

GTRA263902FC

Thermally-Enhanced High Power RF GaN on SiC HEMT 370 W, 48 V, 2495 – 2690 MHz

Description

The GTRA263902FC is a 370-watt (P_{3dB}) GaN on SiC high electron mobility transistor (HEMT) for use in multistandard cellular power amplifier applications. It features input matching, high efficiency, and a thermally-enhanced package with earless flange.

Package Types: H-37248C-4 PN: GTRA263902FC

Features

- GaN on SiC HEMT technology
- Input matched
- Typical Pulsed CW performance, 2690 MHz, 48 V, combined outputs
 - Output power at P_{3dB} = 370 W
 - Efficiency = 70%
 - Gain = 15 dB
- Capable of handling 10:1 VSWR @48 V, 56 W (CW) output power
- Human Body Model class 1A (per ANSI/ESDA/ JEDEC JS-001)
- Low thermal resistance
- Pb-free and RoHS compliant

RF Characteristics

Single-carrier WCDMA Specifications (tested in Wolfspeed Doherty production test fixture)

 $V_{DD} = 48 \text{ V}, I_{DQ} = 200 \text{ mA}, V_{GS(PEAK)} = V_{GS} @ I_{DQ} = 280 \text{ mA} - 3.0 \text{ V}, P_{OUT} = 56.2 \text{ W} \text{ avg}, f = 2690 \text{ MHz}, 3GPP \text{ signal}, channel bandwidth = 3.84 \text{ MHz}, peak/average = 10 dB @ 0.01\% \text{ CCDF}$

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Linear Gain	G _{ps}	12.5	13.8	—	dB
Drain Efficiency	η _D	50	54	_	%
Adjacent Channel Power Ratio	ACPR	_	-27	-23	dBc
Output PAR @ 0.01% CCDF	OPAR	5	6.7	_	dB

Note:

All published data at T_{CASE} = 25°C unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

Rev. 04.1, 2022-1-27

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

DC Characteristics

Characteristic	Symbol	Min.	Тур.	Max.	Unit	Conditions			
Drain-source Breakdown Voltage (Main)		150	_					M	V _{GS} = -8 V, I _D = 10 mA
Drain-source Breakdown Voltage (Peak)	V _{BR(DSS)}	150		_	V	V _{GS} = -8 V, I _{DS} = 10 mA			
Drain-source Leakage Current (Main)	I _{DSS}	_	_	2.7	mA	$V_{GS} = -8 V, V_{DS} = 10 V$			
Gate Threshold Voltage (main)	N	-3.8	-3	-2.3	V	V _{DS} = 10 V, I _D = 20 mA			
Gate Threshold Voltage (peak)	V _{GS(th)}				v	V _{DS} = 10 V, I _D = 28.8 mA			

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Operating Voltage	V _{DD}	0	_	55	N	
Gate Quiescent Voltage	V _{GS(Q)}	_	-3	_	V	V _{DS} =48 V, I _D = 200 mA

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	V _{DSS}	125	N N
Gate-source Voltage	V _{GS}	-10 to +2	V
Gate Current	١ _G	20	mA
Drain Current	I _D	7.5	A
Junction Temperature	Tj	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V_{DD}) specified above.

Thermal Characteristics

Characteristics	Symbol	Value	Unit	Conditions
Thermal Resistance (main)	$R_{_{ ext{ heta}JC}}$	1.8	°C/W	T _{CASE} = 70°C, P _{DISS} = 77 DC)

Ordering Information

Type and Version Order Code		Package Description	Shipping	
GTRA263902FC V2 R0	GTRA263902FC-V2-R0	H-37248C-4, earless flange	Tape & Reel, 50 pcs	
GTRA263902FC V2 R2	GTRA263902FC-V2-R2	H-37248C-4, earless flange	Tape & Reel, 250 pcs	

Rev. 04.1, 2022-1-27

GTRA263902FC

Typical RF Performance (data taken in production test fixture)

Figure 1. Single-carrier WCDMA Drive-up

 $\begin{array}{l} V_{DD}=48~V,~I_{DQ(MAIN)}=200~mA,\\ V_{GS(PEAK)}=-6.0~V,~P_{OUT}=47.5~dBm,\\ 3GPP~WCDMA~signal,~PAR=10~dB \end{array}$

Figure 4. CW Performance

 $V_{\text{DD}} = 48 \text{ V}, \text{ I}_{\text{DQ(MAIN)}} = 200 \text{ mA}, \\ V_{\text{GS(PEAK)}} = -6.0 \text{ V}$

Figure 3. Single-carrier WCDMA Broadband Performance

```
\begin{array}{l} V_{\text{DD}} = 48 \; \text{V}, \; \text{I}_{\text{DQ}(\text{MAIN})} = 200 \; \text{mA}, \\ V_{\text{GS}(\text{PEAK})} = -6.0 \; \text{V}, \; P_{\text{OUT}} = 47.5 \; \text{dBm}, \\ \text{3GPP} \; \text{WCDMA signal}, \; \text{PAR} = 10 \; \text{dB} \end{array}
```


Typical RF Performance (cont.)

 $I_{DQ(MAIN)} = 200 \text{ mA}, V_{GS(PEAK)} = -6.0 \text{V}, f = 2690 \text{ MHz}$

 $\label{eq:VDD} \begin{array}{l} \mathsf{V}_{\text{DD}} = 48 \text{ V}, \ \mathsf{I}_{\text{DQ(MAIN)}} = 200 \text{ mA}, \\ \mathsf{V}_{\text{GS(PEAK)}} = -6.0 \text{ V} \end{array}$

Load Pull Performance

Main Side Load Pull Performance – Pulsed CW signal: 10 μ s, 10% duty cycle, 48 V, I_{DQ} = 200 mA, class AB

		P _{3dB}									
	Max Output Power Max Drain Efficienc					Max Output Power					
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]
2620	10.4 – j6.7	3.88 - j4.7	16.37	52.80	190.55	65.2	2.84 - j2.35	18.15	50.98	125.3	75.3
2690	7.6 – j6.7	3.91 – j5.35	15.79	52.85	192.75	62.4	2.55 – j2.27	18.05	50.69	117.2	76.6

Peak Side Load Pull Performance - Pulsed CW signal: 10 µs, 10% duty cycle, 48 V, V_{GS(PEAK)} = -5 V, class C

		P _{3dB}									
	Max Output Power					Max Drain Efficiency					
Freq [MHz]	Zs [Ω]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]	Zl [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	ηD [%]
2620	16.8 – j16.8	2.35 – j3.92	14.72	54.55	285.1	68.1	1.68 – j2.17	16	52.29	169.43	77.6
2690	20 – j7.5	2.5 – j4.37	14.32	54.67	293.1	66.4	2.14 – j2.52	15.3	53.12	205.11	77.7

Rev. 04.1, 2022-1-27

Reference Circuit, 2620 – 2690 MHz

Reference circuit assembly diagram (not to scale)

Rev. 04.1, 2022-1-27

Reference Circuit Assembly

DUT	GTRA263902FC-V2
Test Fixture Part No.	LTA/GTRA263902FC-V2
РСВ	Rogers 4350, 0.508 mm [0.020"] thick, 2 oz. copper, ε_r = 3.66, f = 2620 – 2690 MHz

Find Gerber files for this test fixture on the Wolfspeed Web site at <u>www.wolfspeed.com/RF</u>

Components Information

Component	Description	Manufacturer	P/N
Input			
C101, C105, C107, C108	Capacitor, 10 pF	ATC	ATC800A100JT250T
C102, C109	Capacitor, 1 µF	Murata Electronics North America	GRM21BR71H105KA12L
C103, C110	Capacitor, 10 μF	Taiyo Yuden	UMK325C7106MM-T
C104	Capacitor, 1.0 pF	ATC	ATC600S1R0JT250T
C106	Capacitor, 1.2 pF	ATC	ATC600S1R2JT250T
R101, R102	Resistor, 5.6 ohms	Panasonic Electronic Components	ERJ-8RQJ5R6V
R103	Resistor, 50 ohms	Richardson	C16A50Z4
U1	Hybrid Coupler	Anaren	X3C26P1-03S
Output			
C201, C206	Capacitor, 1.5 pF	ATC	ATC600S1R5JT250T
C202, C209	Capacitor, 10 pF	ATC	ATC800A100JT250T
C203, C210	Capacitor, 1 µF	TDK Corporation	C4532X7R2A105M230KA
C204, C211,C212	Capacitor, 10 μF	AVX Corporation	2225PC105KAT1A
C205	Capacitor, 220 µF	Panasonic Electronic Components	ECA-2AHG221
C207, C208	Capacitor, 10 pF	ATC	ATC600F100JW250T

Pinout Diagram (top view)

Description Drain Device 1 Drain Device 2 Gate Device 1 Gate Device 2 Source (flange)

Rev. 04.1, 2022-1-27

Package Outline Specifications (top view) – Package H-37248C-4

Diagram Notes-unless otherwise specified:

- 1. Interpret dimensions and tolerances per ASME Y14.5M-1994
- 2. Primary dimensions are mm, alternate dimensions are inches
- 3. All tolerances ± 0.127 [0.005]
- 4. Pins: D1, D2 drain, G1, G2 gate, S source (flange)
- 5. Lead thickness: $0.13 \pm 0.05 [0.005 \pm 0.002]$
- 6. Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

Rev. 04.1, 2022-1-27

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

© 2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 04.1, 2022-1-27