5 Memory Address
Chapter 14 PWM Output
Chapter 15 Color Bar Display Test
Chapter 16 Power Save
16.1 Sleep Mode
16.2 Standby Mode
Chapter 17 Use Case Examples
17.1 Initialization Sequence
17.2 Display Initialization Sequence
Chapter 18 PLL
18.1 PLL External Low-Pass Filter
18.2 Guidelines for PLL Power Layout
Chapter 19 Mechanical
Chapter 20 Change Record

Chapter 1 Introduction

1.1 Scope

This is the Hardware Functional Specification for the S1D13517 External SDRAM LCD Controller. Included in this document are timing diagrams. AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers.

This specification will be updated as appropriate. Please check the Epson Research and Development Website at http://www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

1.2 Overview Description

The S1D13517 is a low power color LCD Controller with support for up to 128M-bit external SDRAM memory. The S1D13517 supports an 8/16-bit asynchronous bus while providing high performance bandwidth into the external display memory allowing for fast screen updates. The S1D13517 also provides support for multiple display buffers, Picture-in-Picture, Alpha-Blend, and display rotation/mirror.

The S1D13517 is an excellent solution for WVGA LCD panel systems while keeping CPU performance.

Chapter 2 Features

2.1 Frame Buffer

- External 16M-bit, 64M-bit or 128M-bit SDRAM memory support
- Maximum 90MHz SDRAM clock
- 16-bit bus interface (SDRAM is just one piece)

Note

Memory data cannot be read.

2.2 Host Interface

- 2 types 8/16-bit asynchronous bus interface (register or memory data)
 - Indirect Intel 80 bus
 - Indirect ALE (Address Latch Enable) bus

Note

- 1. Memory data cannot be read.
- 2. Write cycle time changes depend on SDRAM clock frequency.

2.3 Input Data Formats

• RGB 8:8:8 and RGB 5:6:5

2.4 Display Mode

• 24bpp (RGB 8:8:8) color depth. (RGB 5:6:5 data is converted from 16bpp to 24bpp)

2.5 Display Support

- Active Matrix TFT interface
 - 18/24-bit interface
- Maximum 960 x 960 display setting supported (maximum PCLK is 45MHz)
 - HVGA: 640 x 240 x 16/18/24-bit LCD panel
 - VGA: 640 x 480 x 16/18/24-bit LCD panel
 - WVGA: 800 x 480 x 16/18/24-bit LCD panel
 - SVGA: 800 x 600 x 16/18/24-bit LCD panel
 - QHD: 960 x 540 x 16/18/24-bit LCD panel

2.6 Display Features

• Display Window

The display window is defined by the size of the LCD display. Complete or partial updates to the display window are done through the Write Window. The write window size and start position are specified in 8 pixel resolution (horizontal) and 1 line resolution (vertical). All window coordinates are referenced to top left corner of the display window (even when rotation or mirror are enabled no host side translation is required). All display updates can have independent mirror, rotation, and transparency settings.

• Picture-in-Picture (PIP) display

Up to two PIP windows are supported. When enabled the PIP windows are displayed over the Main window. The PIP windows sizes and start positions are specified in 8 pixel resolution (horizontal) and 1 line resolution (vertical). Image scrolling can be performed by changing the start address of a PIP window. The PIP windows do not support a transparent overlay function.

• Alpha-Blend

Alpha-blending allows two images to be blended to create a new image which can then be displayed using a PIP window. The Alpha-blend image size is specified in 8 pixel resolution (horizontal) and 1 line resolution (vertical). The processing speed of Alpha-blend function varies depending on the image size. Optionally, a single input image can be processed.

• Mirror / Rotation

Mirror and 180° counter-clockwise hardware rotation functions are available for image data writes. All windows can have independent rotation and mirror settings. No additional programming is necessary when enabling these modes.

• Transparency

A transparency function is available for image data writes. When enabled, input image data matching a specified key color is not written to the memory. This function can be used to overwrite text and icons in display data.

• Double Buffer

Double buffering is available to prevent image tearing during streaming input.

• Multi Buffer

Multi buffering allows the active display window to be switched between a maximum of 16 buffers. The number of buffers depends on the external SDRAM size and the desired size of the write buffers. Multi buffering allows a simple animation display to be performed by switching the buffers.

2.7 Clock Source

- Internal programmable PLL (Maximum 180MHz)
- Single MHz clock input: CLKI (2MHz~64MHz)
 - Internal system clock (Maximum 45MHz)
 - LCD pixel clock (Maximum 45MHz)
 - The frequency of the internal system clock and the LCD pixel clock is the same
- SDRAM clock (Maximum 90MHz)
 - Two or three times the clock frequency can be selected for the internal system clock
- Spread spectrum clock
 - Available to add to the internal clock. (Note: the frequency is only 31MHz-80MHz.)

EPSON

2.8 Power Supply

- I/O voltage: 3.3V +/- 0.3V
- Core voltage: 2.5V +/- 0.2V
- PLL voltage: 2.5V +/- 0.2V

2.9 Miscellaneous

- PWM output for the LCD backlight control
- Software Power Save Mode
- Tearing Effect output
- Interrupt output (Alpha-Blend complete)
- General Purpose Output (GPO[3:0])
- Test Color-bar display (does not use SDRAM data)
- Package: QFP15-128

Chapter 3 System Diagrams

The following figures are example of the system diagram.

Figure 3-1: System Diagram Example (16-bit Intel80 bus)

Figure 3-2: System Diagram Example (8-bit ALE bus)

Chapter 4 Block Diagram

Figure 4-1: S1D13517 Block Diagram

Chapter 5 Display Data Path

Figure 5-1: Display Data Path

Chapter 6 Pinout Diagram

6.1 Pin-Out

Figure 6-1: S1D13517 Pinout (Top View)

6.2 Pin Descriptions

Key:

Pin Types

- I = Input O = Output
- IO = Bi-Directional (Input/Output)
- P = Power pin

RESET# / Power Save Status

Н	=	High level output
L	=	Low level output
Z	=	High Impedance
0	=	Pull-down resistor on

Table 6-1: Cell Description

Item	Description
Н	H System LVCMO Input Buffer
HIS	H System LVCMOS Schmitt Input Buffer
HID	H System LVCMOS Input Buffer with pull-down resistor
HO1	H System LVCMOS Output Buffer Type 1 (+/- 3mA)
HO2	H System LVCMOS Output Buffer Type 2 (+/- 6mA)
HB1G	H System LVCMOS Bidirectional Buffer Type 1 (+/- 3mA) with gated input
HB1D	H System LVCMOS Bidirectional Buffer Type 1 (+/- 3mA) with pull-down resistor
LOT	L System Analog Output

Note

- 1. H System is IOVDD
- 2. L System is COREVDD and PLLVDD

6.2.1 Host Interface

For a summary of the Host pin mapping see Section 6.5, "Host Interface Data Pin Mapping" and Section 6.6, "Host Interface Control Pin Mapping" on page 24

Pin Name	ТҮре	PIN #	Cell	IO Voltage	RESET #State	Power Save Status	Description
							Intel80 bus / ALE bus
HD[15:8]	ю	14, 13, 12, 11, 10, 9, 8, 7	HB1G	IOVDD	z	Input	These pins are data bus. When the 8-bit interface is selected by CNF0, the input is gated. The input can be still floating.
		, . , . , . , .					When HCS# is high input, the input also can be floating.
		6, 5, 4, 3,					Intel80 bus / ALE bus
HD[7:0]	Ю	2, 127, 126, 125	HB1G	IOVDD	Z	Input	These pins are data bus. When HCS# is high input, the input also can be floating.
HWE#		122	HIS	IOVDD	Input	Input	Intel80 bus / ALE bus
		122		ICVBD	mput	input	This pin is the write enable.
HRE#	1	124	н	IOVDD	Input	Input	Intel80 bus / ALE bus
					pat		This pin is the read enable.
							Intel80 bus / ALE bus
HCS#	I	123	HI	IOVDD	Input	High Input	This pin is the chip select. When the power save mode is enabled, this pin should be high level.
							Intel80 bus
						Input	This pin is used to select between address and data.
							ALE bus
HD/C#	Ι	120	HI	IOVDD	Input		This pin is used to select between address and data. The data is latched by the rising edge of HALE. When in 8-bit mode, this pin should be connected to HD0. When the 16-bit mode, this pin should be connected to HD1. This input should never be floating.
			121 HI				Intel80 bus
							This pin is not used. This pin must be connected directly to VSS.
HALE	Ι	121		IOVDD	Input	Input	ALE bus
							This pin is the address latch enable. The data on HD/C# is latched on the rising edge of HALE.

Table 6-2: Host Interface Pin Descriptions

Pin Name	ТҮре	PIN #	Cell	IO Voltage	RESET #State	Power Save Status	Description	
				Tearing effect (default) This output is the status signal of VNDP and HNDP. When power save mode is enabled,				
TE/INT	ο	119	HO1	IOVDD	L	Stop	this signal is stopped. Interrupt	
							This pin is the interrupt output. When power save mode is enabled, this signal is stopped.	
							See REG[6Ah] bits 1-0 on page 78 for TE/INT pin configuration.	
RESET#	Ι	29	HIS	IOVDD	Input	High Input	This pin is reset input. Active low input to set all internal registers to the default value. This input has the Schmitt input and delay line for noise input.	
						pot	See Section 8.2, "Reset Timing" on page 31 for further information.	

6.2.2 LCD Interface

For a summary of the LCD Interface pin mapping see Section 6.7, "LCD Interface Pin Mapping" on page 25

Pin Name	ТҮре	PIN #	Cell	IO Voltage	RESET #State	Power Save Status	Description
PDR[7:2]	0	102, 103, 104, 105, 106, 107	HO1	IOVDD	L	L	These pins are R[7:2] of the panel data output.
PDR[1:0] / GPO[5:4]	0	108, 109	HO1	IOVDD	L	L	These pins are R[1:0] of the panel data output in 24-bit mode. These pins are GPO[5:4] output in 18-bit mode.
PDG[7:2]	0	92, 93, 94, 95, 98, 99	HO1	IOVDD	L	L	These pins are G[7:2] of the panel data output.
PDG[1:0] / GPO[7:6]	0	100, 101	HO1	IOVDD	L	L	These pins are G[1:0] of the panel data output in 24-bit mode. These pins are GPO[7:6] output in 18-bit mode.
PDB[7:2]	0	84, 85, 86, 87, 88, 89	HO1	IOVDD	L	L	These pins are B[7:2] of the panel data output.
PDB[1:0] / GPO[9:8]	0	90, 91	HO1	IOVDD	L	L	These pins are B[1:0] of the panel data output in 24-bit mode. These pins are GPO[9:8] output in 18-bit mode.
PVS	0	82	HO1	IOVDD	L	L	This pin is the vertical sync pulse output.

Table 6-3: LCD	Interface	Pin De	scriptions
14010 0 5. LCD	incegace	1 111 DC	scriptions

Pin Name	ТҮре	PIN #	Cell	IO Voltage	RESET #State	Power Save Status	Description
PHS	0	83	HO1	IOVDD	L	L	This pin is the horizontal sync pulse output.
PCLK	0	110	HO1	IOVDD	L	L	This pin is the pixel clock output.
PDE	0	81	HO1	IOVDD	L	L	This pin is the pixel data enable output.
GPO[3:0]	0	111, 115, 116, 117	HO1	IOVDD	L	L	These pins are GPO[3:0] output.

Table 6-3: LCD	Interface	Pin Descrip	ntions	(Continued)
<i>Tuble</i> 0- <i>J</i> . <i>LCD</i>	merjace	I in Deseri	phons	(Commuca)

6.2.3 SDRAM Interface

Pin Name	ТҮре	PIN #	Cell	IO Voltage	RESET #State	Power Save Status	Description
MD[15:0]	I/O	77, 75, 73, 71, 69, 67, 63, 61, 60, 62, 66, 68, 70, 72, 74, 76	HB1D	IOVDD	0	0	These pins are the data bus for the SDRAM. These pins have internal pull-down resistors.
MBA[1:0]	0	43, 45	HO1	IOVDD	L	L	These pins are the bank address output for the SDRAM.
MA[11:0]	0	46, 41, 44, 42, 40, 38, 36, 34, 33, 35, 37, 39	HO1	IOVDD	L	L	These pins are the address output for the SDRAM.
MCS#	0	49	HO1	IOVDD	Н	Н	This pin is the chip select for the SDRAM.
MRAS#	0	51	HO1	IOVDD	Н	Н	This pin is the row address strobe output of the SDRAM.
MCAS#	0	56	HO1	IOVDD	Н	Н	This pin is the column address strobe output of the SDRAM.
MWE#	0	58	HO1	IOVDD	Н	Н	This pin is the write enable output of the SDRAM.
MDQM1	0	57	HO1	IOVDD	L	L	This pin is the DQMH output of the SDRAM.
MDQM0	0	59	HO1	IOVDD	L	L	This pin is the DQML output of the SDRAM.
MCLKO	0	55	HO2	IOVDD	H or L	H or L	This pin is the clock output of the SDRAM.
MCLKI	Ι	53	н	IOVDD	Input	Input	This pin is the feedback clock input of the MCLKO.
MCKE	0	50	HO1	IOVDD	Н	Н	This pin is the CKE output of the SDRAM.

6.2.4 Clocks

Pin Name	TYpe	PIN #	Cell	IO Voltage	RESET #State	Power Save Status	Description
CLKI	Ι	18	HI	IOVDD	Input	Innut	This pin is MHz input for PLL operation or MHz input if PLL is bypassed.

Table 6-5: Clock Input Pin Description

6.2.5 Miscellaneous

Pin Name	ТҮре	PIN #	Cell	IO Voltage	RESET# State	Power Save Status	Description
PWM	0	118	HO1	IOVDD	L	L	This pin is PWM output for the LCD backlight control.
							These pins are used for power-up configuration.
CNF[2:0]	I	21, 22, 23	н	IOVDD	Input Fix	Input Fix	Note: These pins must be connected directly to IOVDD or VSS.
		20					See Section 6.4, "Configuration Options" on page 23 for further information.
							This pin is the low-path filter of the PLL. The external component are needed.
PLLCHGO	0	26	LOT	PLLVDD	—	—	When the PLL is bypassed, this pin should be left unconnected.
							See Chapter 18, "PLL" on page 131 for further information.
							These pins are the test signals.
TEST[1:0]	I	20, 19	HID	IOVDD	_	—	When unused these pins should be connected to VSS.
SCANEN	I	30	HID	IOVDD	_	_	This pin is the test signal. When unused this pin should be connected to VSS.

Table 6-6: Miscellaneous Pin Descriptions

6.2.6 Power

Pin Name	Туре	Pin #	Cell	Descriptions
COREVDD	Ρ	15, 25, 52, 78, 112	Ρ	Core power supply, all pins must be connected.
IOVDD	Р	16, 31, 47, 64, 79, 96, 113, 128	Ρ	IO power supply, all pins must be connected.
PLLVDD	Р	27	Р	PLL power supply
PLLVSS	Р	28	Р	PLL GND
VSS	Ρ	1, 17, 24, 32, 48, 54, 65, 80, 97, 114	Ρ	GND, all pins must be connected.

Table 6-7: Power Pin Descriptions

6.3 Pin Structure

6.3.1 Input Pin

Figure 6-2: Input Pin (HI, HIS) Structure

6.3.2 Output Pin

Figure 6-3: Output Pin (HO1, HO2) Structure

6.3.3 Bi-directional Pin

Figure 6-4: Bi-directional (HB1D) Structure

Figure 6-5: Bi-directional (HB1G) Structure

6.4 Configuration Options

These pins are used for power-up configuration and must be connected directly to IOVDD or VSS. The state of CNF[2:0] must not be changed during normal operation.

Pins	Power-on State					
FIIIS	1 (connected to IOVDD)	0 (connected to VSS)				
CNF0	Host interface 8-bit bus	Host interface 16-bit bus				
CNF[2:1]	Host interface type CNF[2:1] = 00b: Indirect Intel80 bus CNF[2:1] = 01b: Indirect ALE bus CNF[2:1] = 1xb: Reserved					

Note

When CNF0 = 1b all register access is 8-bit only.

When CNF0 = 0b the memory data port (REG[66h] ~ REG[67h]) is 16-bit access. All other registers are 8-bit access only.

6.5 Host Interface Data Pin Mapping

This function is controlled by CNF0.

If 16-bit bus interface is NOT used, pins HD[15:8] should not be connected directly to the power rails, please leave these pins un-connected.

Pin Name	16-bit bus (CNF0 = 0b)	8-bit bus (CNF0 = 1b)				
HD15	HD15	Open				
HD14	HD14	Open				
HD13	HD13	Open				
HD12	HD12	Open				
HD11	HD11	Open				
HD10	HD10	Open				
HD9	HD9	Open				
HD8	HD8	Open				
HD7	HD7	HD7				
HD6	HD6	HD6				
HD5	HD5	HD5				
HD4	HD4	HD4				
HD3	HD3	HD3				
HD2	HD2	HD2				
HD1	HD1	HD1				
HD0	HD0	HD0				

Table 6-8: Host Interface Data Pin Mapping

6.6 Host Interface Control Pin Mapping

This function is controlled by CNF[2:1].

Pin Name	Intel80 bus (CNF[2:1] = 00b)	ALE bus (CNF[2:1] = 01b)
HCS#	HCS#	HCS#
HRE#	HRE#	HRE#
HWE#	HWE#	HWE#
HD/C#	HD/C#	HD/C#
HALE	Connect to VSS	HALE
TE / INT	TE / INT	TE / INT

Table 6-9: Host Interface Control Pin Mapping

6.7 LCD Interface Pin Mapping

This function is controlled by REG[14h] bit 0.

Pin Name	TFT Interface			
Color depth	18bpp	24bpp		
PVS	P١	/S		
PHS	Pł	IS		
PCLK	PC	LK		
PDE	P	DE		
PDR0	GPO4	R0		
PDR1	GPO5	R1		
PDR2	R	2		
PDR3	R	3		
PDR4	R	4		
PDR5	R	25		
PDR6	R	6		
PDR7	R	.7		
PDG0	GPO6	G0		
PDG1	GPO7	G1		
PDG2	G	62		
PDG3	G	3		
PDG4	G	64		
PDG5	G	5		
PDG6	G	6		
PDG7	G	67		
PDB0	GPO8	B0		
PDB1	GPO9	B1		
PDB2	В	2		
PDB3	В	3		
PDB4	В	4		
PDB5	В	5		
PDB6	B6			
PDB7	В	7		
GPO0	GPO0	GPO0		
GPO1	GPO1	GPO1		
GPO2	GPO2	GPO2		
GPO3	GPO3	GPO3		

Table 6-10: LCD Interface Pin Mapping

Chapter 7 D.C. Characteristics

7.1 Absolute Maximum Rating

Symbol	Parameter	Rating	Units
CORE V _{DD}	Core Supply Voltage	VSS - 0.3 ~ 3.0	V
PLL V _{DD}	PLL Supply Voltage	VSS - 0.3 ~ 3.0	V
IO V _{DD}	IO Supply Voltage	COREVDD ~ 4.0	V
V _{IN}	Input Signal Voltage	VSS - 0.3 ~ IOVDD + 0.5	V
V _{OUT}	Output Signal Voltage	VSS - 0.3 ~ IOVDD + 0.5	V
I _{OUT}	Output Signal Current	±30	mA

Table 7-1: Absolute Maximum Ratings

7.2 Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
CORE V _{DD}	Core Supply Voltage	VSS = 0 V	2.30	2.50	2.70	V
PLL V _{DD}	PLL Supply Voltage	VSS = 0 V	2.30	2.50	2.70	V
IO V _{DD}	IO Supply Voltage	VSS = 0 V	3.00	3.30	3.60	V
V _{IN}	Input Voltage	—	VSS	—	IOVDD	V
T _{OPR}	Operating Temperature	—	-40	+25	+85	°C

Table 7-2: Recommended Operating Conditions

7.3 Electrical Characteristics

The following conditions are for VSS = 0V, TOPR = -40 to +85 °C.

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{QALL}	Quiescent Current	Quiescent Conditions	—	_	1	mA
I _{PLL}	PLL Current	f _{PLL} = 90MHz	—	1		mA
I _{CORE}	Operating Current	COREVDD Pin	—	50	100	mA
I _{IZ}	Input Leakage Current	—	-5	—	5	μA
I _{OZ}	Output Leakage Current	—	-5	—	5	μA
IOV _{OH1}	High Level Output Voltage (1)	IOV _{DD} = min I _{OH1} = -3mA	IOVDD - 0.40	_	IOVDD	V
IOV _{OH2}	High Level Output Voltage (2)	IOV _{DD} = min I _{OH2} = -6mA	IOVDD - 0.40	_	IOVDD	V
IOV _{OL1}	Low Level Output Voltage (1)	IOVDD = min I _{OL1} = 3.0mA	VSS	_	0.40	V
IOV _{OL2}	Low Level Output Voltage (2)	IOVD = min I _{OL2} = 6.0mA	VSS	_	0.40	V
IOV _{IH1}	High Level Input Voltage	CMOS Input	2.20	_	_	V
IOV _{IL1}	Low Level Output Voltage	CMOS Input	—	_	0.80	V
IOV _{IH2}	High Level Input Voltage	Gated Input	1.70	_	_	V
IOV _{IL2}	Low Level Input Voltage	Gated Input	—	_	0.70	V
IOV _{T+}	Positive Trigger Voltage	CMOS Schmitt	1.40	_	2.70	V
IOV _{T-}	Negative Trigger Voltage	CMOS Schmitt	0.60	_	1.80	V
IO V _H	Hysteresis Voltage	CMOS Schmitt	0.30		_	V
R _{PD}	Pull-Down Resistance	V _I = VDD	60	120	288	kΩ
C _{IO}	Pin Capacitance	f = 1MHz, VDD = 0V	—	_	10	pF

Table 7-3: Electrical Characteristics

Chapter 8 A.C. Characteristics

Conditions: IOVDD = $3.3V \pm 0.3V$, COREVDD = PLLVDD = $2.5V \pm 0.2V$, $T_A = -40^{\circ}C \sim 85^{\circ}C$ T_{rise} and T_{fall} for all inputs except Schmitt must be ≤ 50 ns ($10\% \sim 90\%$) T_{rise} and T_{fall} for all Schmitt must be $_{l} \leq 5$ ms ($10\% \sim 90\%$) $C_L = 30$ pF (Host Interface) $C_L = 15$ pF (SDRAM Interface) $C_L = 30$ pF (LCD Interface) $C_L = 30$ pF (Other Interface)

8.1 Clock Timing

8.1.1 Input Clocks

Figure 8-1: Clock Input Requirement (CLKI)

Table 8-1: Clock Input Requirement (C.	LKI)
--	------

Symbol	Parameter	Min	Тур	Max	Units
f _{OSC}	Input clock frequency	2	—	64	MHz
tosc	Input clock period	—	1/f _{OSC}		ns
t1	Input clock pulse width high	5		_	ns
t2	Input clock pulse width low	5			ns
t3	Input clock rise time (10% - 90%)	—		10	ns
t4	Input clock fall time (90% - 10%)	—	—	10	ns
t5	Input clock cycle jitter (see note 1)	-150		150	ps

1. The input clock cycle jitter is the difference in period between adjacent cycles.

8.1.2 PLL Clock

The PLL circuit is an analog circuit and is very sensitive to noise on the input clock waveform or the power supply. Noise on the clock or supplied power may cause the operation of the PLL circuit to become unstable or increase the jitter.

Due to these noise constraints, it is highly recommended that the power supply traces or the power plane for the PLL be isolated from those of other power supplies. Filtering should also be used to keep the power as clean as possible. The jitter of the input clock waveform should be as small as possible.

Figure 8-2: PLL Start-up Time

Symbol	Parameter	Min	Тур	Max	Units
f _{PLLI}	PLL input clock frequency	0.99	1.00	2.00	MHz
f _{PLLO}	PLL output clock frequency	50	—	180	MHz
f PLLDuty1	PLL output clock duty	30	50	70	%
f PLLDuty2	PLL output clock duty (note)	40	50	60	%
t _{PJref}	PLL output clock period jitter	-500	—	500	ps
t _{PStal}	PLL output stable time	_	_	10	ms

Table 8-2: PLL Clock Requirements

Note

When REG[08h] bit 0 = 1b, the PLL output is divided to 1/2 clock.

8.1.3 Clock Output

Symbol	Parameter	Min	Тур	Max	Units
f _{SDCLK}	SDRAM clock (note1, 2)	—	—	90	MHz
t _{SDuty1}	SDRAM clock duty	30	50	70	%
t _{SDuty2}	SDRAM clock duty (note 3)	40	50	60	%
f _{SYSCLK}	Internal system clock (note 1)	—	—	30	MHz
f _{PCLK}	Pixel clock (note 1)	—	—	30	MHz
t _{PDuty}	Pixel clock duty	45	50	55	%

Table 8-3: Clock Output (SYSCLK: SDCLK = 1:3)

Table 8-4: Clock Output (SYSCLK: SDCLK = 1:2)

Symbol	Parameter	Min	Тур	Max	Units
f _{SDCLK}	SDRAM clock (note1, 2)	—	_	90	MHz
t _{SDuty1}	SDRAM clock duty	30	50	70	%
t _{SDuty2}	SDRAM clock duty (note 3)	40	50	60	%
f _{SYSCLK}	Internal system clock (note 1)	—	_	45	MHz
f _{PCLK}	Pixel clock (note 1)	—	—	45	MHz
t _{PDuty}	Pixel clock duty	45	50	55	%

Note

- 1. These values do not include the PLL jitter value and CLKI input difference.
- 2. The AC characteristic in the host interface changes depending on the frequency of the SDRAM clock.
- 3. When REG[08h] bit 0 = 1b, PLL output is divided to 1/2 clock.

8.1.4 Spread Spectrum (SS) Clock

As Spread Spectrum modulation clock EMI decreases, the spread Spectrum modulation can be increased.

Symbol	Parameter	Min	Max	Units
f _{SSCLK}	Input SS clock (note)	31	80	MHz
	SS clock diffusion width (REG[10h] bits 6-4 = 000b)	-0.37	0.37	ns
	SS clock diffusion width (REG[10h] bits 6-4 = 001b)	-0.52	0.52	ns
t _{SSW}	SS clock diffusion width (REG[10h] bits 6-4 = 010b)	-0.67	0.67	ns
	SS clock diffusion width (REG[10h] bits 6-4 = 011b)	-0.82	0.82	ns
	SS clock diffusion width (REG[10h bits 6-4 = 100b)	-0.97	0.97	ns

Table 8-5: Spread Spectrum Clock

Note

The input frequency of the SS must be from 31 to 80MHz. SS cannot be used between 82MHz to 90MHz.

8.2 Reset Timing

Table	8-6:	Reset	Timing
1 aoic	0 0.	nesei	1 1111115

Symbol	Parameter	Min	Мах	Units
t _{RES}	Active reset pulse width	100	-	us
t _{RESNC}	Noise cancel pulse width		3	ns

8.3 Power Sequence Timing

8.3.1 Power-on Sequence Timing

Symbol	Parameter	Min	Мах	Units
t _{PON}	Power-on difference time	0		ms

8.3.2 Power-off Sequence Timing

Figure 8-5: Power-off	Sequence Timing
-----------------------	-----------------

Table 8-8: Power-off	Sequence Timing
----------------------	-----------------

Symbol	Parameter	Min	Мах	Units
t _{POFF}	Power-off difference time	0	_	ms

8.4 Host Interface Timing

8.4.1 Indirect Intel80 Bus

Figure 8-6: Intel80 Bus A.C. Characteristics

Pin	Symbol	Parameter		Min	Max	Units	Note
HD/C#	t _{ast}	Address setup time (rea	1	_	ns		
	t _{wah}	Address hold time (write	5	_	ns		
	t _{rah}	Address hold time (read)	5	—	ns	
HCS#	t _{wcs}	Chip select setup time (t _{wl}	_	ns		
	t _{rcs}	Chip select setup time (read)		t _{ri}	_	ns	
	t _{ch}	Chip select hold time (read/write)		0	_	ns	
	t _{csf}	Chip select wait time (re	ad/write)	1	—	ns	
		Write cycle for registers		30	_	ns	
			8-bit 16bpp mode	3.5 * (1/f _{SDCLK})	_	ns	(note 1)
			8-bit 24bpp mode	2.5 * (1/f _{SDCLK})	_	ns	(note 1)
		Write cycle for memory (REG[12h] bit 4 = 0b)	16-bit 16bpp mode	7 * (1/f _{spci к})	_	ns	(note 1)
			16-bit 24bpp mode 1	5 * (1/f _{spci k})	_	ns	(note 1)
	t _{wc}		16-bit 24bpp mode 2	3.5 * (1/f _{SDCLK})	_	ns	(note 1)
HWE#			8-bit 16bpp mode	7 * (1/f _{SDCLK})	_	ns	(note 2)
		Write cycle for memory (REG[12h] bit 4 = 1b)	8-bit 24bpp mode	5 * (1/f _{SDCLK})	_	ns	(note 2)
			16-bit 16bpp mode	14 * (1/f _{SDCLK})	_	ns	(note 2)
			16-bit 24bpp mode 1	10 * (1/f _{spci к})	_	ns	(note 2)
			16-bit 24bpp mode 2	7 * (1/f _{SDCLK})	_	ns	(note 2)
	t _{wl}	Pulse low duration	10	_	ns		
	t _{wh}	Pulse high duration		t _{wc} - t _{wl}	_	ns	
	t _{w2r}	HWE# rising edge to HF	20	_	ns		
	t _{r2w}	HRE# rising edge to HW	/E# fall edge	20	_	ns	
HRE#	t _{rc}	Read cycle		t _{rl} + t _{rh}	_	ns	
11111	t _{rl}	Pulse low duration		t _{rdv}	_	ns	
	t _{rh}	Pulse high duration	10	_	ns		
	t _{dst}	Write data setup time		3	_	ns	
HD[15:0]	t _{dht}	Write data hold time		5	_	ns	
	t _{rodh}	Read data hold time		1	_	ns	
(note3)	t _{rrdz}	HRE# rising edge to HD	_	10	ns		
	t _{rdv}	HRE# fall edge to HD ac		15	ns		
	t _{rdd}	HRE# fall edge to HD dr	5	_	ns		

Note

1. For REG[12h] bit 4 = 0b, when this spec is not satisfied, write buffer overflow of the memory controller occurs (REG[92h] bit 3).

2. For REG[12h] bit 4 = 1b, when this spec is not satisfied, write buffer overflow of the memory controller occurs (REG[92h] bit 3).

3. When CNF0=1, only HD[7:0] are used. When CNF0=0, HD[7:0] are used for all accesses except for the Memory Data Port when HD[15:0] are used.

8.4.2 Indirect ALE Bus

Figure 8-7: ALE Bus A.C. Characteristics

Pin	Symbol	Parameter		Min	Мах	Units	Note
	t _{ast}	Address setup time (rea	1		ns		
HD/C#	t _{wah}	Address hold time (write)		5		ns	
	t _{rah}	Address hold time (read	1)	5	_	ns	
HALE#	t _{alest}	Address setup time		5		ns	
	t _{aleh}	Address hold time		5	_	ns	
	t _{alel}	Pulse low duration		5	_	ns	
	t _{wcs}	Chip select setup time (write)		t _{wl}	_	ns	
HCS#	t _{rcs}	Chip select setup time (read)	t _{rl}	_	ns	
псо#	t _{ch}	Chip select hold time (re	ead/write)	0	_	ns	
	t _{csf}	Chip select wait time (re	ead/write)	1	_	ns	
		Write cycle for registers		30	_	ns	
			8-bit 16bpp mode	3.5 * (1/f _{SDCLK})	_	ns	(note 1)
		Muite evelo for monor a	8-bit 24bpp mode	2.5 * (1/f _{SDCLK})	_	ns	(note 1)
		(REG[12n] bit 4 = 0b)	16-bit 16bpp mode	7 * (1/f _{SDCLK})	_	ns	(note 1)
			16-bit 24bpp mode 1	5 * (1/f _{SDCLK})	_	ns	(note 1)
	t _{wc}		16-bit 24bpp mode 2	3.5 * (1/f _{SDCLK})	_	ns	(note 1)
HWE#			8-bit 16bpp mode	7 * (1/f _{spcik})	_	ns	(note 2)
		Write cycle for memory (REG[12h] bit 4 = 1b)	8-bit 24bpp mode	5 * (1/f _{SDCLK})	_	ns	(note 2)
			16-bit 16bpp mode	14 * (1/f _{SDCLK})	_	ns	(note 2)
			16-bit 24bpp mode 1	10 * (1/f _{SDCLK})	_	ns	(note 2)
			16-bit 24bpp mode 2	7 * (1/f _{SDCLK})	_	ns	(note 2)
	t _{wl}	Pulse low duration		10	_	ns	
	t _{wh}	Pulse high duration		t _{wc} - t _{wl}	_	ns	
	t _{w2r}	HWE# rising edge to HRE# fall edge		20	_	ns	
	t _{r2w}	HRE# rising edge to HV	VE# fall edge	20	_	ns	
HRE#	t _{rc}	Read cycle		t _{rl} + t _{rh}	_	ns	
11111	t _{rl}	Pulse low duration		t _{rdv}	_	ns	
	t _{rh}	Pulse high duration		10	_	ns	
	t _{dst}	Write data setup time		3		ns	
	t _{dht}	Write data hold time		5		ns	
HD[15:0]	t _{rodh}	Read data hold time		1		ns	
(note 3)	t _{rrdz}	HRE# rising edge to HD Hi-Z			10	ns	
	t _{rdv}	HRE# fall edge to HD active data			15	ns	
	t _{rdd}	HRE# fall edge to HD d	5		ns		

Table 8-10: ALE Bus A.C. Characteristics

Note

1. For REG[12h] bit 4 = 0b, when this spec is not satisfied, write buffer overflow of the memory controller occurs (REG[92h] bit 3).

2. For REG[12h] bit 4 = 1b, when this spec is not satisfied, write buffer overflow of the memory controller occurs (REG[92h] bit 3).

3. When CNF0=1, only HD[7:0] are used. When CNF0=0, HD[7:0] are used for all accesses except for the Memory Data Port when HD[15:0] are used.
8.4.3 Hi-Z Definition of transition time to Hi-Z state

Due to the difficulty of high impedance (Hi-Z) measurement for high speed signals, transition time from H/L to Hi-Z specified as follows.

• High to Hi-Z delay time: t_{pHZ}

delay time when a gate voltage of final stage of the Pch-MOSFET turns to 0.8 x IOVDD (Pch-MOSFET is off). Total delay time to Hi-Z is calculated as following equation. Internal delay + t_{pHZ} (from High to Hi-Z)

 Low to Hi-Z delay time: t_{pLZ} delay time when a gate voltage of final stage of the Nch-MOSFET turn to 0.2 x IOVDD (Nch-MOSFET is off). Total delay time to Hi-Z is calculated as following equation.

Internal delay time + t_{pLZ} (from Low to Hi-Z)

Figure 8-8: Hi-Z Definition of transition time to Hi-Z state

8.5 SDRAM Interface Timing

Figure 8-9: SDRAM Interface Timing

Table 8-11: SDRAM	Interface	Timing
-------------------	-----------	--------

Symbol	Parameter	MIN	MAX	Units
t _{mcc}	MCLKO period (note 1)	10		ns
t _{mcl1}	MCLKO Low pulse width	0.3t _{mcc} - 2	_	ns
t _{mcl2}	MCLKO Low pulse width (note 2)	0.5t _{mcc} - 2	—	ns
t _{mch1}	MCLKO High pulse width	0.3t _{mcc} - 2	_	ns
t _{mch2}	MCLKO High pulse width (note 2)	0.5t _{mcc} - 2	_	ns
t _{mad}	SDRAM control signals delay time	_	7	ns
t _{mah}	SDRAM control signals hold time	1	_	ns
t _{mdod}	SDRAM data signal delay time	_	7	ns
t _{mdoh}	SDRAM data signal hold time	1	—	ns
t _{mdoz}	SDRAM data output signal Hi-Z time		9	ns
t _{mdis}	SDRAM data input signal setup time	3	_	ns
t _{mdih}	SDRAM data input hold time	2	_	ns

Note

- 1. MCLKO period (MIN) = (1/PLL frequency) / 2 1 ns SS jitter width.
- 2. When REG[08h] bit 0 is set 1b, PLL output is divided to 1/2 clock.

Figure 8-10: SDRAM Read Timing

Burst length = 4 and CAS latency = 2 are fixed.

Figure 8-11: SDRAM Write Timing

Note Burst Length = 4 is fixed.

Figure 8-12: SDRAM Initialization Timing

The initialization sequence is started by setting the SDRAM Initialization bit (REG[84h] bit 1 = 1b). After power-on/reset, the initialization sequence can be run only once. The initialization sequence requires 30,000 MCLKO cycles.

Figure 8-13: Auto Refresh / Self Refresh Timing

Auto refresh time = (REG[8Eh], REG[8Ch] counter value) / f_{SDCLK}

Figure 8-14: Power-Off Timing

When the power-off mode is started, the control signals are forced to high level output so the SDRAM power is never shut down.

8.6 LCD Interface Timing

The timing parameters required to drive a flat panel display are shown below. Timing details for each supported panel type are provided in the remainder of this section.

Note

All timing measurements are taken to/from the 1/2*IOVDD level in the following display interface timing diagrams.

Figure 8-15:	Panel Timing Parameters
--------------	-------------------------

Symbol	Description	Register	Min	Max	Units
HDISP	Horizontal Display Width	((REG[16h] bits 6-0) + 1) x 8	32	960	
HNDP	Horizontal Non-Display Period	((REG[18h] bits 7-0) + 1) x 2	4	512	Ts
HPS	PHS Pulse Start Position	(REG[22h] bits 6-0)	0	127	(Note 1)
HSW	PHS Pulse Width	(REG[20h] bits 6-0) + 1	1	128	
VDISP	Vertical Display Height	(REG[1Ch] bits 1-0, REG[1Ah] bits 7-0) + 1	32	960	
VNDP	Vertical Non-Display Period	((REG[1Eh bits 7-0) + 1) x 2	4	512	Line
VPS	PVS Pulse Start Position	(REG[26h] bits 7-0)	0	255	LINE
VSW	PVS Pulse Width	(REG[24h] bits 5-0) + 1	1	64	

EPSON

Note

Ts = 1/PCLK

8.6.1 LCD Panel Power-on Sequence

Figure 8-16: LCD Panel Power-on Sequence Timing

Table 8-13: LCD	Panel Power-or	n Sequence Timing
14010 0 15. LCD	1 aner 1 oner or	i bequence i initing

Symbol	Parameter	Min	Max	Units
t1	Display on to LCD signals active	0	10	Ts

8.6.2 LCD Panel Power-off Sequence

Figure 8-17: LCD Panel Power-off Sequence Timing

Symbol	Parameter	Min	Max	Units
t1	Display off to LCD signals inactive	0	10	Ts

Table 8-14: LCD Panel Power-off Sequence Timing

8.6.3 LCD Panel Timing

Figure 8-18: LCD Panel Timing

Note

PHS, PVS and PCLK have Polarity Select bits REG[20h] bit 7, REG[24] bit 7, and REG[28] bit 7 respectively.

Symbol	Parameter	Min	Тур	Max	Units
t1	PVS cycle time	_	VDISP + VNDP		Lines
t2	PVS pulse width Low	_	VSW	_	Lines
t3	PVS falling edge to PHS rising edge phase difference	_	HPS	_	Ts
t4	PHS cycle time	_	HDISP + HNDP	_	Ts
t5	PHS pulse width Low	—	HSW	_	Ts
t6	PHS falling edge to PDE active	—	HNDP - HPS	_	Ts
t7	PDE pulse width	—	HDISP	_	Ts
t8	PDE falling edge to PHS falling edge	—	HPS	_	Ts
t9	PCLK period	1	—	_	Ts
t10	PCLK pulse width Low	0.5	—	_	Ts
t11	PCLK pulse width High	0.5	—	_	Ts
t12	PHS setup to PCLK falling edge	0.5	—	_	Ts
t13	PDE to PCLK rising edge setup time	0.5	—	_	Ts
t14	PCLK rising edge to PDE hold time	0.5	—	_	Ts
t15	Data setup to PCLK rising edge	0.5	—	_	Ts
t16	PCLK rising edge to data hold time	0.5	—		Ts
t17	PDE stop setup to PVS start	—	VPS		Ts
t18	Vertical non-display period	_	VNDP	_	Ts

Table 8-15: LCD Panel Timing

1. Ts = Pixel clock period

8.6.4 LCD Interface Timing

Figure 8-19: LCD Interface Timing

Table 8-16: LCD	Interface Timing

Symbol	Parameter	MIN	MAX	Units
t _{pcc}	PCLK cycle time (note)	20	—	ns
t _{pcl}	PCLK pulse width Low	t _{pcc} * 0.4	—	ns
t _{pch}	PCLK pulse width High	t _{pcc} * 0.4	—	ns
t _{pdd}	LCD signals output delay time	—	5	ns
t _{pdh}	LCD signals output hold time	0	—	ns

Note

PCLK cycle time (MIN) = ((1/PLL frequency) / 2 - 1 ns - SS jitter width) * 2 (or 3)

Chapter 9 Clocks

9.1 Clock Descriptions

An external clock is applied to the CLKI pin

The clock signal is applied to the CLKI pin. The clock to which are done with PLL is SDRAM clock (SDCLK). The clock that 1/2 dividing frequency or 1/3 dividing is system clocks (SYSYCLK) from SDCLK. Pixel clock (PCLK) becomes the same clock as SYSCLK.

Spread Spectrum modulation (SS) can be added to SDCLK or SYSCLK (however, the frequency range is limited to 31MHz ~ 80MHz.).

Figure 9-1: Clock Block Diagram

Selection	SDCLK : SYSCLK	SDCLK	SS (SDCLK)	SYSCLK (= PCLK)	SS (SYSCLK)
Selection 1	3:1	25~90MHz	not used	8.3~30MHz	not used
Selection 2	2:1	62~90MHz	not used	31~45MHz	used
Selection 3	3:1	32~80MHz	used	10.6~26.6MHz	used
Selection 4	2:1	32~80MHz	used	16~40MHz	used

Table 9-1: Clock Selection

9.2 Clock Function

The following table summarizes the internal clocks that are required for various S1D13517 functions.

Function	CLKI Input	SYSCLK	SDCLK
Hardware reset	not required	not required	not required
Register access	not required	not required	not required
Memory access	required	required	required
LCD display	required	required	required
PWM output	required	required	not required
GPO output	not required	not required	not required
LCD display (Test color-bar)	required	required	not required

Table 9-2: Clock Function

Note

Register accesses do not require an internal clock as the S1D13517 creates a clock from the bus cycle alone.

9.3 Clock Control

The internal clocks can be controlled by register settings.

Register Setting	LCD	PWM	Alpha- Blend	Others
REG[68h] bit 0 = 0b	Stop	Stop	Stop	Stop
REG[2Ah] bit 0 = 0b	Stop	Run	Run	Run
REG[70h] bit 2 = 0b	Run	Stop	Run	Run
REG[9Eh] bit 7 = 0b	Run	Run	Stop	Run

Table 9-3: Clock Control

Note

All internal clocks are dependant on SDCLK.

When REG[68h] bit 0 = 1b, SDCLK is enabled and all internal clocks may be also enabled. When REG[68h] bit 0 = 0b, SDCLK is disabled and all internal clocks are stopped.

9.4 Software Reset

Internal sub-system blocks may be software reset from within REG[68h]. All registers are never reset.

Register Setting	LCD	PWM	PWM Memory Controller		Alpha- Blend
REG[68h] bit 7 = 1b	Reset	-	-	-	-
REG[68h] bit 6 = 1b	-	Reset	-	-	-
REG[68h] bit 5 = 1b	-	-	Reset	-	-
REG[68h] bit 4 = 1b	-	-	-	Reset	-
REG[68h] bit 3 = 1b	-	-	-	-	Reset

Table 9-4: Software Reset

Note

When REG[68h] bit 0 = 0b the S1D13517 is in power save mode. When returning from power save mode, REG[68h] bit 0 = 1b, reset the LCD sub-system, the PWM sub-system, the memory (SDRAM) controller sub-system and the Alpha-Blend sub-system to re-initialize the sub-systems. When the SDRAM controller is reset, it is necessary to re-initialize the controller.

Chapter 10 Registers

This section discusses how and where to access the S1D13517 registers. It also provides detailed information about the layout and usage of each register.

Burst data writes to the register space are supported for all register write accesses, except write accesses to the Memory Data Port (REG[66h] ~ REG[67h]). All writes to these registers will auto-increment the internal memory address only.

10.1 Register Mapping

All registers and memory are accessed via the Host interface. All accesses are 8-bit only except for the Memory Data Port (REG[66h] ~ REG[67h]) which is accessed according to the configuration of the CNF0 pin (16-bit for CNF0 = 0b, 8-bit for CFN0 = 1b). For further information on this setting, see Section 6.4, "Configuration Options" on page 23.

10.2 Register Set

The S1D13517 registers are listed in the following table.

Register P	g	Register	Pg					
Read-Only Configuration Registers								
REG[00h] Product Code Register	54	REG[02h] Configuration Readback Register	54					
Clock Co	nfigur	ration Registers						
REG[04h] PLL D-Divider Register	55	REG[06h] PLL Setting Register 0	56					
REG[08h] PLL Setting Register 1	56	REG[0Ah] PLL Setting Register 2	56					
REG[0Ch] PLL N-Divider Register	57	REG[0Eh] SS Control Register 0	58					
REG[10h] SS Control Register 1	58	REG[12h] Clock Source Select Register	59					
Panel Co	nfigur	ration Registers						
REG[14h] LCD Panel Type Register	60	REG[16h] Horizontal Display Width Register (HDISP)	60					
REG[18h] Horizontal Non-Display Period Register (HNDP)	61	REG[1Ah] Vertical Display Height Register 0 (VDISP)	61					
REG[1Ch] Vertical Display Height Register 1 (VDISP)	61	REG[1Eh] Vertical Non-Display Period Register (VNDP)	61					
REG[20h] PHS Pulse Width Register (HSW)	62	REG[22h] PHS Pulse Start Position Register (HPS)	62					
REG[24h] PVS Pulse Width Register (VSW)	62	REG[26h] PVS Pulse Start Position Register (VPS)	63					
REG[28h] PCLK Polarity Register	63							
Displa	iy Moo	de Registers						
REG[2Ah] Display Mode Register	64	REG[2Ch] PIP1 Display Start Address Register 0	65					
REG[2Eh] PIP1 Display Start Address Register 1	65	REG[30h] PIP1 Display Start Address Register 2	65					
REG[32h] PIP1 Window X Start Position Register	66	REG[34h] PIP1 Window Y Start Position Register 0	66					
REG[36h] PIP1 Window Y Start Position Register 1	66	REG[38h] PIP1 Window X End Position Register	67					
REG[3Ah] PIP1 Window Y End Position Register 0	67	REG[3Ch] PIP1 Window Y End Position Register 1	67					
REG[3Eh] PIP2 Display Start Address Register 0	68	REG[40h] PIP2 Display Start Address Register 1	68					
REG[42h] PIP2 Display Start Address Register 2	68	REG[44h] PIP2 Window X Start Position Register	68					
REG[46h] PIP2 Window Y Start Position Register 0	69	REG[48h] PIP2 Window Y Start Position Register 1	69					

Table 10-1: S1D13517 Register Set

Register Po)	Register Po	3
REG[4Ah] PIP2 Window X End Position Register	69	REG[4Ch] PIP2 Window Y End Position Register 0	70
REG[4Eh] PIP2 Window Y End Position Register 1	REG[50h] Display Control Register	71	
Input	Mode	e Registers	
REG[52h] Input Mode Register	72	REG[54h] Transparency Key Color Red Register	73
REG[56h] Transparency Key Color Green Register	73	REG[58h] Transparency Key Color Blue Register	74
REG[5Ah] Write Window X Start Position Register	74	REG[5Ch] Write Window Y Start Position Register 0	74
REG[5Eh] Write Window Y Start Position Register 1	74	REG[60h] Write Window X End Position Register	75
REG[62h] Write Window Y End Position Register 0	75	REG[64h] Write Window Y End Position Register 1	75
Memory	Acc	ess Registers	
REG[66h] Memory Data Port Register 0	76	REG[67h] Memory Data Port Register 1	76
Miscell	aneo	us Registers	
REG[68h] Power Save Register	77	REG[6Ah] Non-Display Period Control / Status Register	78
General Purpo	se Oi	utput Pins Registers	
REG[6Ch] General Purpose Output Register 0	79	REG[6Eh] General Purpose Output Register 1	79
PV	VM R	egisters	
REG[70h] PWM Control Register	80	REG[72h] PWM High Duty Cycle Register 0	81
REG[74h] PWM High Duty Cycle Register 1	81	REG[76h] PWM High Duty Cycle Register 2	81
REG[78h] PWM High Duty Cycle Register 3	81	REG[7Ah] PWM Low Duty Cycle Register 0	82
REG[7Ch] PWM Low Duty Register 1	82	REG[7Eh] PWM Low Duty Register 2	82
REG[80h] PWM Low Duty Register 3	82		
SDRAM	Cont	trol Registers	
REG[82h] SDRAM Control Register	83	REG[84h] SDRAM Status Register 0	83
REG[86h] SDRAM Status Register 1	84	REG[88h] SDRAM MRS Value Register 0	85
REG[8Ah] SDRAM MRS Value Register 1	85	REG[8Ch] SDRAM Refresh Counter Register 0	85
REG[8Eh] SDRAM Refresh Counter Register 1	85	REG[90h] SDRAM Write Buffer Memory Size Register 0	86
REG[92h] SDRAM Debug Register	86		
Alpha	-Blen	d Registers	
REG[94h] Alpha-Blend Control Register	87	REG[96h] is Reserved	87
REG[98h] Alpha-Blend Horizontal Size Register	88	REG[9Ah] Alpha-Blend Vertical Size Register 0	88
REG[9Ch] Alpha-Blend Vertical Size Register 1	88	REG[9Eh] Alpha-Blend Value Register	88
REG[A0h] Alpha-Blend Input Image 1 Start Address Register 0	89	REG[A2h] Alpha-Blend Input Image 1 Start Address Register 1	89
REG[A4h] Alpha-Blend Input Image 1 Start Address Register 2	89	REG[A6h] Alpha-Blend Input Image 2 Start Address Register 0	90
REG[A8h] Alpha-Blend Input Image 2 Start Address Register 1	90	REG[AAh] Alpha-Blend Input Image 2 Start Address Register 2	90
REG[ACh] Alpha-Blend Output Image Start Address Register 0	90	REG[AEh] Alpha-Blend Output Image Start Address Register 1	90
REG[B0h] Alpha-Blend Output Image Start Address Register 2	90		
Inter	rrupt	Registers	
REG[B2h] Interrupt Control Register	91	REG[B4h] Interrupt Status Register	92
			-

<i>Table 10-1:</i>	SID13517	' Register Set	(Continued)
--------------------	----------	----------------	-------------

10.3 Register Descriptions

All reserved bits must be set to the default value. Writing a non-default value to a reserved bit may produce undefined results. Bits marked as n/a have no hardware effect. Unless specified otherwise, all register bits are set to 0b during power-on reset.

10.3.1 Read-Only Configuration Registers

	Revision Co	ode bits 1-0					
7	6	5	4	3	2	1	0
bits 7-2		read-only	its [5:0] (Read O y bits indicate the	• /	The product c	ode for the S1	D13517 is
bits 1-0			bits [1:0] (Read (bits indicate the	• /	The revision of	code is 00b	

Default = XXh Read Only									
n/a C	CNF2 Status	CNF1 Status	CNF0 Status						
7 6 5 4 3	2	1	0						

bits 2-0

CNF[2:0] Status (Read Only)

These read-only status bits return the status of the configuration pins CNF[2:0]. For details on CNF[2:0] functionality, see Section 6.4, "Configuration Options" on page 23.

10.3.2 Clock Configuration Registers

Default = 01h	n/a			D-Divide	er bits 5-0		Read/Write
7	6	5	4	3	2	1	0
bit 7	This Wh		e PLL output. , the PLL is dis , the PLL is ena				
	ab	ll other PLL re	gisters must be] bit 0 = 0b) bef		U		
bits 5-0		Divider bits [5:0 se bits determi)] ne the divide ra	tio between (CLKI and the a	actual input clo	ock to the PL
	Note		IKI these bits	must be get a	uch that the int		ala (a. dha DI

Depending on CLKI, these bits must be set such that the internal input clock to the PLL (PLLCLK) is between $1Mhz \sim 2MHz$.

REG[04h] Bits 5-0	D-Divide Ratio
0h	Reserved
01h	2:1 (Default)
02h	3:1
03h	4:1
•	•
•	•
•	•
3Eh	63:1
3Fh	64:1

Table 10-2: PLL D-Divide Selection

Default = 01h								Read/Write	
n/a		VC bits 2-0					Reserved		
7	6	5		4	7	2	1	0	
oits 6-4		C bits [2:0 nese bits de	-		cy of the VCO				
				<i>Table 10-3:</i>	[
			REG	[06h] Bits 6-4	PLL Frequer	ncy			
				000b	50 ~ 100M⊦	łz			
				100b	102 ~ 140MI	Hz			
				101b	142 ~ 180MI	Hz			
REG[08h] PL Default = 00h	L Setting R	egister 1						Read/Write	
n/a				Rese	erved			PLL Clock Divide	
7	6	5	i	4	3	2	1	By 2 0	
oits 6-1 oit 0	Re Tł	eserved		of these bits is		2	1 1		
				ether the PLL of the clock str	· ·	ed or not. Se	e Chapter 9, "C	Clocks" on pag	

REG[0Ah] PLL Setting Register 2 Default = 08h Read/Write									
	n/a					Reserved			
7	6	5		4	3	2	1	0	

This register must be programmed with the value 08h.

Default = 00h													ad/Write
Reserved	-		_	1		N-C	Counter bits	s 6-0	-	I		ı	
7	6		5		4		3		2		1		0
bit 7		Reserv	ed										
		The de	fault va	lue for	this bit	is 0b.							
bits 6-0		N-Cou	nter bits	5 [6:0]									
					configu	re the	PLL Ou	tout (ir	n MHz)	and mu	ist be se	t accor	ding to the
			ing forn					·P ··· ()				
		-											
	PLL Output =((N-Counter + 1) x 2) x PLLCLKI												
			p		X PLL								
		Where											
		F	PLL Ou	tput is t	the desir	red PL	L outpu	t frequ	ency (ir	n MHz)).		
				•	e value		-	-	•				
					e intern		•	· ·			2MHz).		
			-			·· · ·			(
		Note											
		1. 1	The PLI	. outpu	t range	is mini	mum 50)MHz ((REG[0	Ch] = [18h), an	d maxi	mum
		1	80MHz	z (REG	[0Ch] =	59h).							
		2. 7	The com	positic	on of a r	ecomm	ended e	externa	l low-p	ass filte	er chang	ges depe	ending on

2. The composition of a recommended external low-pass filter changes depending on PLL output frequency. See Chapter 18, "PLL" on page 131 for further information.

Target Frequency (MHz)	NN	REG[06h]	REG[08h]	REG[0Ch]	CLKI Input Clock (MHz)	D-Divide Ratio	REG[04h]
60	60	01h	00h	1Dh	24	24:1	17h
66	66	01h	00h	20h	24	24:1	17h
80	80	01h	00h	27h	27	27:1	1Ah
90	90	01h	00h	2Ch	27	27:1	1Ah
60	120	41h	01h	3Bh	24	24:1	17h
66	132	41h	01h	41h	24	24:1	17h
80	160	51h	01h	4Fh	24	24:1	17h
90	180	51h	01h	59h	24	24:1	17h

Tab	ole	10-4	PLL	Setting	Exampl	e

REG[0Eh] SS Default = 3Fh	Ū						Read/Write				
Spread Spectrum Enable	n/a	n/a Reserved									
7	6	5	4	3	2	1	0				
bit 7	This Who Who Note Pr (F	en this bit = 0 en this bit = 1 $\frac{1}{2}$ cogram the SS REG[68h] bit	Spread Spectru)b, SS modulat b, SS modulat S setting registe	ion is disabled. ion is enabled. ers before enab changing the va	ling SS or PL	. Do not char	nge this bit while				
bits 5-0		erved default value	e for these bits	is 11_1111b.							

REG[10h] SS Default = 41h		gister 1					Read/Write		
Reserved		W-Counter bits 2-	0	Reserved					
7	6	5	4	3	2	1	0		
bit 7	Re	eserved							

bits 6-4

The default value for this bit is 0b.

The default value for this off i

W-Counter bits [2:0]

These bits set the width of the SS output frequency change.

REG[10h] bits 6-4	Width of Frequency Change (TYP)
000b	+/- 0.25ns
001b	+/- 0.35ns
010b	+/- 0.45ns
011b	+/- 0.55ns
100b	+/- 0.65ns (default)
All Other Values	Reserved

Table 10-5: W-Counter Selection

bits 3-0

Reserved The default value for these bits is 0001b.

SDCLK Source		n/a	SYSCLK Divide		n/a	SS Clock Sour	ce Select bits 1-0			
Select		1	Select		Т		1			
7	6	5	4	3	2	1	0			
pit 7	Th det WI WI	ails on the cloc nen this bit = 0t nen this bit = 1t	e source of th k structure se o, the SDCLK o, the SDCLK	e Chapter 9, ' Source is the source is the source is the		ge 49.	51D13517. Fo			
pit 4	SYSCLK Divide Select This bit specifies the divide ratio of the internal system clock (SYSCLK) from the SDCLK. For details on the clock structure see Chapter 9, "Clocks" on page 49. When this bit = 0b, the divide ratio of SYSCLK is 1:3. When this bit = 1b, the divide ratio of SYSCLK is 1:2.									
bits 1-0	F SS	DCLK must be Please do not ch Clock Source S	ange this bit Select bits [1:	while operation 0]	C					
	These bits select the source for the SS clock. For details on the clock structure see Chapt 9, "Clocks" on page 49.									
				ock Source Se		-				
		REG[12h]			k Source	4				
		00k		SSISI	not used					
		01			SCLK	_				

1xb

SDCLK must be disabled (REG[68h] bit 0 = 0b) before changing the value of these bits. Please do not change while operating.

SDCLK

Note

The frequency for which SS can be used is 31MHz ~ 80MHz.

10.3.3 Panel Configuration Registers

REG[14h] LO	REG[14h] LCD Panel Type Register										
Default = 00h	ו							Read/Write			
		n/a				Input Image F	ormat bits 1-0	Panel Data Width			
7	6	5		4	3	2	1	0			

bits 2-1

Input Image Format bits [1:0]

These bits select the input image format. For details on these formats see Section 11.2, "Color Formats" on page 98.

Table 10-7: Input Image Format Setting

REG[14h] bits 1-0	Input Image Format
00b	24bpp (RGB 8:8:8) mode 1
01b	24bpp (RGB 8:8:8) mode 2
1xb	16bpp (RGB 5:6:5)

Note

Input image data is always stored in memory as RGB 8:8:8. For details see Section 13.4, "Memory Data" on page 119.

bit 0

Panel Data Width

This bit specifies the data width for the LCD interface. When this bit = 0b, the LCD interface is configured as 24-bit (1 pixel / clock). When this bit = 1b, the LCD interface is configured as 18-bit (1 pixel / clock).

REG[16h] Ho Default = 00h	•	lay Width Reg	gister (HDISP)				Read/Write
n/a			Horizo	ontal Display Width b	its 6-0		
7	6	5	4	3	2	1	0
bits 6-0	Hor	izontal Displa	y Width bits [6	5:0]			

These bits specify the Horizontal Display Width (HDISP) for the LCD panel, in 8 pixel resolution (bytes).

HDISP in number of pixels = $((\text{REG}[16h] \text{ bits } 6-0) + 1) \times 8$

Note

The minimum Horizontal Display Width is 32 pixels and the maximum is 960 pixels.

	00h												Re	ad/Write
					Hori	zontal Non-Dis	play Peri	od bits 7-0)					
7		6		5		4		3		2		1		0
ts 7-0			These b els.	its speci	ify the	ay Period l Horizonta ((REG[18	l Non-	Display		d (HN	DP) fo	r the L	CD pan	el, in pix-
		I	els.			contal Non HNDP	-Displ	ay Peri	od is 4	pixels	and th	e maxi	mum is	512 pix-
			Н	10 11										

			ronada Biopiaj	rioigin bite r e									
7	7 6 5 4 3 2 1 0												
REG[1Ch] Ve Default = 00h	ertical Display	/ Height Regis	ster 1 (VDISP)				Read/Write						
	n/a Vertical Display Height bits 9-8												
7	6	5	4	3	2	1	0						

REG[1Ch] bits 1-0

REG[1Ah] bits 7-0

Vertical Display Height bits [9:0]

These bits specify the Vertical Display Height (VDISP) for the LCD panel, in lines. VDISP in lines = (REG[1Ch] bits 1-0, REG[1Ah] bits 7-0) + 1

Note

The minimum Vertical Display Height is 32 lines and the maximum is 960 lines.

			Vertical Non-Disp	lay Period bits 7-0			
7	6	5	4	3	2	1	0
its 7-0		· ·	the Vertical N		riod (VNDP) for $(1) \ge 2$	or the LCD par	nel, in lines.

The minimum Vertical Non-Display Period is 4 lines and the maximum is 512 lines.

PHS Pulse Polarity			δ-0						
7	6	5	4	3	2	1	0		
bit 7	This b horizo When	ontal sync sign this bit $= 0b$	polarity of th nal of the pan , the horizonta	al sync signal is	s active low.	bit is set acco	rding to the		
oits 6-0	 When this bit = 0b, the horizontal sync signal is active low. When this bit = 1b, the horizontal sync signal is active high. PHS Pulse Width bits [6:0] These bits specify the width of the horizontal sync signal (HSW) for the LCD panel, in pixels. The horizontal sync signal is typically PHS, depending on the panel type. HSW in pixels = (REG[20h] bits 6-0) + 1 								

REG[22h] PH Default = 00h		t Position Re	gister (HPS)				Read/Write				
n/a		PHS Pulse Start Position bits 6-0									
7	6	5	4	3	2	1	0				
bits 6-0			Position bits [6:	-	contal suma sign	al with room	at to the start of				

These bits specify the start position of the horizontal sync signal with respect to the start of Horizontal Non-Display period, in pixels. HPS in pixels = REG[22h] bits 6-0

REG[24h] PV Default = 00h	/S Pulse Widt	h Register (V	SW)				Read/Write				
PVS Pulse Polarity	n/a		PVS Pulse Width bits 5-0								
7	6	5	4	3	2	1	0				
	 PVS Pulse Polarity This bit selects the polarity of the vertical sync signal. This bit is set according t tical sync signal of the panel. When this bit = 0b, the vertical sync signal is active low. When this bit = 1b, the vertical sync signal is active high. 										
bits 5-0	The The	vertical sync	the width of v	rertical sync sig ally PVS, dependents bits 5-0) + 1		-	el, in lines.				

Read/Write

REG[26h] P\ Default = 00h		t Position Reg	ister (VPS)				Read/Write
			PVS Pulse Start	Position bits 7-0			
7	6	5	4	3	2	1	0
bits 7-0		S Pulse Start Po	L .	0] ion of the verti	cal sunc signal	with respect	to the start of

These bits specify the start position of the vertical sync signal with respect to the start of Vertical Non-Display period (VPS), in lines. VPS in lines = REG[26h] bits 7-0

REG[28h] PCLK Polarity Register Default = 00h

PCLK Polarity		Reserved	eserved							
7	6	5	4	3	2	1	0			
bit 7	PCLK Polarity This bit selects the polarity of PCLK. When this bit = 0b, data is output on the rising edge of PCLK. When this bit = 1b, data is output on the falling edge of PCLK.									
bits 2-0 Reserved The default value for these bits is 000b.										

10.3.4 Display Mode Registers

Default = 00	Default = 00h							
	Main Screen Display	y Buffer Select bits 3	-0	Displa	y Data Output Sele	ct bits 1-0	Display Interface Enable	
7	6	5	4	3	2	1	0	

All changes, except to bit 0, entered into this register are not loaded into internal registers until REG[50h] bit 7 has been written with a 1b. Bit 0 is not synchronized with REG[50h] bit 7.

bits 7-4 Main Screen Display Buffer Select bits [3:0]
When the double buffer display is not selected, these bits select the writing buffer from 16 buffers.
When the double buffer display is selected (REG[2Ah] bits 3-1 = 001b), these bit are ignored. (Buffer 1 and 2 are fixed)

REG[2Ah] bits 7-4	Main Screen Display Buffer
0000b	Buffer 1
0001b	Buffer 2
0010b	Buffer 3
0011b	Buffer 4
0100b	Buffer 5
0101b	Buffer 6
0110b	Buffer 7
0111b	Buffer 8
1000b	Buffer 9
1001b	Buffer 10
1010b	Buffer 11
1011b	Buffer 12
1100b	Buffer 13
1101b	Buffer 14
1110b	Buffer 15
1111b	Buffer 16

Table 10-8: Main Screen Display Buffer Selection

bits 3-1 Display Data Output Select bits [2:0] These bits are selected the display data. These bits can be update on LCD running.

Display Data Output
Single buffer display (default)
Double buffer display
PIP1 screen display
PIP2 screen display
PIP1 and PIP2 screen display
Display blanked (all lows output)
Display blanked (all highs output)
Test color bar display

bit 0

Display Interface Enable

Changes to this bit are not synchronized with REG[50h] bit 7 and occur immediately. When this bit = 0b, the LCD display interface is disabled.

When this bit = 1b, the LCD display interface is enabled. The SDCLK should be enabled (REG[68h] bit 0 = 1) before the LCD display interface is enabled.

REG[2C	h] PIP1 I	Display	Start /	Address F	Register 0				
Default = 00h									
	PIP1 Display Start Address bits 7-3 n/a								
7		6		5	4	3	2	1	0
REGI2E	h1 PIP1 I	Displav	Start A	Address F	Register 1				
Default :	-				3				Read/Write
					PIP1 Display Start	Address bits 15-8			
7		6		5	4	3	2	1	0
REG[30	h1 PIP1 [Display	Start A	ddress F	Register 2				
Default :									Read/Write
					PIP1 Display Start	Address bits 23-16			
7		6		5	4	3	2	1	0
REG[30]	h] bits 7-0)							
-	h] bits 7-(
-	h] bits 7		PIP1 Di	splay Star	t Address bits [23:3]			

PIP1 Display Start Address bits [23:3] These bits specify the start address of the PIP1 window image in the display buffer. The value entered into these registers is not loaded into internal registers until REG[50h] bit 7 has been written with a 1b.

PIP1 Display Start Address [23:3] = (REG[30h] bits 7-0, REG[2Eh] bits 7-0, REG[2Ch] bits 7-3)

Default = 00h		Start Positio	n Register				Read/Write		
		PIP1 Window X Start Position bits 9-3							
7	6	5	4	3	2	1	0		
bits 7-1	The the	ese bits determ panel, in 8 pix	Start Position bi ine the X start p cel resolution (b	osition of the ytes). The value	ue entered into	this register i	U		
	into internal registers until REG[50h] bit 7 has been written with a 1b. PIP1 Window X Start Position = (REG[32h] bits 7-0) x $4 + 1$								

- ue of this register is incremented by 8 pixels (1, 9, 17, 25, ..., horizontal size - 7).
- 2. The PIP1 window must be positioned such that it remains within the dimensions of the LCD display.

REG[34h] PI Default = 00h		' Start Positior	n Register 0				Read/Write
			PIP1 Window Y St	art Position bits 9-2			
7	6	5	4	3	2	1	0
REG[36h] PI Default = 00h		Start Positior	n Register 1				Read/Write
		n	/a			PIP1 Window Y S	tart Position bits 1-0
7	6	5	4	3	2	1	0

REG[34h] bits 7-0

REG[36h] bits 1-0

PIP1 Window Y Start Position bits [9:0]

These bits determine the Y start position of the PIP1 Window in relation to the origin of the panel, in lines. The value entered into these registers is not loaded into internal registers until REG[50h] bit 7 has been written with a 1b.

PIP1 Window Y Start Position = (REG [34h] bits 7-0, REG [36h] bits 1-0) + 1

Note

The PIP1 window must be positioned such that it remains within the dimensions of the LCD display.

Default = 0	Un										Read/Write
			PIP1 Wi	ndow X End P	osition bits 9	-3					n/a
7	6		5	4		3		2		1	0
oits 7-1	Tl pa	ese bits nel, in 8	s determin 8 pixel re	solution (nd positi bytes). T	on of th he valu	e entei	ed into	this re	egister is 1	the origin of th not loaded into
			•	-	50h] bit ') .	
			•	ntil REG[nd Positic	-).	

2. The PIP1 window must be positioned such that it remains within the dimensions of the LCD display.

REG[3Ah] PI Default = 00h	P1 Window Y	End Positio	n Register 0				Read/Write
			PIP1 Window Y En	d Position bits 9-2			
7	6	5	4	3	2	1	0

Default = 00h							Read/Write
			PIP1 Window Y Er	nd Position bits 1-0			
7	6	5	4	3	2	1	0

REG[3Ah] bits 7-0 REG[3Ch] bits 1-0

PIP1 Window Y End Position bits [9:0]

These bits determine the Y end position of the PIP1 Window in relation to the origin of the panel, in pixels. The value entered into these registers is not loaded into internal registers until REG[50h] bit 7 has been written with a 1b.

PIP1 Display Window Y End Position = (REG[3Ah] bits 7-0, REG[3Ch] bits 1-0) + 1

Note

The PIP1 window must be positioned such that it remains within the dimensions of the LCD display.

Default = 0		Jisplay	Start	Addres	s Register 0				Read/Write
		PIF	P2 Display	Start Addr	ess bits 7-3			n/a	
7		6		5	4	3	2	1	0
REG[40h] Default = 0		Display	Start /	Address	s Register 1				Read/Write
					PIP2 Display S	Start Address bits 15	5-8		
7		6		5	4	3	2	1	0
REG[42h] Default = 0		Display	Start /	Address	s Register 2				Read/Write
					PIP2 Display S	start Address bits 23	-16		
7		6		5	4	3	2	1	0
REG[42h] REG[40h] REG[3Eh]	bits 7-0)		~~1~~~ C	tart Address bi	4- [0 0-0]			

These bits specify the start address of the PIP2 window image in the display buffer. The value entered into these registers is not loaded into internal registers until REG[50h] bit 7 has been written with a 1b.

PIP2 Display Start Address A [23:3] = (REG[42h] bits 7-0, REG[40h] bits 7-0, REG[3Eh] bits 7-3)

REG[44h] Default =		Window X	Start Position	n Register				Read/Write
Delault -	0011							TCau/ White
			PIP2 Wi	ndow X Start Positio	on bits 9-3			n/a
7		6	5	4	3	2	1	0
bits 7-1		PIP	2 Window X S	tart Position b	oits [9:3]			

These bits determine the X start position of the PIP2 Window in relation to the origin of the panel, in 8 pixel resolution (bytes). The value entered into this register is not loaded into internal registers until REG[50h] bit 7 has been written with a 1b.

PIP2 Window X Start Position = (REG[44h] bits 7-0) x 4 + 1

Note

- The value of this register is incremented by 8 pixels (1, 9, 17, 25, ..., horizontal size 7)
- 2. The PIP2 window must be positioned such that it remains within the dimensions of the LCD display.

Default = 00	1							Read/Write
				PIP2 Window Y Sta	art Position bits 9-2			
7		6	5	4	3	2	1	0
REG[48h] P	P2 W	indow Y	Start Positio	n Register 1				
Default = 00	า			-				Read/Write
			I	n/a			PIP2 Window Y S	tart Position bits 1-0
7		6	5	4	3	2	1	0
EG[46h] bit EG[48h] bit		The the	ese bits determ panel, in pixel	Start Position bi ine the Y start j ls. The value en h] bit 7 has bee	position of the itered into thes	e registers is		0

PIP2 Window Y Start Position = (REG [46h] bits 7-0, REG [48h] bits 1-0) + 1

Note

The PIP2 window must be positioned such that it remains within the dimensions of the LCD display.

REG[4Ah] P	IP2 Window X	End Position	Register						
Default = 00h	า						Read/Write		
	PIP2 Window X End Position bits 9-3 n/								
7	6	5	4	3	2	1	0		
bits 7-1	The pane inter PIP2	se bits determi el, in 8 pixel re rnal registers v 2 Window X E	esolution (byte intil REG[50h]	ts [9:3] osition of the F s). The value e] bit 7 has been (REG [4Ah] bi	ntered into this written with a	s register is no 1 1b.	U		
	Note 1. 2.	The value of size)	indow must be	s incremented positioned suc					

Default = 00h	P2 Window Y		i Register V				Read/Write
			PIP2 Window Y Er	nd Position bits 9-2			
7	6	5	4	3	2	1	0
REG[4Eh] PI Default = 00h	P2 Window Y	End Position	Register 1				Read/Write
		r	n/a			PIP2 Window Y	End Position bits 1-0
7	6	5	4	3	2	1	0

REG[4Ch] bits 7-0 REG[4Eh] bits 1-0

s 1-0 PIP2 Window Y End Position bits [9:0]

These bits determine the Y end position of the PIP2 Window in relation to the origin of the panel, in pixels. The value entered into these registers is not loaded into internal registers until REG[50h] bit 7 has been written with a 1b.

PIP2 Window Y End Position = (REG[4Ch] bits 7-0, REG[4Eh] the bits 1-0) + 1

Note

The PIP2 window must be positioned such that it remains within the dimensions of the LCD display.

Figure 10-1: Display Setting Register Update Timing

10.3.5 Input Mode Registers

REG[52h] Input Mode Register

Default = 00h	-	-					Read/Write
	Write Buffer	Select bits 3-0		Transparency Enable	Reserved	Mirror Display Enable	Rotation Enable
7	6	5	4	3	2	1	0

bits 7-4

Write Buffer Select bits [3:0]

When double buffer display is not selected (REG[2Ah] bits $3-1 \neq 001b$), these bits select which write buffer will be written to by writes to the Memory Data Port registers (REG[66h] ~ REG[67h]). Up to 16 buffers are available based on the amount of memory and the Write Buffer Memory Size (see REG[90h]).

When the double buffer display is selected (REG[2Ah] bits 3-1 = 001b), these bits are ignored and Buffer 1 and 2 are fixed.

REG[52h] bits 7-4	Write Buffer Selected
0000b	Buffer 1
0001b	Buffer 2
0010b	Buffer 3
0011b	Buffer 4
0100b	Buffer 5
0101b	Buffer 6
0110b	Buffer 7
0111b	Buffer 8
1000b	Buffer 9
1001b	Buffer 10
1010b	Buffer 11
1011b	Buffer 12
1100b	Buffer 13
1101b	Buffer 14
1110b	Buffer 15
1111b	Buffer 16

Table 10-10: Write Buffer Selection

Note

These bits do not select the image data that is displayed. The display output (Main and PIP windows) is selected using the register settings in the Display Mode register (REG[2Ah])

Transparency Enable

This bit controls whether the transparency function is enabled for writes to the write buffers. When transparency is enabled, image data that matches the transparency key color as defined by $\text{REG}[54h] \sim \text{REG}[58h]$ will not be written to memory and the existing image data will remain. For further information on the transparency function, see Section 12.2, "Transparency" on page 106.

When this bit = 0b, the Transparency is disabled. When this bit = 1b, the Transparency is enabled.

bit 3
bit 2	Reserved The default value of this bit is 0b.
bit 1	Mirror Display Enable This bit controls whether the mirror display function is enabled for writes to the write buffers. When mirror display is enabled, the image data is "mirrored" in memory. For fur- ther information on the mirror display function, see Section 12.3.2, "Mirror" on page 107. When this bit = 0b, the mirror display function is disabled. When this bit = 1b, the mirror display function is enabled.
bit 0	Rotation Enable This bit controls whether the rotation function is enabled for writes to the write buffers. When rotation is enabled, the image data is rotated by 180° (counter-clockwise) in mem- ory. For further information on the rotation function, see Section 12.3.1, "180° Rotation" on page 106. When this bit = 0b, the rotation function is disabled. When this bit = 1b, the rotation function is enabled.

REG[54h] T Default = 00	ransparency K h	(ey Color Red	Register				Read/Write
		W	indow Transparency	Key Color Red bits 7	-0		
7	6	5	4	3	2	1	0
bits 7-0		1	5 5	or Red bits [7:0]			[50]] h:4 2

These bits only have an effect when the transparency is enabled, REG[52h] bit 3 = 1b. These bits specify the 8-bit red component used to define the window transparency key color.

Bits 2-0 are not used for RGB5:6:5.

Default =	-	parency	Key Color Gre					Read/Write
			W	indow Transparency I	Key Color Green bits 7	-0		
7		6	5	4	3	2	1	0
bits 7-0		T) 1k	hese bits only b	ave an effect v	or Green bits [7: when the trans green componen	parency is en	, L	

Bits 1-0 are not used for RGB5:6:5.

	REG[58h] Transparency Key Color Blue Register Default = 00h Window Transparency Key Color Blue bits 7-0									
7		6	5	4	3	2	1	0		
bits 7-0		The 1b. '	se bits only h	ave an effect		0] sparency is en t used to define	, L			

Bits 2-0 are not used for RGB5:6:5.

	REG[5Ah] Write Window X Start Position Register											
Default = 00h	Read/Write											
Write Window X Start Position bits 9-3	n/a											
7 6 5 4 3 2 1	0											

bits 7-1

Write Window X Start Position bits [9:3]

These bits determine the X start position of the write window in relation to the top left corner of the displayed image, in 8 pixel resolution (bytes). Even in a rotated orientation (see REG[52h] bit 0), the top left corner is still relative to the displayed image.

Write Window X Start Position = (REG[5Ah] bits 7-0) x 4 +1

Note

The value of this register is incremented by 8 pixels (1, 9, 17, 25, ..., horizontal size - 7)

REG[5Ch] W Default = 00h	/rite Window 	Start Positi	on Register 0				Read/Write
			Write Window Y Sta	art Position bits 9-2			
7	6	5	4	3	2	1	0
	6	5	4	3	2	1	0
G[5Eh] W	rite Window Y	Start Position	on Register 1				Dood/Write

	Default = 00h							Read/Write
Ī			n/	/a			Write Window Y St	art Position bits 1-0
	7	6	5	4	3	2	1	0

REG[5Ch] bits 7-0 REG[5Eh] bits 1-0

Write Window Y Start Position bits [9:0]

These bits determine the Y start position of the window in relation to the top left corner of the displayed image, in pixels. Even in a rotated orientation (see REG[52] bit 0), the top left corner is still relative to the displayed image.

Write Window Y Start Position = (REG[5Ch] bits 7-0, REG[5Eh] bits 1-0) + 1

	REG[60h] Write Window X End Position Register									
Default = 00h	Default = 00h Read/Write									
		Write Wi	ndow X End Positior	n bits 9-3			n/a			
7	7 6 5 4 3 2 1									

bits 7-1 Write Window X End Position bits [9:3] These bits determine the X end position of the window in relation to the top left corner of the displayed image, in 8 pixel resolution (bytes). Even in a rotated orientation (see REG[52h] bits 1-0), the top left corner is still relative to the displayed image.

Write Window X End Position = $(\text{REG}[60h] \text{ bits } 7-0) \times 4 + 8$

Note

The value of this register is incremented by 8 pixels (8, 16, 24, 32, ..., horizontal size)

Default = 00h							Read/Write
			Write Window Y End	Position bits 9-2			
7	6	5	4	3	2	1	0
Default = 00h	rite Window Y		Register i				Read/Write
		n/				Write Window Y Er	

REG[62h] bits 7-0 REG[64h] bits 1-0

Write Window Y End Position bits [9:0]

These bits determine the Y end position of the window in relation to the top left corner of the displayed image, in pixels. Even in a rotated orientation (see REG[52h] bits 1-0), the top left corner is still relative to the displayed image.

Write Window Y End Position = (REG[62h] bits 7-0, REG[64h] bits 1-0) + 1

10.3.6 Memory Access Registers

Default =	not appli	cable						Write Only
				Memory Data Po	ort bits 7-0 (WO)			
7		6	5	4	3	2	1	0
REG[67h] Default =		-	Port Register	· 1				Write Only
				Memory Data Po	ort bits 15-8 (WO)			
7		6	5	4	3	2	1	0
REG[<mark>66h</mark>] REG[<mark>67h</mark>]		Tł M	nese bits speci emory Data P	ort bits [7:0] (Wr fy the lsb of the o ort bits [15:8] (W fy the msb of the	data word. Vrite Only)			
		No	1. If CNF0 =	= 1 (8-bit interfac SDCLK is disab			cesses to thi	s register are

3. Burst data writes are supported through these registers. Register auto-increment is automatically disabled once reaching this address. All writes to this register will auto-increment the internal memory address only.

10.3.7 Miscellaneous Registers

LCD Controller	PWM Controller	Memory	SDRAM	Alpha Blending	Res	erved		SDCLK Enable
Reset 7	Reset 6	Controller Reset 5	Controller Reset 4	Reset 3	2		1	0
bit 7	Thi Wh	D Controller R s bit controls t en this bit = 0 en this bit = 1	he internal LC b, the LCD co	ntroller block	block reset.	ormal	ly.	
bit 6	Thi Wh	M Controller s bit controls t en this bit = 0 en this bit = 1	he internal PV b, the PWM co	ontroller block	is operating r	orma	lly.	
bit 5	Thi Wh	mory Controll s bit controls t en this bit = 0 en this bit = 1	he internal me b, the memory	controller blo	ck is operating		nally.	
bit 4	Thi mu Wh	RAM Controll s bit controls t st be initialized en this bit = 0° en this bit = 1°	he internal SD 1. b, the SDRAM	1 controller bl	ock is operatin			the SDRAM
bit 3	Thi Wh	bha Blending C s bit controls t en this bit = 0° en this bit = 1°	he internal alp b, the alpha bl	ha blending control	ler block is op	oeratii		nally.
bits 2-1		served e default value	of these bits i	s 00b.				
bit 0	Thi Wh Wh		b, <mark>SDCLK</mark> is c			-	-	ower save mode urns from powe
		-	-		•	s, SY	SCLK	settings, or en-

Vertical Non- Display Period Status (RO)	Horizontal Non- Display Period Status (RO)	VDP OR'd with HDP Status (RO)		n/a		TE/INT Output Pir bits	
7	6	5	4	3	2	1	0
bit 7	This (VN to th Who	s bit indicates v IDP). VNDP is ne first pixel or en this bit = 0b	whether the LC s defined as the n the first line o, the LCD pan	e time between of the next fran el output is in	it is in a vertica the last pixel ne. a Vertical Disp	al non-display on the last line blay Period. -Display Perio	of one frame
bit 6	This (HN line Who	s bit indicates v IDP). HNDP is n+1. en this bit = 0b	whether the LC s defined as the , the LCD pan	e time between	it is in a horizo the last pixel a Horizontal N	ontal non-displa in line n to the Ion-Display Pe Display Period.	first pixel in
bit 5	VD This Who	P OR'd with H s bit indicates v en this bit = 0b en this bit = 1b	DP Status (Re whether the LC , the LCD pan	ad Only) CD panel is in a lel is in a Displ	a display perio ay period.	d or a non-disp · Vertical Non-J	•
bits 1-0	TF/	INT Output Pi	n Function Sel	oot hits[1.0]			

REG[6Ah] bits 1-0	TE/INT Output Function
00b	Horizontal Non-Display Period
01b	Vertical Non-Display Period
10b	HDP OR'd with VDP
11b	INT

10.3.8 General Purpose Output Pins Registers

Note

When 18-bit TFT is selected (REG[14h] bit 1 = 1b), GPO[9:4] are only available

REG[6Ch] General Purpose Output Register 0 Default = 00h									
	r	n/a		Rese	Reserved GPO9				
7	6	5	4	3	2	1	0		
bits 3-2		Reserved The default value of these bits is 00b.							
bits 1-0	Wri	0	is bit drives GI is bit drives GI						

REG[6Eh] General Purpose Output Register 1 Default = 00h Read/Write									
GPO7 Status	GPO6 Status	GPO5 Status	GPO4 Status	GPO3 Status	GPO2 Status	GPO1 Status	GPO0 Status		
7	7 6 5 4 3 2 1 0								
hite 7.0	CDO	0[7.0] Status							

bits 7-0

GPO[7:0] Status Writing a 0b to this bit drives GPOx low. Writing a 1b to this bit drives GPOx high.

10.3.9 PWM Registers

Figure 10-2: PWM Register Update Timing Sequence

bit 2	PWM Enable This bit Pulse Width Modulation (PWM). When this bit = 0b, PWM is disabled. When PWM is disabled, the PWM output is stopped at the current level and the may be High or Low. Use bits 1-0 of this register to set the desired output level before disabling PWM. When this bit = 1b, PWM is enabled.
bits 1-0	PWM Output Select bits [1:0]

REG[70h] bits 1-0	PWM Output Selected
00b	Low Output (Default)
01b	High Output
1xb	PWM Output

REG[72	h] PWM H	ligh D	uty Cy	cle Re	gister	0				
Default =		-			-					Read/Write
						PWM High D	outy Cycle bits 7-0			
7		6		5		4	3	2	1	0
REG[74	h] PWM H	ligh D	uty Cy	cle Re	gister	1				
Default =	= 00h									Read/Write
						PWM High D	uty Cycle bits 15-8			
7		6		5		4	3	2	1	0
DECIZE	h] PWM H	liah D			aistor '	2				
Default =		iigii D	uty Cy	cie Kei	gister	2				Read/Write
						PWM High Du	ity Cycle bits 23-16			
7		6		5		4	3	2	1	0
REG[78]	h] PWM H	liah D	utv Cv	cle Rei	aister	3				
Default =	-	iigii D	aty cy		giotor					Read/Write
						PWM High Du	ty Cycle bits 31-24			
7		6		5		4	3	2	1	0
REG[72h	1 bits 7-0									
REG[74h	-									
REG[76h	-									
REG[78h	-		PWM F	ligh Di	ity Cyc	ele bits [3]	1.0]			
1201,01	-] 5165 / 0			•		-	-	v cvcle. The v	alue entered	into these regis-

These bits are the value for the PWM High duty cycle. The value entered into these registers is not loaded into internal registers until REG[70h] bit 7 has been written with a 1b.

Default = (00h								Read/Write
					PWM Low Du	ty Cycle bits 7-0			
7		6		5	4	3	2	1	0
REG[7Ch			utv Re	aister 1					
Default = (gister i					Read/Write
					PWM Low Duty	y Cycle bits 15-8			
7		6		5	4	3	2	1	0
REG[7Eh]		Low D	uty Re	gister 2					
REG[7Eh] Default = (Low D	uty Re	gister 2	PWM Low Duty	Cycle bits 23-16			Read/Write
		Low D	uty Re	gister 2	PWM Low Duty	Cycle bits 23-16	2	1	Read/Write
Default = (00h PWM	6		5		1 · · ·	2	1	1
Default = 0 7 REG[80h]	00h PWM	6		5	4	1 · · ·	2	1	0

REG[7Eh] bits 7-0 REG[80h] bits 7-0

PWM Low Duty Cycle bits [31:0]

These bits are the value for the PWM Low duty cycle. The value entered into these registers is not loaded into internal registers until REG[70h] bit 7 has been written with a 1b.

10.3.10 SDRAM Control Registers

REG[82h] Default = 0	SDRAM Cont 02h	rol Register					Read/Write	
	Reserved SDRAM Memory Size Select t							
7	6	5	4	3	2	1	0	
bits 7-2		eserved he default value	of these bits is	s 00_0000b				

bits 1-0 SDRAM Memory Size Select bits [1:0]

REG[82h] bits 1-0	SDRAM Memory Size Selected
0xb	16M Bits
10b	64M Bits (Default)
11b	128M Bits

Default = not ap	plicable							Write Only			
SDRAM Auto Refresh Enable (WO)		Reserved			SDRAM Self Refresh Enable (WO)	SDRAM Power Save Enable (WO)	SDRAM Initialization (WO)	Reserved			
7	6	6 5 4 3 2 1									
bit 7	This SDR Whe	SDRAM Auto Refresh Enable (Write Only) This bit controls SDRAM Auto Refresh. This bit should be set at the same time as the SDRAM Initialization bit (bit 1 of this register). When this bit is written 0b, SDRAM Auto Refresh is disabled. When this bit is written 1b, SDRAM Auto Refresh is enabled.									
bits 6-4		Reserved The default value of these bits is 000b.									
bit 3	This Whe	Self Refresh Enable (Write Only) This bit controls SDRAM Self Refresh When this bit is written 0b, SDRAM Self Refresh is disabled. When this bit is written 1b, SDRAM Self Refresh is enabled.									
bit 2	This Whe		SDI writt	RAM Power ten 0b, SDR	• /						
bit 1	Afte Whe Whe	n this bit is	or re writt writt	set, this bit i ten 0b, the s ten 1b, the S	is used to initia tatus bit is rese	et.	AM. it may only be	written once			

bit 0	Reserved
	The default value of this bit is 0b.

REG[86h] SDR	AM Status	Register 1					Read Only				
SDRAM Auto Refresh Status (RO)		Reserved		SDRAM Self Refresh Status (RO)	SDRAM Power Save Status (RO)	SDRAM Initialization Status (RO)	Reserved				
7	6	5	4	3	2	1	0				
bit 7	Th W	SDRAM Auto Refresh Status (RO) This bit reflects the status of REG[84h] bit 7, SDRAM Auto Refresh Enable. When this bit = 0b, SDRAM Auto Refresh is disabled. When this bit = 1b, SDRAM Auto Refresh is enabled.									
bits <mark>6</mark> -4	-	Reserved The default value of these bits is 000b.									
bit 3	Th W	SDRAM Self Refresh Status (RO) This bit reflects the status of REG[84h] bit 3, SDRAM Self Refresh Enable. When this bit = 0b, SDRAM Self Refresh is disabled. When this bit = 1b, SDRAM Self Refresh is enabled.									
bit 2	SDRAM Power Save Status (RO) This bit reflects the status of REG[84h] bit 2, SDRAM Power Save Enable. When this bit = 0b, SDRAM Power Save is disabled. When this bit = 1b, SDRAM Power Save is enabled.										
bit 1	SDRAM Initialization Status (RO) This bit reflects the status of the SDRAM Initialization sequence (REG[84h] bit $1 = 1b$ When this bit = 0b, the SDRAM Initialization is in progress. When this bit = 1b, the SDRAM Initialization has finished.										
bit 0	Reserved The default value of this bit is 0b.										

REG[88h] SDR Default = 22h	AM MI	RS Va	lue Registe	er O							Re	ad/Write
_					SDRAM MRS	Value bits 7-0						
7	6		5		4	3		2		1		0
REG[8Ah] SDF Default = 00h	RAM M	RS Va	lue Regist	er 1							Re	ad/Write
		n/a		1			1	SDRAM MI	RS Valu	e bits 11-8	ı	
7	6		5		4	3		2		1		0
REG[8Ah] bits : REG[88h] bits 7		Thes		ne MRS	S setting v	values for the from the defa			22h.			
REG[8Ch] SDF Default = FFh	RAM RO	efresh	Counter R	legiste	er O						Re	ad/Write
		1		SI		n Counter bits 7-0	i				1	
7	6		5		4	3		2		1		0
REG[8Eh] SDF Default = 03h		efresh	3	egiste	er 1			SDRAM Refre	esh Cou	nter bits 11-8	Re	ad/Write
7	6		5		4	3		2		1		0
REG[8Eh] bits î REG[8Ch] bits î		Thes auto the c Refre	refresh con ounter. The esh Counter	sed to a number of the sed to a number of th	set the val at the inte of these r	11:0] ue of the ref erval set by t egisters mus (value of the than the SD	hese t sati ese re	registers. sfy the fo egisters in	SDC llowin decir	LK is the	input	
		cycle set-u SDR 11.30 Usin (1/66	es /64ms is p time of th AM refresh 6us < 15.63	used whe court in time for time for the second sec	with a 90M inter = $(1/9)^{2}$ = 64ms/40 the value ry as above 5.50us	alue of 03FF (Hz SDCLK, 0MHz) x 10)96 = $15.63u$ of 03FFh is g re, but with a)96 = $15.63u$	23 = s. good 66N	11.36us		RAM of [∠]	4096 r	efresh

	00h			SDRAM Write Buffer	Memory Size hits 7	.0		Read/Write
7	1	6	5	4	3	2	1	0
oits 7-0		The Buf app	ese bits determ ffer 1 becomes pointed at these	the start addrese bits. The buffe	nemory size o ss 0h fixing of er 3-16 is set at	f each 16-buffer SDRAM, the st similar offset va e start addresses	art address of alue. In case o	f buffer 2 is f initial valu
		The	e start address	of buffer 2: A [of buffer 2: A [of buffer 2: A [21: 14] = (RE	G [90h] bits 7-0)	

LCD Panel Size	Buffer Size	REG[90h] Value
HVGA	512K byte	20h
VGA	1M byte	40h
WVGA	1.25M byte	50h
SVGA	1.5M byte	60h
QHD	1.75M byte	70h

Default = 00h	1						Read Only
			SDRAM Controller	r Debug Status (RO)			
7	6	5	4	3	2	1	0
bit 4	Whe Whe	n this bit = $($ n this bit = 1	ler Read Buffer b, the Read Bu b, the Read Bu d by resetting th	iffer is not emp iffer is empty.	ty.		
bit 3	Whe Whe	n this bit = $($ n this bit = 1	ler Write Buffe b, the Write Bu b, the Write Bu d by resetting th	uffer is not full.			

bits 2-0 SDRAM Controller Status (Read Only) These three bits indicate the status of the SDRAM controller state machine as shown in the following table.

REG[92h] bits 2-0	Status
000b	Reset
001b	Initial
010b	Idle
011b	Read/Write
100b	Auto Refreshing
101b	MRS&PALL
110b	Self Refresh
111b	Power Save

Table 10-15: SDRAM Controller Status

10.3.11 Alpha-Blend Registers

REG[94h] AI Default = not	-	ontrol Regist	er				Write Only
			n/a				Alpha-Blend Start (WO)
7	6	5	4	3	2	1	0

bit 0

Alpha-Blend Start (Write Only)

When this bit is written 0b, there is no effect.

When this bit is written 1b then 0b, Alpha-Blend is started.

REG[96h] is Reserved

This register is Reserved and should not be written.

REG[98h] Al	lpha-Bl	end Ho	rizontal Size I	Register				
Default = 00h	۱							Read/Write
n/a				Alpha-Blen	d Horizontal Image S	Size bits 6-0		
7		6	5	4	3	2	1	0
bits 6-0		The		Alpha-Blend H	Size bits [6:0] Iorizontal Imag Size = ((REG[9			(bytes).
REG[9Ah] A Default = 00h		end Ve	ertical Size Re					Read/Write
			1	Alpha-Blend Vertica	I Image Size bits 7-0	1	1	1
7		6	5	4	3	2	1	0
REG[9Ch] A Default = 00h	•	end Ve	ertical Size Re	gister 1				Read/Write
			n	/a			Alpha-Blend Vertica	al Image Size bits 9- 8
7		6	5	4	3	2	1	0
REG[9Ch] bit REG[9Ah] bit		The		Alpha-Blend H	e bits [9:0] Iorizontal Imaş e = (REG[9Ch]	-	6[9Ah] bits 7-()) + 1

REG[9Eh] Al Default = 00h	pha-Blend Va	lue Regist	er						Rea	d/Write
	out Image Select 5 1-0	Alpha-Blend Value Select bits 5-0								
7	6	5		4	3		2	1		0

bits 7-6

Alpha-Blend Input Image Select bits [1:0] These bits select the Alpha-Blend Input Image.

REG[9Eh] bits 7-6	Alpha-Blend Input Image
0xb	Disabled (Default)
10b	Input Image 1 + Input Image 2
11b	Input Image 1

bits 5-0 Alpha-Blend Value Select bits [5:0]

These bits set the value of Alpha-Blend. When the Alpha-Blend input image setting is input image 1, the value of input image 2 becomes invalid.

Output image = (input image 1 x alpha setting value) * (input image 2 + x (one-alpha setting value)

REG[9Eh] bits 5-0	Alpha Value
00h	0
01h	1/32
02h	2/32
03h	3/32
•	•
•	•
•	•
1Fh	31/32
2xh	1

Table 10-17: Alpha-Blend Value Selection

	Alpha-Blend I	nut Image 1 Star	t Address bits 7-3			n/a	
7	6	5	4	3	2	1	0
,	0	3	–	9	2	·	0
REG[A2h] Alpł Default = 00h	a-Blend In	out Image 1	Start Address R	egister 1			Read/Write
		A	lpha-Blend Input Image ?	Start Address bits	15-8		
7	6	5	4	3	2	1	0
	•		pha-Blend Input Image 1	1	i i	. 1	
-		5	4	3	2	1	0
7	6						
,	-						
EG[A4h] bits 7	7-0						
EG[A4h] bits 7 EG[A2h] bits 7	7-0 7-0	ha-Blend Inr	uit Image 1 Start	Address bits 7	-[23-3]		
EG[A4h] bits 7 EG[A2h] bits 7	7-0 7-0 7-3 Alp		out Image 1 Start			mut Imaga 1 i	n hyte
EG[A4h] bits 7 EG[A2h] bits 7	7-0 7-0 7-3 Alp The		out Image 1 Start fy the memory sta			nput Image 1 i	n byte
7 EG[A4h] bits 7 EG[A2h] bits 7 EG[A0h] bits 7	7-0 7-0 7-3 Alp The add	se bits speci resses.	•	art address of A	Alpha-Blend Ir	1 0	2

Default =	00h		-	-			s Register 0					Re	ead/Write
		Alpha-Ble	end Input Ir	mage 2 St	art Addre	ess bits 7-3					n/a		
7		6		5		4	3		2		1		0
EG[A8h efault =		a-Blend	Input	Image	2 Star	rt Addres	s Register 1					Re	ead/Write
					Alpha-B	lend Input Ima	ge 2 Start Address	s bits 15-8					
7		6		5		4	3		2		1		0
EG[AAł efault =		a-Blend	l Input	Image	2 Sta	rt Addres	s Register 2					Re	ead/Write
				1	Alpha-Bl	end Input Ima	ge 2 Start Address	bits 23-16					
7		6		5		4	3	 	2	<u> </u>	1		0
			These b addresse		cify the	e memory	start address	of Alpha-	Blend I	nput	t Image	e 2 in b	yte
		1	Alpha-E	Blend Ir	nput Ir	mage 2 St	art Address [2	23:3] = (R)	EG[AA	h] bi	ts 7-0).	, (REG	[A8h] h
			•		-	\mathcal{O}	L						
			/ - 0), (K	EG[A6	5h] bits	s 7-3)							[/ tonj t
			/-0), (K	EG[A6	5h] bits	s 7-3)							
EG[ACI	h] Alph			-	-	,	s Register 0						
				-	-	,	s Register 0					Re	
		a-Blend	l Outpu	ıt Imag	je Sta	,	s Register 0				n/a	Re	
		a-Blend	l Outpu	ıt Imag	je Sta	rt Addres	s Register 0		2		n/a 1	Re	
efault = 7 EG[AEI	00h n] Alpha	Alpha-Blend	I Outpu	u t Imag Image Sta	je Sta	rt Addres			2				ead/Writ
efault = 7 EG[AEI	00h n] Alpha	Alpha-Blend	I Outpu	It Image Sta 5 Image Sta 5	je Star art Addre	rt Addres	3 s Register 1		2				ead/Writ
efault = 7 EG[AEr efault =	00h n] Alpha	Alpha-Blenc	I Outpu	ut Image Image Sta 5 It Imag	je Star art Addre	rt Addres	3 S Register 1 nage Start Address	s bits 15-8			1		ead/Writ 0 ead/Writ
efault = 7 EG[AEI	00h n] Alpha	Alpha-Blend	I Outpu	It Image Sta 5 Image Sta 5	je Star art Addre	rt Addres	3 s Register 1	s bits 15-8	2				ead/Writ
efault = 7 EG[AEI efault = 7 EG[B0h	00h 1] Alph: 00h	a-Blend Alpha-Ble 6 a-Blend 6	I Output	ut Image Image Str 5 It Imag 5	je Star art Addre je Star Alpha-B	rt Addres	3 S Register 1 nage Start Address	s bits 15-8		 	1	Re	ead/Writ 0 ead/Writ
efault = 7 EEG[AEH Default = 7 EG[B0h	00h 1] Alph: 00h	a-Blend Alpha-Ble 6 a-Blend 6	I Output	It Image Sta 5 It Image 5 t Imag	je Star art Addre je Star Alpha-B	rt Addres	3 s Register 1 nage Start Address 3 s Register 2	s bits 15-8			1	Re	ead/Writ 0 ead/Writ
Pefault = 7 REG[AEH Default = 7 REG[B0h Default =	00h 1] Alph: 00h	a-Blend 6 a-Blend 6 a-Blend	I Output	11 Image Sta 5 11 Image Sta 5 11 Imag 5	je Star art Addre je Star Alpha-B	rt Addres	3 s Register 1 nage Start Address 3 s Register 2 nage Start Address	s bits 15-8	2		1	Re	ead/Writ 0 ead/Writ 0 ead/Writ
efault = 7 EG[AEH efault = 7 EG[B0h efault = 7	00h 1] Alph: 00h 1] Alph: 00h	a-Blend 6 a-Blend 6 a-Blend	I Output	It Image Sta 5 It Image 5 t Imag	je Star art Addre je Star Alpha-B	rt Addres	3 s Register 1 nage Start Address 3 s Register 2	s bits 15-8			1	Re	ead/Writ 0 ead/Writ
Pefault = 7 REG[AEH Default = 7 REG[B0h Pefault = 7 EG[B0h]	00h] Alph 00h] Alph 00h] Alpha 00h	a-Blend 6 a-Blend 6 a-Blend 6 a-Blend	I Output	11 Image Sta 5 11 Image Sta 5 11 Imag 5	je Star art Addre je Star Alpha-B	rt Addres	3 s Register 1 nage Start Address 3 s Register 2 nage Start Address	s bits 15-8	2		1	Re	ead/Writ 0 ead/Writ 0 ead/Writ
efault = 7 EG[AEr efault = 7 EG[B0h EG[B0h] EG[AEh	00h Alph 00h Alph 00h 00h 1 bits 7- 1 bits 7-	a-Blend 6 a-Blend 6 a-Blend 6 -0	I Output	1t Imag 1mage St 5 1t Imag 5 1t Imag	je Star art Addre je Star Alpha-B e Star Alpha-Bl	rt Addres	3 s Register 1 nage Start Address 3 s Register 2 hage Start Address 3	s bits 15-8	2		1	Re	ead/Writ 0 ead/Writ 0 ead/Writ
efault = 7 EG[AEr efault = 7 EG[B0h efault = 7 EG[B0h EG[AEh	00h Alph 00h Alph 00h 00h 1 bits 7- 1 bits 7-	a-Blend 6 a-Blend 6 a-Blend 6 0 -0 -3	I Output I Output I Output I Output I Output	it Image St 5 it Image 5 it Imag 5 Slend C	je Star art Addre je Star Alpha-B e Star Alpha-Blu	rt Addres	3 s Register 1 nage Start Address 3 s Register 2 nage Start Address 3 s Register 2 nage Start Address 3	s bits 15-8 bits 23-16 its [23:3]	2		1	Re	ead/Writ 0 ead/Writ 0 ead/Writ
Pefault = 7 REG[AEH Default = 7 REG[B0h Default =	00h Alph 00h Alph 00h 00h 1 bits 7- 1 bits 7-	a-Blend 6 a-Blend 6 a-Blend 6 0 -0 -3	I Output	it Image St 5 it Image 5 it Imag 5 it Imag 5 Slend C its spec	je Star art Addre je Star Alpha-B e Star Alpha-Blu	rt Addres	3 s Register 1 nage Start Address 3 s Register 2 hage Start Address 3	s bits 15-8 bits 23-16 its [23:3]	2	 Dutp	1	Re	ead/Writ
efault = 7 EG[AEr efault = 7 EG[B0h efault = 7 EG[B0h EG[AEh	00h Alph 00h Alph 00h 00h 1 bits 7- 1 bits 7-	a-Blend 6 a-Blend 6 a-Blend 6 0 -0 -3	I Output I Output I Output I Output I Output	it Image St 5 it Image 5 it Imag 5 it Imag 5 Slend C its spec	je Star art Addre je Star Alpha-B e Star Alpha-Blu	rt Addres	3 s Register 1 nage Start Address 3 s Register 2 nage Start Address 3 s Register 2 nage Start Address 3	s bits 15-8 bits 23-16 its [23:3]	2	 Dutp	1	Re	ead/Write 0 ead/Write 0 ead/Write

7-0), (REG[ACh] bits 7-3)

10.3.12 Interrupt Registers

The following Figure shows the block diagram of the Alpha-Blend interrupt circuit.

Figure 10-3: Alpha-Blend Interrupt Circuit Block Diagram

REG[B2h] Int	terrupt C	ontrol F	Register							
Default = 00h	•							Read/Write		
n/a		Reserve	t	Alpha-Blend Interrupt Mask Disable	n/a	Re	eserved	Alpha-Blend Interrupt Enable		
7	6		5	4	3	2	1	0		
bits 6-5		Reserved The default value of these bits is 00b								
bit 4		Alpha-Blend Interrupt Mask Disable This bit disables the Alpha-Blend Interrupt Mask. When this bit = 0b, the interrupt mask is enabled. When this bit = 1b, the interrupt mask is disabled.								
bits 2-1		Reserved The default value of these bits is 00b								
bit 0		This bi When	t enables the this bit = 0	rupt Enable le Alpha-Blenc o, the interrupt o, the interrupt	is disabled.					

Default = 00h							Read Only			
n/a Reserved										
7	6	5	4	3	2	1	0			
pits 2-1	Reserved The default value of these bits is 00b.									
oit 0	The default value of these bits is 00b. Alpha-Blend Interrupt Status (Read Only) This bit indicates the status of the Alpha-Blend interrupt. When this bit = 0b, an interrupt has not been generated. When this bit = 1b, an interrupt has been generated.									

REG[B6h] Interrupt Clear Register Default = not applicable Write									
n/a Reserved									
7	6	5	4	3	2	1	0		
bits 2-1	Reserved The default value of these bits is 00b.								
bit 0	This Whe Whe	s bit clears the en this bit is w	rupt Clear (Wi interrupt statu ritten 0b, there ritten 1b then 0	s bit.	Blend interrup	t status bit (RE	EG[B4h] bit 0)		

Chapter 11 Host Interface

11.1 Indirect Interface

Accessing the S1D13517 through the asynchronous host interface is a multiple step process. All Registers and Memory are accessed through the register space.

Note

All Register accesses are 8-bit only, except for the Memory Data Port. If the Host interface is 16-bits wide (CNF0 = 0b), the lsbs (HD[7:0]) are used for all registers except the Memory Data Port. For the Memory Data Port (REG[66h, 67h]), both registers are used when the host interface is 16-bits wide (CNF0 = 0b) and only REG[66h] is used when it is 8-bits wide (CNF0 = 1b).

First, perform a single "Address Write" to setup the register address. Next, perform a "Data Read/Write" to specify the data to be stored or read from the registers or memory specified in the "Address Write" cycle. Subsequent data read/writes without an Address Write to change the register address, will automatically "auto" increment the register address, or the internal memory address if accessing the Memory Data Port (REG[66h], REG[67h]).

To write display data to a Window Aperture, specify the Window coordinates followed by burst data writes to the Memory Data Port to fill the window. In this sequence, the internal memory addressing is automatic (see examples). The Memory Data Port is located directly following the Window coordinates to minimize the number of Address Writes.

Note

Memory read function is not supported

11.1.1 Register Write Procedure

- 1. Perform an address write to setup register address bits 7-0.
- 2. Perform a data write to update the register.
- 3. Additional data writes can be performed as the register addresses will be auto-incremented.

Figure 11-1: Register Write Example Procedure

11.1.2 Register Read Procedure

- 1. Perform an address write to setup register address bits 7-0.
- 2. Perform a data read to get the register value.
- 3. Additional data reads can be performed as the register addresses will be auto-incremented.

Figure 11-2: Register Read Example Procedure

11.1.3 Memory Write (New Window) Procedure

The S1D13517 has a special procedure to minimize setup accesses when bursting window data.

- 1. Set the panel dimension registers before writing any window data.
- 2. Perform an address write to point to the first window register (Window X Start Position Register 0, REG[5Ah]).
- 3. Perform "data" writes to the next six, 8-bit registers (REG[5Ah] ~ REG[64h]). This will setup all the window coordinates.

Note

The register addresses will be auto-incremented after each data write and will point at Memory Data Port Register 0 (REG[66h]) when done.

4. Perform burst data writes to fill the window (the register address will already be pointing at the Memory Data Port).

Figure 11-3: Sequential Memory Write Example

11.1.4 Memory Write (Update Window) Using Existing Window Coordinates

- 1. Perform an address write to point to Memory Data Port Register 0 (REG[66h]).
- 2. Perform burst data writes to fill the window.

Note

In this case, the previous coordinates of the Window Aperture are used. Each write to the Memory Data Port will auto-increment the internal memory address only.

Figure 11-4: Burst Memory Write

11.2 Color Formats

11.2.1 8-bit 16bpp mode (RGB 5:6:5)

Figure 11-5: 8-bit 16bpp mode (RGB 5:6:5)

11.2.2 8-bit 24bpp mode (RGB 8:8:8)

Figure 11-6: 8-bit 24bpp mode (RGB 8:8:8)

Figure 11-7: 16-bit 16bpp mode (RGB 5:6:5)

Figure 11-8: 16-bit 24bpp mode 1 (RGB 8:8:8)

11.2.5 16-bit 24bpp mode 2 (RGB 8:8:8)

Figure 11-9: 16-bit 24bpp mode 2 (RGB 8:8:8)

11.3 PCLK vs. Input Data Rate

The input image data rate from the host interface is shown.

Figure 11-10: PCLK vs. Input Data Rate

Chapter 12 Display Functions

12.1 Display Window

The S1D13517 display window is defined by the size of the LCD display (see REG[16h] and REG[1Ah] ~ REG[1Ch]). All updates to the display window are done through a write window which allows rectangular writes to the selected write buffer (see REG[52h] bits 7-4). The write window is configured based on X/Y Start/End positions (REG[5Ah] ~ REG[64h]) relative to the origin of the display window. Once the write window is configured, all image data is written to the display buffer using the Memory Data Port registers, REG[66h] ~ REG[67h].

The write window X/Y Start/End positions are specified in 8 pixel resolution (horizontal) and 1 line resolution (vertical). All window coordinates are referenced to top left corner of the display window (even when rotation or mirror are enabled no host side translation is required).

The display window source can be selected from any of the available write buffers (REG[2Ah] bits 7-4). All display updates can have independent mirror, rotation, and transparency settings.

12.1.1 Display Buffer Configuration

The Display Buffer is divided into a maximum of 16 write buffer areas. The number of write buffers is limited by the memory size and the write buffer memory size specified in REG[90h]. The write buffers can be used to store image data for the display window, PIP window, or Alpha-Blend image data.

Figure 12-1: Display Buffer Configuration

12.1.2 Write Window Settings

Image data is stored in the display buffer using the write window. The write window can be configured for either a "full screen" or "partial" update according to the setting of the Write Window X/Y Start/End position registers. All position parameters are relative to the origin of the display. Horizontal position (X) must be set in eight pixel resolution. Vertical position (Y) is set in one line resolution.

The destination write buffer and other write options, such as Transparency, Mirror, and Rotation, can be selected using REG[52h]. All writes to a write buffer are "destructive" writes.

Figure 12-2: Write Window Settings

The following example shows a rectangular write window being written to a write buffer with a previously input "full screen" image.

Figure 12-3: Display Window Example

12.2 Transparency

When image data is written to a write buffer, a transparency key color can be specified using REG[54h] ~ REG[58h]. When the Transparency function is enabled (REG[52h] bit 3 = 1b), pixels of the specified key color are not written to the write buffer. This function can be used to overwrite text and icons in display data.

The following example shows an example where the transparency function is enabled for the Write Window. In this case the key color is black so the black pixels are not written to the write buffer.

Figure 12-4: Transparency Example

12.3 Rotation and Mirror

Most computer displays are refreshed in landscape orientation - from left to right and top to bottom. Computer images are stored in the same manner.

Rotation is designed to rotate the displayed image by 180° in a counter-clockwise direction. The rotation is done in hardware and is transparent to the user. It is accomplished by rotating the image data during display writes (see REG[52h] bit 0). By processing the rotation in hardware, there is a performance advantage over software rotation of the displayed image.

Mirror is designed "mirror" the displayed image from right to left. Mirror is done in the hardware and is transparent to the user. The mirror function is done during display writes (see REG[52h] bit 1). Mirroring the image in hardware, also offers a performance advantage over software mirroring of the same image.

12.3.1 180° Rotation

The following figure shows the relationship between the image sent by the Host and the image as displayed on the LCD panel when 180° rotation is enabled (REG[52h] bit 0 = 1b). The application image is written to the S1D13517 as A-B-C-D. However, it is stored in the write buffer as D-C-B-A and the LCD display is refreshed as D-C-B-A.

Figure 12-5: 180° Rotation Example

12.3.2 Mirror

The following figure shows the relationship between the image sent by the Host and the image as displayed on the LCD panel when Mirror is enabled (REG[52h] bit 1 = 1b). The application image is written to the S1D13517 as A-B-C-D. However, it is stored in the write buffer as B-A-D-C and the LCD display is refreshed as B-A-D-C.

Figure 12-6: Mirror Example

12.3.3 180° Rotation and Mirror

The following figure shows the relationship between the image sent by the Host and the image as displayed on the LCD panel when both Mirror and Rotation are enabled (REG[52h] bits 1-0 = 11b). In this case, the image is rotated by the rotation function after the mirror function takes place. The application image is written to the S1D13517 as A-B-C-D. However, it is stored in the write buffer as C-D-A-B and the LCD display is refreshed as C-D-A-B.

Figure 12-7: 180° Rotation and Mirror Example

12.4 Picture-in-Picture

The S1D13517 can display up to two PIP (Picture-in-Picture) windows that overlap the main display window. The PIP windows do not support transparent overlays, but provide windows that can be enabled/disabled without overwriting the display window image data.

The image data for the PIP windows must be input using the write window in the same manner as for the Display Window (see Section 12.1, "Display Window" on page 104). Typically, the PIP window image data is written to unused write buffers and the PIP1/PIP2 Display Start Address registers (REG[2Ch] ~ REG[30h] or REG[3Eh] ~ REG[42h]) are set to the beginning of selected write buffer. The PIP window position and size are configured using X/Y Start/End positions relative to the origin of the display.

If the PIP1 and PIP2 windows are overlapped, the PIP1 window appears "on top" of the PIP2 window.

12.4.1 Picture-in-Picture Window Settings

A PIP window size and position is specified using X/Y Start/End position registers. Each PIP window has it's own set of registers (PIP1: REG[32h] ~ REG[3Ch], PIP2: REG[44h] ~ REG[4Eh]). The PIP Window X/Y Start/End positions are specified in 8 pixel resolution (horizontal) and 1 line resolution (vertical).

Note

The PIP window must be positioned such that it remains within the dimensions of the LCD display.

The PIP window display start address is set to the beginning of the PIP window image data in the appropriate write buffer. The display start address can also be used to scroll PIP window image or provide basic animation. For more information on using the display start address in this manner, see Section 12.4.2, "Picture-in-Picture Window Display Start Address" on page 110.

Figure 12-8: Picture-in-Picture Window Settings

Figure 12-9: Picture-in-Picture Window Example

12.4.2 Picture-in-Picture Window Display Start Address

The PIP window display start addresses can changed to allow scrolling within an image larger than the PIP window or basic animation by changing the start address between a series of images. This method does not alter the image data in the write buffer, but simply changes the image data that is displayed within the PIP window.

For further information on calculating memory addresses, see <cross-ref to section 13.5>.

The following example shows a display window with a single PIP window. The write buffer containing the PIP window image data includes 4 separate images at DSA1, DSA2, DSA3, and DSA4. The PIP window images are "animated" by changing the PIP window display start address.

Figure 12-10: Animation Display Example

12.5 Double Buffer Display

The S1D13517 provides a display output mode which provides double buffering to prevent image tearing for streaming input. When this mode is selected (REG[2Ah] bits 3-1 = 001b), the display buffer is managed automatically. Image data is written to the write window as if a single buffer is being used. When the streaming image data is being input, the first frame is written to Buffer 1 and second frame is written to Buffer 2. Buffer 1 and 2 are fixed.

The buffer read/write pointers can only switch once per frame, at the beginning of the vertical non-display period. The pointers only switch if an animation frame has completed being updated within the last output frame period, and no new animation frame is currently being written. Because of this, each time the user finishes writing a frame of animation data, they should wait until the next vertical non-display period before writing the next frame. This can be accomplished by using the TE pin or by polling the Vertical Display Period Status (REG[6Ah] bit 7). Alternatively, if the user can guarantee that the maximum input animation data frame rate is 1/2 the LCD frame rate and that the burst length for writing a animation frame is less than one LCD frame period, then no checking for the vertical non-display period is required. However, if attention is not paid to allowing the pointers to switch, frames may be dropped.

Figure 12-11: Double Buffer Switching

12.6 Alpha-Blend

Alpha-Blending is used in computer graphics to create the effect of transparency. This technique is useful for graphics that feature glass or liquid objects and is done by combining a translucent foreground with a background color to create a blend. It can also be used for animation, where one image gradually fades into another image.

The Alpha-Blend function blends either one or two images stored in the display buffer according to the selected alpha value. The output is written back to the display buffer again, and returned. Time is required to create the composite image and then write it back to the display buffer using the interval of the display cycle. An interrupt is available which signals the end of the Alpha-Blend and can be used to inform the host CPU.

12.6.1 Alpha-Blend (2 Input Mode)

In Alpha-Blend 2 Input Mode (REG[9Eh] bits 7-6 = 10b), the output window image is generated by blending the images from input windows 1 and 2. Either of the two input windows may overwrite the blended image by setting the desired input window to be the output window. All three windows must be the same size.

Figure 12-12: Alpha-Blend Data Flow (2 Input Mode)

The following shows an example of a 2 Input Mode Alpha-Blend.

Figure 12-13: Alpha-Blend Example

12.6.2 Alpha-Blend (1 Input Mode)

When 1 Input Mode is selected (REG[9Eh] bits 7-6 = 11b), the Alpha-Blend function creates the output image from only input image 1. It is possible to make the output image a copy of input image 1 by specifying an alpha value of 32/32. The size of two images should be made the same.

Figure 12-14: Alpha-Blend Data Flow (1 Input Mode)

12.6.3 Alpha-Blend Window Settings

The size of the Alpha-Blend input/output images is set using Horizontal Size (REG[98h]) and Vertical Size (REG[9Ah] \sim REG[9Ch]) registers. The horizontal size is set in 8 pixel resolution and the vertical size is set in 1 line resolution. The input/output image start addresses must be set in eight pixel/one line resolution depending on the address of SDRAM.

Figure 12-15: Alpha-Blend Window Settings

12.6.4 Alpha-Blend Processing Time

The Alpha-Blend processing time changes depending on the SDCLK frequency and the Alpha-Blend image size because the Alpha-Blend function operates by using the SDRAM memory.

12.6.5 Alpha-Blend Programming Sequence

The following sequence should be used to setup and perform and Alpha-Blend. The sequence assumes that the input images are already loaded into the display buffer.

Figure 12-16: Alpha-Blend Setup Sequence

Figure 12-17: Perform Alpha-Blend Sequence

Note

One method of using the Alpha-Blend output image is setting the output image address to a PIP window and enabling the PIP window once the Alpha-Blend is complete.

Chapter 13 SDRAM Interface

The SDRAM interface accesses external 16/64/128 Mbit single data rate SDRAM effectively by using bank interleave. The initialization sequence and the auto refresh cycle are executed with hardware.

13.1 SDRAM Initialization

SDRAM must be initialized after resetting hardware. After hardware is reset, an initialization command can be executed only once. The command is ignored after initialization.

The initialization sequence is as follows.

- 1. Set the size setting register (REG[82h] bits 1-0) according to the memory size of SDRAM used.
- 2. Set the refresh counter (REG[8Ch] ~ REG[8Eh]) according to the clock frequency of SDRAM used (change from default value is unnecessary for 66MHz or higher).
- 3. Set the Auto Refresh Enable bit (REG[84h] bit 7) to 1b and the SDRAM Initialization bit (REG[84h] bit 1) to 1b.

Steps 4 through 7 are automatically executed in hardware.

- 4. Wait for SDRAM initialization start.
- 5. Precharge all commands are issued.
- 6. The auto refresh command is issued ten times.
- 7. The MRS command is issued. (The setting of the MRS register is unnecessary.)
- 8. Poll the initialization status bit (REG[86h] bit 1) with software until the bit = 1b (initialization end) or wait the processing time of steps 4 through 7 (30,000 clocks of SDCLK).
- 9. SDRAM can now be used.

13.2 SDRAM Connection

When a 16M bit SDRAM is used, the MBA0 pin is connected to the bank signal of the SDRAM.

When the MBA0 and MA11 pins are not used, they must be left unconnected.

13.3 SDRAM Commands

This section explains the SDRAM interface commands.

13.3.1 MRS Command

The setting of the mode register of SDRAM command (MRS) is automatically executed by hardware in the initialization sequence. S1D13517 is set as follows.

MRS	Setting Value
Burst Length	4
Lap Туре	Sequential
CAS Latency	2
Option	All "0"

Table 13-1: MRS Setting

13.3.2 Read / Write Command

Read/Write of SDRAM is accessed respectively by the bank interleave every four bursts. Auto precharge is always enabled (MA10 = Low), and the CAS latency is fixed to two.

13.3.3 Auto Refresh Command

Auto refreshing of SDRAM is automatically executed by hardware by an internal refreshing counter. Set the value of the refresh cycle counter according to the clock frequency of SDRAM used. When the clock frequency is 66MHz or higher, it is not necessary to change the register from the default value.

13.3.4 Self Refresh Command

The SDRAM self-refresh is enabled/disabled with the SDRAM Self Refresh Enable bit (REG[84h] bit 3) by software. This command must be set when SDRAM controller is idle status (REG[86h] bit 6 = 1).

13.3.5 Power Down Command

The SDRAM power save can be enabled/disabled by the SDRAM Power Save Enable bit (REG[84h] bit 2) by software. This command must be set when SDRAM controller is idle status (REG[86h] bit 6 = 1).

13.3.6 Controller Status

The status of the SDRAM controller is indicated by bit REG[86h] bit 6. If the SDRAM controller is move to the idle status (REG[86h] bit 6 = 1), it is necessary to stop the access to SDRAM with disabling LCD display (REG[2Ah] bit 0 = 0) and Alpha-Blend (REG[9Eh] bit 7 = 0). Please put the SDRAM controller into power save state before disabling SDCLK for power saving (REG[68h] bit 0 = 0).

 B_2^5

 B_2^6

13.4 Memory Data

The input image is stored in memory as 24bpp. If the image data is RGB 5:6:5 format, it is converted into RGB 8:8:8 format before being stored, as shown in Table 13-3:, "16bpp (RGB 5:6:5) Input Display Data".

The data format stored in SDRAM is as follows.

 G_2^6

 G_2^7

0006h

 G_{2}^{5}

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0000h	G_0^{7}	${G_0}^{6}$	G_0^{5}	G_0^4	G_0^{3}	G_0^2	G_0^1	G_0^{0}	B_0^{7}	B_0^6	B0 ⁵	B_0^4	B_0^3	B_0^2	B ₀ ¹	B ₀ ⁰
0002h	B ₁ ⁷	Β ₁ ⁶	B1 ⁵	B1 ⁴	B ₁ ³	B1 ²	B ₁ ¹	B1 ⁰	R_0^7	R_0^6	R_0^5	R_0^4	R_0^3	R_0^2	R_0^1	R_0^{0}
0004h	R_1^7	R_1^6	R1 ⁵	R_1^4	R_1^3	R_1^2	R_1^1	R_1^0	G_1^7	G_1^6	G1 ⁵	G_1^4	G_1^3	G_1^2	G_1^1	G_1^0
0006h	${G_2}^7$	${\rm G_2}^{6}$	${\rm G_2}^{5}$	G_2^4	G_2^{3}	G_2^2	G_2^1	G_2^{0}	B_2^{7}	B_2^{6}	B2 ⁵	B_2^4	${\sf B_2}^3$	B_2^2	B_2^{1}	B_2^0

Table 13-2: 24bpp (RGB 8:8:8) Input Display Data

						11	(1	2					
Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit O
0000h	G ₀ ⁷	G_0^{6}	G_0^{5}	G_0^4	G_0^{3}	G_0^2	G_0^{7}	G_0^{6}	B ₀ ⁷	B0 ⁶	B0 ⁵	B ₀ ⁴	B_0^3	B ₀ ⁷	B ₀ ⁶	B0 ⁵
0002h	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴	B ₁ ³	B ₁ ⁷	B1 ⁶	Β ₁ ⁵	R_0^{7}	R_0^6	R_0^{5}	R_0^4	R_0^3	R_0^7	R_0^6	R_0^5
0004h	R ₁ ⁷	R ₁ ⁶	R1 ⁵	R ₁ ⁴	R ₁ ³	R ₁ ⁷	R_1^6	R1 ⁵	G ₁ ⁷	G1 ⁶	G1 ⁵	G_1^4	G_{1}^{3}	G_1^2	G ₁ ⁷	G1 ⁶

 G_2^7

 G_2^6

 B_2^7

 B_2^6

 B_{2}^{5}

 B_2^4

 B_2^3

 B_{2}^{7}

 G_2^3

 G_2^4

 G_2^2

Table 13-3: 16bpp (RGB 5:6:5) Input Display Data

13.5 Memory Address

If the memory address of an image in SDRAM must be entered into the registers to use the display or the Alpha-Blend function, the following method should be used to calculate the memory address.

Image data is arranged in SDRAM using three bytes for each pixel (see <cross-reference to section 13.4>). To determine the address of an image, the top left corner of the image must be calculated based on the X/Y start coordinates of the image data using the following formula. The memory address must be specified as a byte address.

Image address = buffer n + (Ystart x HDW x 3 bytes) + (Xstart x 3 bytes)

Where:

- Buffer n is the memory start address of the write buffer containing the image data. The address is calculated based on the SDRAM Write Buffer Memory Size in REG[90h]
- Ystart is the Y coordinate of the start of the image data relative to the start of write buffer n
- HDW is the horizontal display width as defined by REG[16h]
- Xstart is the X coordinate of the start of the image data relative to the start of write buffer n

Figure 13-1: Image Address in Memory

Chapter 14 PWM Output

The PWM output can be used for the backlight control of the LCD panel. A high pulse width and the row pulse width are set to system clock (SYSCLK) with 32 bit counter. There is a bit (REG 70h bit 7) that updates the register in bulk though the PWM setting register has divided into two or more addresses.

Please make it to disabling (REG[70h] bit 2 = 0b) after it makes it to a logical of hope output by the register (REG[70h] bits 1-0) when you stop the PWM output.

Figure 14-1: Example PWM Timing

Chapter 15 Color Bar Display Test

The test color bar display does not use the SDRAM memory and is selected when REG[2Ah] bits 3-1 = 111b

Figure 15-1: Color Bar Display Test

Chapter 16 Power Save

S1D13517 can control power with software. The operation sequence is shown as follows.

16.1 Sleep Mode

While in sleep mode all internal clocks are disabled including the PLL. On return from sleep mode, the PLL needs 10ms to stabilize. Memory cannot be accessed while in sleep mode. All registers are accessible while in sleep mode.

Figure 16-1: Recommended Procedure for Entering Sleep Mode

Figure 16-2: Recommended Procedure for Exiting Sleep Mode

16.2 Standby Mode

In the standby mode, all internal clocks except the PLL are disabled. Image data can be input immediately after this mode is exited. Registers can be accessed while in standby mode.

Figure 16-3: Recommended Procedure for Entering Standby Mode

Figure 16-4: Recommended Procedure for Exiting Standby Mode

Chapter 17 Use Case Examples

17.1 Initialization Sequence

The following steps are required to initialize S1D13517.

- Set the PLL frequency.
- Set the system clock (SYSCLK).
- Set up the timing and the polarity of signals to the LCD panel.
- Set the SDRAM type.
- Return from sleep mode to standby mode.
- Return from the standby mode to normal operation.

The example on the following page is for a WVGA panel.

Conditions:

- CLKI: 24MHz
- PCLK: 30MHz
- SDRAM clock: 90MHz
- LCD panel: 800x480 (24bpp)
- SDRAM: 64 Mbit
- SS: is enabled.

Figure 17-1: Typical S1D13517 Initialization Sequence

17.2 Display Initialization Sequence

The following steps are required to initialize the S1D13517 Display.

- Initialize the SDRAM
- Set the display mode
- Set the image window size
- The image data is Burst Write
- Enable the LDC display
- Write the image data (repeat if necessary)

Figure 17-2: Typical Display Initialization

Chapter 18 PLL

18.1 PLL External Low-Pass Filter

The following external low-pass filter is recommended for use with the PLL.

Figure 18-1: PLL external low-pass filter recommendation parts

PLL Frequency	R _P	CP
50~74MHz	1KΩ	2000pF
76~100MHz	2ΚΩ	2000pF
102~180MHz	3KΩ	2000pF

Table 18-1: Recommended	Values fo	$r R_P$ and C_P

18.2 Guidelines for PLL Power Layout

The PLL circuit is an analog circuit and is very sensitive to noise on the input clock waveform or the power supply. Noise on the clock or the supplied power may cause the operation of the PLL circuit to become unstable or increase the jitter.

Due to these noise constraints, it is highly recommended that the power supply traces or the power plane for the PLL be isolated from those of other power supplies. Filtering should also be used to keep the power as clean as possible.

The following are guidelines which, if followed, will result in cleaner power to the PLL, resulting in a cleaner and more stable clock. Even a partial implementation of these guidelines will give results.

Figure 18-2: PLL Power Layout

- Place the ferrite beads (L1 and L2) parallel to each other with minimal clearance between them. Both bypass caps (C2 and C3) should be as close as possible to the inductors. The traces from C3 to the power planes should be short parallel traces on the same side of the board with just the normal small clearance between them. Any significant loop area here will induce noise. If there is a voltage regulator on the board, try to run these power traces directly to the regulator instead of dropping to the power planes (still follow above rules about parallel traces).
- The analog ground point where bypass cap (C2) connects to the ground isolation inductor (L2) becomes the analog ground central point for a ground star topology. None of the components connect directly to the analog ground pin of the MGE (PLLV_{SS}) except for a single short trace from C2 to the PLLV_{SS} pin. The ground side of the large bypass capacitor (C1) should also have a direct connection to the star point.

- The same star topology rules used for analog ground apply to the analog power connection where L2 connects to C2.
- All of the trace lengths should be as short as possible.
- If possible, have all the PLL traces on the same outside layer of the board. The only exception is C1, which can be put on the other side of the board if necessary. C1 does not have to be as close to the analog ground and power star points as the other components.
- If possible, include a partial plane under the PLL area only (area under PLL components and traces). The solid analog plane should be grounded to the C2 (bypass) pad. This plane won't help if it is too large. It is strictly an electrostatic shield against coupling from other layers' signals in the same board area. If such an analog plane is not possible, try to have the layer below the PLL components be a digital power plane instead of a signal layer.
- If possible, keep other board signals from running right next to PLL pin vias on any layer.
- Wherever possible use thick traces, especially with the analog ground and power star connections to either side of C2. Try to make them as wide as the component pads thin traces are more inductive.

It is likely that manufacturing rules will prohibit routing the ground and power star connections as suggested. For instance, four wide traces converging on a single pad could have reflow problems during assembly because of the thermal effect of all the copper traces around the capacitor pad. One solution might be to have only a single trace connecting to the pad and then have all the other traces connecting to this wide trace a minimum distance away from the pad. Another solution might be to have the traces connect to the pad, but with thermal relief around the pad to break up the copper connection. Ultimately the board must also be manufacturable, so best effort is acceptable.

Chapter 19 Mechanical

Figure 19-1: QFP15 128-pin Package

Chapter 20 Change Record

X92A-A-001-01 Revision 1.2 - Issued: October xx, 2009

- chapter 2.5 Display Support change bulleted text "Maximum 1024 x 1024 display..." to "Maximum 960 x 960 display..."
- chapter 2.5 Display Support change 16/18/24bpp to 16/18/24-bit
- chapter 2.6 Display Features rewrite section
- chapter 6.2.1 Host Interface add paragraph "For a summary of the Host pin mapping..." and in table add register REG[6Ah] reference to TE/INT pin Description
- chapter 6.2.2 LCD Interface add paragraph "For a summary of the LCD pin mapping..."
- chapter 6.2.5 Miscellaneous for CNF[2:0] description add reference to section 6.4
- chapter 6.2.5 Miscellaneous for PLLGHGO description add reference to chapter 19
- chapter 6.4 Configuration Options rewrite note after table
- chapter 8.2 Reset Timing add t_{RESNC} to figure 8-, Reset Timing
- chapter 8.4.1 Indirect Intel80 Bus correct a typo in note 3, change MD[7:0] to HD[7:0]
- chapter 8.4.2 Indirect ALE Bus correct a typo in note 3, change MD[7:0] to HD[7:0]
- chapter 8.6 LCD Interface Timing in table 8-12, *Panel Timing Parameters*, change VSW Register bits to 5-0 and Max value to 64
- chapter 8.6 LCD Interface Timing in table 8-12, *Panel Timing Parameters*, change HDISP and VDISP Max to 960
- chapter 9.1 Clock Descriptions changes to register references in figure 9-1 Clock Block Diagram
- chapter 9.3 Clock Control in note, change all instances of SYSCLK to SDCLK
- REG[04h] bit 7 in note, change SYSCLK to SDCLK
- REG[04h] bits 5-0 rewrite note "Depending on CLKI, these bits..." and in the table, change M-Divide to D-Divide
- REG[08h] bit 0 rewrite bit description
- REG[0Ch] bits 6-0 add note 1 "The PLL output range is minimum 50MHz (REG[0Ch] = 18h), and maximum 180MHz (REG[0Ch] = 59h)"
- REG[0Eh] bit 7 in note, change SYSCLK to SDCLK
- REG[12h] bit 4 rewrite bit description
- REG[12h] bits 1-0 in note, change SYSCLK to SDCLK
- REG[14h] bits 2-1 rename these bits to "Input Image Format" and add note to bit description
- REG[16h] update the formula in the bit description and in the note change the maximum to 960 pixels
- REG[18h] rename these bits to "Horizontal Non-Display Period" and in the note, change HS Start to HPS and HS Width to HSW

- REG[1Ah] ~ REG[1Ch] in the note change the maximum to 960 lines
- REG[1Eh] in note change maximum to 512 lines
- chapter 10.3.4 Display Mode Registers change section name to "Display Mode Registers" from "Input Mode Register"
- REG[24h] bits 5-0 in bit description formula, change PVS to VSW
- REG[2Ah] bit 0 in bit description change "internal system clock" to SDCLK
- REG[32h] add notes "The value of this register..." and "The PIP1 window must be positioned such that..."
- REG[34h] ~ REG[36h] change register bit order
- REG[34h] ~ REG[36h] add note "The PIP1 window must be positioned such that..."
- Reg[38h] changes to formula in bit description and add notes "The value of this register..." and "The PIP1 window must be positioned such that..."
- REG[3Ah] ~ REG[3Ch] change register bit order
- REG[3Ah] ~ REG[3Ch] add note "The PIP1 window must be positioned such that..."
- REG[44h] remove "Display" from register and bit names and add note 2 "The PIP2 window must be positioned such that..."
- REG[44h] add note "The value of this register..."
- REG[46h] ~ REG[48h] change register bit order
- REG[46h] ~ REG[48h] add note "The PIP2 window must be positioned such that..."
- REG[4Ah] add note 2 "The PIP2 window must be positioned such that ... "
- Reg[4Ah] changes to formula in bit description and add note "The value of this register..."
- REG[4Ch] ~ REG[4Eh] change register bit order
- REG[4Ch] ~ REG[4Eh] add note "The PIP2 window must be positioned such that..."
- REG[50h] change default value to "not applicable"
- REG[52h] bit 7 rewrite bit description
- REG[52h] bit 3 rewrite bit description
- REG[52h] bit 1 rewrite bit description
- REG[52h] bit 0 rewrite bit description
- REG[54h] correct typo in bit description, change REG[53h] to REG[52h]
- REG[56h] correct typo in bit description, change REG[53h] to REG[52h]
- REG[58h] correct typo in bit description, change REG[53h] to REG[52h]
- REG[5Ah] add note "The value of this register..."
- REG[5Ch] ~ REG[5Eh] change register order in formula

- REG[60h] change register reference REG[34h] to REG[52h], changes to formula in bit description and add note "The value of this register..."
- REG[62h] ~ REG[64h] change register reference REG[34h] to REG[52h] and change register order in formula
- REG[66h] ~ REG[67h] change register default values to "not applicable"
- REG[66h] ~ REG[67h] correct typos in bit description, correct register numbers and "internal system clock (SYSCLK)" to SDCLK
- REG[68h] bit 0 in bit description rename bit to "SDCLK Enable" and change SYSCLK to SDCLK
- chapter 10.3.8 General Purpose Output Pins Registers change section name from IO to Output and add note "When 18-bit TFT is selected..."
- REG[84h] change register default value to "not applicable"
- REG[86h} bit 6 reserve this bit
- REG[86h] bit 1 in bit description, change reference to REG[84h] bit 3 to REG[84h] bit 1
- REG[94h] change register default value to "not applicable"
- REG[96h] reserve this register
- REG[B6h] change register default value to "not applicable"
- chapter 11.1.3 Memory Write (New Window) Procedure in #3 change "five" to "six"
- chapter 12 Display Functions rewrite entire section
- chapter 12.1.2 Display Window Setting at the end of the first paragraph change "a multiple of eight" to "an eight pixel resolution"
- chapter 12.2.1 Picture-in-Picture Window Setting at the end of the first paragraph change "a multiple of eight" to "an eight pixel resolution"
- chapter 13.3.6 Controller Status in first paragraph change SYSCLK to SDCLK
- chapter 13.5 Memory Address rewrite section
- chapter 15 Alpha-Blend Interrupt Circuit move the figure and text to chapter 10.3.12 and delete this section
- chapter 16.2 Standby Mode change SYSCLK to SDCLK in figure 16-3 *Recommended Procedure for Entering Standby Mode* and figure 16-4 *Recommended Procedure for Exiting Standby Mode*
- chapter 17.1 Initialization Sequence change SYSCLK to SDCLK in figure 17-1 *Typical S1D13517 Initialization Sequence*
- chapter 17.2 Display Initialization Sequence correct typos in figure 17-2 *Typical Display Initialization*, change "REG[66h], [68h]" to "REG[66h], [67h]"
- chapter 17.2 Display Initialization Sequence correct typos in figure 17-2 *Typical Display Initialization*, change REG[5Ah] = 00h: Xstart = 0001, REG[5Ch] = 00h, REG[5Eh] = 00h: Ystart = 0001, REG[60h] = C6h: Xend = 640, and REG[62h] = 77h, REG[64h] = 03h: Yend = 480

X92A-A-001-01 Revision 1.1 - Issued: August 25, 2009

• chapter 5 Display Data Path - in figure 5-1, change "Main Window" to "Write Window"

- chapter 6.2.3 SDRAM Interface change pins MCS#, MRAS#, MCAS#, MWE# and MCKE SDRAM Reset state / SDRAM Power Save Status to "H", and change MCLKO SDRAM Reset state / SDRAM Power Save Status to "H or L"
- REG[32h] change equation in bit description
- REG[38h] change equation in bit description
- REG[44h] change equation in bit description
- REG[4Ah] change equation in bit description
- REG[5Ah] change equation in bit description
- REG[5Ch] ~ REG[5Eh] correct typos in bit designations of register table
- REG[60h] change equation in bit description
- REG[62h] ~ REG[64h] correct typos in bit designations of register table

X92A-A-001-01 Revision 1.0 - Issued: January 30, 2009

- chapter 4 Block Diagram in figure 4-1 change "SDCLK" to MCLKO
- section 6.2.5 Miscellaneous in table change TEST[1:0] and SCANEN descriptions to "...should be connected to VSS"
- section 8.4.1 Indirect Intel80 Bus in table 8-9 Intel80 Bus A.C. Characteristics, change t_{rodh} MIN to "1"
- section 8.4.2 Indirect ALE Bus in table 8-10 ALE Bus A.C. Characteristics, change troogh MIN to "1"
- section 8.5 SDRAM Interface Timing in table 8-11 SDRAM Interface Timing, change t_{mcl1} and t_{mch1} MIN to "0.3 t_{mcc} 2", and t_{mcl2} and t_{mch2} MIN to "0.5 t_{mcc} 2"
- REG[08h] bit 0 change name in bit description to match register table
- REG[10h] bits 6-4 in table change Width of Frequency Change for other values to reserved
- REG[12h] bits 1-0 in table change 00b SS Clock Source to "SS is not used"
- REG[2Ah] bits 3-1 in table change Display Data Output for 010b, 011b and 100b to "PIP1 screen display", "PIP2 screen display", and "PIP1 and PIP2 screen display" respectively
- REG[2Ah] bit 0 add "Changes to this bit are not synchronized with..." to bit description
- REG[50h] bit 7 change bit name to "Display Setting Register Update"
- REG[5Ah] ~ REG[64h] rename registers and bits to "Write Window..."
- REG[6Ah] bit 5 correct typo in bit description, change "VP" to "VDP"
- REG[6Ah] bits 1-0 in table change TE/INT Output Function for 10b to "HDP OR'd with VDP"
- REG[86h] bit 6 Change bit description to "...When this bit = 0b, the SDRAM Controller is busy or otherwise in use. When this bit = 1b, the SDRAM Controller is idle."
- REG[A2h] bits 7-0 remove typo from bit range in register table, change "bits 7-15-8" to "bits 15-8.
- REG[A4h] bits 7-0 remove typo from bit range in register table, change "bits 7-23-8" to "bits 23-8.

- section 11.1.3 Memory Write (New Window) Procedure change the section name from "New Window Write Procedure" and in step 3 change reference to REG[5Ch] to REG[5Ah]
- section 11.1.4 Memory Write (Update Window) Using Existing Window Coordinates change the section name from "New Window Write Using Existing Window Coordinates"
- section 12.1.2 Display Window Setting in figure 12-2 Display Window Setting, correct typos change "Strra" to "Start", "(0, 0)" to "(1, 1)", and "(H size 1, V size 1)" to "(H size, V size)"
- section 12.2.1 Picture-in-Picture Window Setting in figure 12-5 Picture-in-Picture Window Setting, correct typos change "Strat" to "Start", "(0, 0)" to "(1, 1)", and "(H size 1, V size 1)" to "(H size, V size)"
- section 13.2 SDRAM Connection add this section

AMERICA

EPSON ELECTRONICS AMERICA, INC.

2580 Orchard Parkway San Jose, CA 95131,USA Phone: +1-800-228-3964 FAX: +1-408-922-0238

EUROPE

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15, 80992 Munich, GERMANY Phone: +49-89-14005-0 FAX: +49-89-14005-110

ASIA

EPSON (CHINA) CO., LTD.

7F, Jinbao Bldg., No.89 Jinbao St., Dongcheng District, Beijing 100005, CHINA Phone: +86-10-6410-6655 FAX: +86-10-6410-7320

SHANGHAI BRANCH

7F, Block B, High-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5522 FAX: +86-21-5423-5512

SHENZHEN BRANCH

12F, Dawning Mansion, Keji South 12th Road, Hi-Tech Park, Shenzhen 518057, CHINA Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON HONG KONG LTD.

20/F, Harbour Centre, 25 Harbour Road Wanchai, Hong Kong Phone: +852-2585-4600 FAX: +852-2827-4346 Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110, TAIWAN Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORP. KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677

SEIKO EPSON CORP. SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept. IC International Sales Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117

Document Code: X92A-A-001-01 Issued 2009/11/09