

CY91F467EA

32-bit FR60 Family CY91460E Series Microcontroller

CY91460E series is a line of general-purpose 32-bit RISC microcontrollers designed for embedded control applications which require high-speed real-time processing, such as consumer devices and on-board vehicle systems. This series uses the FR60 CPU, which is compatible with the FR family* of CPUs.

This series contains the LIN-USART and CAN controllers.

Features

FR60 CPU Core

- 32-bit RISC, load/store architecture, five-stage pipeline
- 16-bit fixed-length instructions (basic instructions)
- Instruction execution speed: 1 instruction per cycle
- Instructions including memory-to-memory transfer, bit manipulation, and barrel shift instructions: Instructions suitable for embedded applications
- Function entry/exit instructions and register data multi-load store instructions: Instructions supporting C language
- Register interlock function: Facilitating assembly-language coding
- Built-in multiplier with instruction-level support Signed 32-bit multiplication: 5 cycles Signed 16-bit multiplication: 3 cycles
- Interrupts (save PC/PS): 6 cycles (16 priority levels)
- Harvard architecture enabling program access and data access to be performed simultaneously
- Instructions compatible with the FR family

Internal Peripheral Resources

- General-purpose ports: Maximum 170 ports
- DMAC (DMA Controller)

Maximum of 5 channels able to operate simultaneously. (External to external: 1 channel)

3 transfer sources (external pin/internal peripheral/software) Activation source can be selected using software.

Activation source can be selected using software.

Addressing mode specifies full 32-bit addresses (increment/decrement/fixed)

Transfer mode (demand transfer/burst transfer/step transfer/block transfer)

Transfer data size selectable from 8-/16-/32-bit

Multi-byte transfer enabled (by software)

DMAC descriptor in I/O areas $(200_{H}\mbox{ to }240_{H},\ 1000_{H}\mbox{ to }1024_{H})$

■ A/D converter (successive approximation type)

10-bit resolution: 24 channels

Conversion time: minimum 1 µs

- External interrupt inputs: 14 channels
 8 channels shared with CAN RX or I2C pins
- Bit search module (for REALOS)
 Function to search from the MSB (most significant bit) for the position of the first "0", "1", or changed bit in a word
- LIN-USART (full duplex double buffer): 5 channels Clock synchronous/asynchronous selectable Sync-break detection Internal dedicated baud rate generator
- I²C* bus interface (supports 400 kbps): 3 channels Master/slave transmission and reception Arbitration function, clock synchronization function
- CAN controller (C-CAN): 2 channels Maximum transfer speed: 1 Mbps 32 transmission/reception message buffers
- Stepper motor controller: 6 channels

4 high current output to each channel 2 synchronized PWMs per channel (8-/10-bit)

Sound generator: 1 channel

Tone frequency: PWM frequency divide-by-two (reload value + 1)

Alarm comparator: 1 channel

Monitor external voltage Generate an interrupt in case of voltage lower/higher than the defined thresholds (reference voltage)

- 16-bit PPG timer: 12 channels
- 16-bit PFM timer: 1 channel
- 16-bit reload timer: 8 channels
- 16-bit free-run timer: 8 channels (1 channel each for ICU and OCU)
- Input capture: 8 channels (operates in conjunction with the free-run timer)
- Output compare: 4 channels (operates in conjunction with the free-run timer)
- Up/Down counter: 3 channels (3*8-bit or 1*16-bit + 1*8-bit)
- Watchdog timer
- Real-time clock
- Low-power consumption modes: Sleep/stop mode function

Cypress Semiconductor Corporation

Document Number: 002-09308 Rev. *A

- Supply Supervisor: Low voltage detection circuit for external V_{DD}5 and internal 1.8 V core voltage
- Clock supervisor Monitors the sub-clock (32 kHz) and the main clock (4 MHz), and switches to a recovery clock (CR oscillator, etc.) when the oscillations stop.
- Clock modulator
- Clock monitor
- Sub-clock calibration

Corrects the real-time clock timer when operating with the 32 kHz or CR oscillator

Main oscillator stabilization timer

Generates an interrupt in sub-clock mode after the stabilization wait time has elapsed on the 23-bit stabilization wait time counter

Sub-oscillator stabilization timer

Generates an interrupt in main clock mode after the stabilization wait time has elapsed on the 15-bit stabilization wait time counter

Shutdown Mode

- In low leakage shutdown mode, the internal main power supply is switched off. Only the following resources and meories remain active:
 - □ Standby RAM (16 KByte)
 - Real Time Clock
 - 4 MHz oscillator, 32 kHz oscillator, RC oscillator
 - Power management logic
 - Hardware Watchdog and Clock Supervisor

Package and Technology

- Package: LQFP-208 (low profile QFP)
- CMOS 0.18 µm technology
- Power supply range 3 V to 5 V (1.9 V/1.8 V internal logic provided by a step-down voltage converter)
- Operating temperature range: between 40 °C and + 105 °C

Contents

1. Product Lineup4	14.1
2. PIN ASSIGNMENT6	14.2
2.1 CY91F467EA6	14.3
3. Pin Description7	14.4
3.1 CY91F467EA	14.5
3.2 Power Supply/Ground Pins13	
4. I/O Circuit Types	14.6
5. Handling Devices	15. Men
5.1 Preventing Latch-up	16. Men
5.2 Handling of Unused Input Pins21	16.1
5.3 Power Supply Pins	17. I/O N
5.4 Crystal Oscillator Circuit	17. //0 1
5.5 Notes on Using External Clock	17.2
5.6 Mode Pins (MD_x)21	18. Inter
5.7 Notes on Operating in PLL Clock Mode	
5.8 Pull-up Control	19. Rec
5.9 Notes on PS Register22	19.1
6. Notes on Debugger22	19.2
6.1 Execution of the RETI Command	20. Elec
6.2 Break Function22	20.1
6.3 Operand Break22	20.2
7. Block Diagram23	20.3
7.1 CY91F467EA23	20.4 20.5
8. A/D Converter/Range Comparator	20.0
8.1 Overview of A/D Converter and A/D Range	20.0
Comparator	20.7
8.2 A/D Converter Input Impedance	21. Orde
8.3 Block Diagram of A/D Converter	
8.4 Registers of the A/D Converter27	22. Pacl
8.5 Range Comparator35	23. Арр
8.6 Operation of A/D Converter41	23.1
8.7 ADC Interrupt Generation and DMA Access45	23.2
9. Hardware Watchdog (Extension)	Docume
9.1 Enabling the Hardware Watchdog in SLEEP and	Sales, S
STOP State46	
10. Clock Supervisor (New Feature)	
10.1 Overview Clock Supervisor48	
10.2 Clock Supervisor Register49	
10.3 Block Diagram Clock Supervisor50	
10.4 Operation Modes	
10.5 Cautions65	
11. USART LIN/FIFO (Extension)66	
11.1 USART End of Transmission Interrupt (ET)66	
12. Shutdown Mode 68	
12.1 Overview68	
12.2 Standby RAM	
12.3 Shutdown Registers	
12.4 Shutdown Operation74	
13. CPU and Control Unit81	
13.1 Features	
13.2 Internal Architecture	
13.3 Programming Model82	

	13.4 Registers83	
 4 6 7 7	14. Embedded Program/Data Memory (Flash) 86 14.1 Flash Features 86 14.2 Operation Modes 86 14.3 Flash Access in CPU Mode 87 14.4 Parallel Flash Programming Mode 89 14.5 Poweron Sequence in Parallel Programming	
13 14	Mode90 14.6 Flash Security91	
21	15. Memory Space93	
21 21 21 21	16. Memory Maps	
21 21	17. I/O Map 95 17.1 CY91F467EA	
21 22	18. Interrupt Vector Table120	
22 22 22 22 22	19. Recommended Settings 124 19.1 PLL and Clockgear Settings 124 19.2 Clock Modulator Settings 124	
22 22 22 22 23 23 24	20. Electrical Characteristics 130 20.1 Absolute Maximum Ratings 130 20.2 Recommended Operating Conditions 132 20.3 DC Characteristics 134 20.4 A/D Converter Characteristics 138 20.5 Alarm Comparator Characteristics 142 20.6 FLASH Memory Program/Erase Characteristics 143	
24 25	20.7 AC Characteristics	
26	-	
27	22. Package Dimension	
35	23. Appendix	
41 45	23.1 Revision History	
4 5 46	Document History	
40	-	
46	Sales, Solutions, and Legal Information	

1. Product Lineup

Feature	CY91FV460B	CY91F467DA CY91F467DB	CY91F467EA
Max. core frequency (CLKB)	100 MHz	96 MHz	100 MHz
Max. resource frequency (CLKP)	50 MHz	48 MHz	50 MHz
Max. external bus freq. (CLKT)	50 MHz	48 MHz	50 MHz
Max. CAN frequency (CLKCAN)	50 MHz	48 MHz	50 MHz
Technology	0.18 µm	0.18 µm	0.18 µm
Software-Watchdog	yes	yes	yes
Hardware-Watchdog (RC osc. based)	yes (disengageable), can be activated in SLEEP/STOP	yes	yes, can be activated in SLEEP/STOP
Bit Search	yes	yes	yes
Reset input (INITX)	yes	yes	yes
Clock Modulator	yes	yes	yes
Clock Monitor	yes	yes	yes
Low Power Mode	yes	yes	yes
Shutdown Mode	no, emulation by software	no	yes
DMA	5 ch	5 ch	5 ch
MMU/MPU	MPU (16 ch) ¹⁾	MPU (8 ch) ¹⁾	MPU (8 ch) ¹⁾
Flash memory	2112 KByte or external emulation SRAM	1088 KByte	1088 KByte
Flash Protection	yes	yes	yes
D-RAM	64 KByte	32 KByte	64 KByte
ID-RAM	64 KByte	32 KByte	48 KByte
Standby RAM	no	no	16 KByte
Flash-Cache (F-cache)	16 KByte	8 KByte	8 KByte
Boot-ROM / BI-ROM	16 KByte Boot Flash	4 KByte	4 KByte
RTC	1 ch	1 ch	1 ch
Free Running Timer	8 ch	8 ch	8 ch
ICU	8 ch	8 ch	8 ch
OCU	8 ch	4 ch	4 ch
Reload Timer	8 ch	8 ch	8 ch
PPG 16-bit	16 ch	12 ch	12 ch
PFM 16-bit	1 ch	1 ch	1 ch
Sound Generator	1 ch	1 ch	1 ch
Up/Down Counter (8-/16-bit)	4 ch (8-bit) / 2 ch (16-bit)	3 ch (8-bit) / 1 ch (16-bit)	3 ch (8-bit) / 1 ch (16-bit)
C_CAN	6 ch (128 msg)	3 ch (32 msg)	2 ch (32 msg)

Feature	CY91FV460B	CY91F467DA CY91F467DB	CY91F467EA
LIN-USART	16 ch FIFO	1 ch + 4 ch FIFO	1 ch + 4 ch FIFO
I2C (400k)	8 ch	3 ch	3 ch
FR external bus	yes (32-bit addr, 32-bit data)	yes (26-bit addr, 32-bit data)	yes (26-bit addr, 32-bit data)
External Interrupts	32 ch	14 ch	14 ch
SMC	6 ch	6 ch	6 ch
ADC (10 bit)	32 ch, with Range Comparator	24 ch	24 ch, with Range Comparator
Alarm Comparator	2 ch	1 ch	1 ch
Supply Supervisor (low voltage detection)	yes	yes	yes
Clock Supervisor	yes	yes	yes
Main clock oscillator	4 MHz	4 MHz	4 MHz
Sub clock oscillator	32 kHz	32 kHz	32 kHz
RC Oscillator	100 kHz / 2 MHz	100 kHz / 2 MHz	100 kHz / 2 MHz
PLL	x 25	x 24	x 25
DSU4	yes	-	-
EDSU	yes (32 BP) ¹	yes (16 BP) ¹	yes (16 BP) ¹
Supply Voltage	1.8 V + 3 V / 5 V	3 V / 5 V	3 V / 5 V
Regulator	no	yes	yes
Power Consumption	n.a.	< 2 W	< 1.3 W
Temperatur Range (Ta)	070 C	-40105 C	-40105 C
Package	BGA896	QFP208	LQFP208
Power on to PLL run	< 20 ms	< 20 ms	< 20 ms
Flash Download Time	< 8 sec typical	< 6 sec typical	< 6 sec typical

1. MPU channels use EDSU breakpoint registers (shared operation between MPU and EDSU).

2. PIN ASSIGNMENT

2.1 CY91F467EA

LQR208

Note: Difference versus CY91460D series: At pins 95+96, RX2 and TX2 of CAN2 are removed.

3. Pin Description

3.1 CY91F467EA

Pin no.	Pin name	I/O	I/O circuit type 1	Function
2 to 9	P01_0 to P01_7	I/O	А	General-purpose input/output ports
	D16 to D23			Signal pins of external data bus (bit16 to bit23)
10 to 17	P00_0 to P00_7	I/O	А	General-purpose input/output ports
	D24 to D31			Signal pins of external data bus (bit24 to bit31)
18 to 25	P07_0 to P07_7	I/O	А	General-purpose input/output ports
	A0 to A7			Signal pins of external address bus (bit0 to bit7)
28 to 35	P06_0 to P06_7	I/O	А	General-purpose input/output ports
	A8 to A15			Signal pins of external address bus (bit8 to bit15)
36 to 43	P05_0 to P05_7	I/O	А	General-purpose input/output ports
	A16 to A23			Signal pins of external address bus (bit16 to bit23)
44, 45	P04_0, P04_1	I/O	А	General-purpose input/output ports
	A24, A25			Signal pins of external address bus (bit24, bit25)
46 to 49	P08_0 to P08_3	I/O	А	General-purpose input/output ports
	WRX0 to WRX3			External write strobe output pins
50	P08_4	I/O	А	General-purpose input/output port
	RDX			External read strobe output pin
51	P08_5	I/O	А	General-purpose input/output port
	BGRNTX			External bus release reception output pin
54	P08_6	I/O	А	General-purpose input/output port
	BRQ			External bus release request input pin
55	P08_7	I/O	А	General-purpose input/output port
	RDY			External ready input pin
56 to 59	P09_0 to P09_3	I/O	А	General-purpose input/output ports
	CSX0 to CSX3			Chip select output pins
60, 61	P09_6, P09_7	I/O	А	General-purpose input/output ports
	CSX6, CSX7			Chip select output pins
62	P10_1	I/O	А	General-purpose input/output port
	ASX			Address strobe output pin
63	P10_2	I/O	А	General-purpose input/output port
	BAAX			Burst address advance output pin
64	P10_3	I/O	А	General-purpose input/output port
	WEX			Write enable output pin
65	P10_4	I/O	А	General-purpose input/output port
	MCLKO			Clock output pin for memory
66	P10_5	I/O	А	General-purpose input/output port
	MCLKI			Clock input pin for memory

Pin no.	Pin name	I/O	I/O circuit type 1	Function
67	P10_6	I/O	Α	General-purpose input/output port
	MCLKE			Clock enable signal pin for memory
68	MONCLK	0	М	Clock monitor pin
70	MD_2	I	G	Mode setting pins
71	MD_1	I	G	
72	MD_0	I	G	
73	INITX	I	Н	External reset input pin
74	X1A	_	J2	Sub clock (oscillation) output
75	X0A	_	J2	Sub clock (oscillation) input
76	X1	_	J1	Clock (oscillation) output
77	X0	_	J1	Clock (oscillation) input
83 to 86	P24_0 to P24_3	I/O	Α	General-purpose input/output ports
	INT0 to INT3			External interrupt input pins
87	P24_4	I/O	С	General-purpose input/output port
	INT4			External interrupt input pin
	SDA2			I ² C bus DATA input/output pin
88	P24_5	I/O	С	General-purpose input/output port
	INT5			External interrupt input pin
	SCL2			I ² C bus clock input/output pin
89	P24_6	I/O	С	General-purpose input/output port
	INT6			External interrupt input pin
	SDA3			I ² C bus DATA input/output pin
90	P24_7	I/O	С	General-purpose input/output port
	INT7			External interrupt input pin
	SCL3			I ² C bus clock input/output pin
91	P23_0	I/O	A	General-purpose input/output port
	RX0			RX input pin of CAN0
	INT8			External interrupt input pin
92	P23_1	I/O	А	General-purpose input/output port
	TX0			TX output pin of CAN0
93	P23_2	I/O	A	General-purpose input/output port
	RX1			RX input pin of CAN1
	INT9			External interrupt input pin
94	P23_3	I/O	A	General-purpose input/output port
	TX1			TX output pin of CAN1
95 ²	P23_4	I/O	A	General-purpose input/output port
	INT10			External interrupt input pin
96 ²	P23_5	I/O	А	General-purpose input/output port
97	P22_0	I/O	A	General-purpose input/output port
	INT12			External interrupt input pin

Pin no.	Pin name	I/O	I/O circuit type 1	Function
98	P22_2	I/O	А	General-purpose input/output port
	INT13			External interrupt input pin
99	P22_4	I/O	С	General-purpose input/output port
	SDA0			I ² C bus data input/output pin
	INT14			External interrupt input pin
100	P22_5	I/O	С	General-purpose input/output port
	SCL0			I ² C bus clock input/output pin
101	P20_0	I/O	A	General-purpose input/output port
	SIN2			Data input pin of USART2
	AIN0			Up/down counter input pin
102	P20_1	I/O	A	General-purpose input/output port
	SOT2			Data output pin of USART2
	BIN0			Up/down counter input pin
103	P20_2	I/O	A	General-purpose input/output port
	SCK2			Clock input/output pin of USART2
	ZIN0			Up/down counter input pin
	CK2			External clock input pin of free-run timer 2
106	P19_0	I/O	A	General-purpose input/output port
	SIN4			Data input pin of USART4
107	P19_1	I/O	А	General-purpose input/output port
	SOT4			Data output pin of USART4
108	P19_2	I/O	А	General-purpose input/output port
	SCK4			Clock input/output pin of USART4
	CK4			External clock input pin of free-run timer 4
109	P19_4	I/O	А	General-purpose input/output port
	SIN5			Data input pin of USART5
110	P19_5	I/O	А	General-purpose input/output port
	SOT5			Data output pin of USART5
111	P19_6	I/O	А	General-purpose input/output port
	SCK5			Clock input/output pin of USART5
	CK5			External clock input pin of free-run timer 5
112	P18_0	I/O	A	General-purpose input/output port
	SIN6			Data input pin of USART6
	AIN2			Up/down counter input pin
113	P18_1	I/O	A	General-purpose input/output port
	SOT6			Data output pin of USART6
	BIN2			Up/down counter input pin

Pin no.	Pin name	I/O	I/O circuit type 1	Function
114	P18_2	I/O	А	General-purpose input/output port
	SCK6			Clock input/output pin of USART6
	ZIN2			Up/down counter input pin
	CK6			External clock input pin of free-run timer 6
115	P18_4	I/O	А	General-purpose input/output port
	SIN7			Data input pin of USART7
	AIN3			Up/down counter input pin
116	P18_5	I/O	А	General-purpose input/output port
	SOT7			Data output pin of USART7
	BIN3			Up/down counter input pin
117	P18_6	I/O	А	General-purpose input/output port
	SCK7			Clock input/output pin of USART7
	ZIN3			Up/down counter input pin
	CK7			External clock input pin of free-run timer 7
118 to 121	P15_0 to P15_3	I/O	A	General-purpose input/output ports
	OCU0 to OCU3			Output compare output pins
	TOT0 to TOT3			Reload timer output pins
122 to 129	P14_0 to P14_7	I/O	A	General-purpose input/output ports
	ICU0 to ICU7			Input capture input pins
	TIN0 to TIN7			External trigger input pins of reload timer
	TTG8 to TTG11, TTG4/12 to TTG7/15			External trigger input pins of PPG timer
132 to 135	P17_4 to P17_7	I/O	A	General-purpose input/output ports
	PPG4 to PPG7			Output pins of PPG timer
136 to 139	P16_0 to P16_3	I/O	A	General-purpose input/output ports
	PPG8 to PPG11			PPG timer output pins
140	P16_4	I/O	A	General-purpose input/output port
	PPG12			Output pin of PPG timer
	SGA			SGA output pin of sound generator
141	P16_5	I/O	A	General-purpose input/output port
	PPG13			Output pin of PPG timer
	SGO			SGO output pin of sound generator
142	P16_6	I/O	A	General-purpose input/output port
	PPG14			Output pin of PPG timer
	PFM			Pulse frequency modulator output pin
143	P16_7	I/O	A	General-purpose input/output port
	PPG15			PPG timer output pin
	ATGX			A/D converter external trigger input pin
147	ALARM_0	Ι	N	Alarm comparator input pin

Pin no.	Pin name	I/O	I/O circuit type	Function
148 to 155	P29_0 to P29_7	I/O	В	General-purpose input/output ports
	AN0 to AN7			Analog input pins of A/D converter
158	P27_0	I/O	F	General-purpose input/output port
	SMC1P0			Controller output pin of Stepper motor
	AN16			Analog input pin of A/D converter
159	P27_1	I/O	F	General-purpose input/output port
	SMC1M0			Controller output pin of Stepper motor
	AN17			Analog input pin of A/D converter
160	P27_2	I/O	F	General-purpose input/output port
	SMC2P0			Controller output pin of Stepper motor
	AN18			Analog input pin of A/D converter
161	P27_3	I/O	F	General-purpose input/output port
	SMC2M0			Controller output pin of Stepper motor
	AN19			Analog input pin of A/D converter
164	P27_4	I/O	F	General-purpose input/output port
	SMC1P1			Controller output pin of Stepper motor
	AN20			Analog input pin of A/D converter
165	P27_5	I/O	F	General-purpose input/output port
	SMC1M1			Controller output pin of Stepper motor
	AN21			Analog input pin of A/D converter
166	P27_6	I/O	F	General-purpose input/output port
	SMC2P1			Controller output pin of Stepper motor
	AN22			Analog input pin of A/D converter
167	P27_7	I/O	F	General-purpose input/output port
	SMC2M1			Controller output pin of Stepper motor
	AN23			Analog input pin of A/D converter
168	P26_0	I/O	F	General-purpose input/output port
	SMC1P2			Controller output pin of Stepper motor
	AN24			Analog input pin of A/D converter
169	P26_1	I/O	F	General-purpose input/output port
	SMC1M2			Controller output pin of Stepper motor
	AN25			Analog input pin of A/D converter
170	P26_2	I/O	F	General-purpose input/output port
	SMC2P2			Controller output pin of Stepper motor
	AN26			Analog input pin of A/D converter
171	P26_3	I/O	F	General-purpose input/output port
	SMC2M2			Controller output pin of Stepper motor
	AN27			Analog input pin of A/D converter

Pin no.	Pin name	I/O	I/O circuit type 1	Function
174	P26_4	I/O	F	General-purpose input/output port
	SMC1P3			Controller output pin of Stepper motor
	AN28			Analog input pin of A/D converter
175	P26_5	I/O	F	General-purpose input/output port
	SMC1M3			Controller output pin of Stepper motor
	AN29			Analog input pin of A/D converter
176	P26_6	I/O	F	General-purpose input/output port
	SMC2P3			Controller output pin of Stepper motor
	AN30			Analog input pin of A/D converter
177	P26_7	I/O	F	General-purpose input/output port
	SMC2M3			Controller output pin of Stepper motor
	AN31			Analog input pin of A/D converter
178	P25_0	I/O	E	General-purpose input/output port
	SMC1P4			Controller output pin of Stepper motor
179	P25_1	I/O	E	General-purpose input/output port
	SMC1M4			Controller output pin of Stepper motor
180	P25_2	I/O	E	General-purpose input/output port
	SMC2P4			Controller output pin of Stepper motor
181	P25_3	I/O	E	General-purpose input/output port
	SMC2M4			Controller output pin of Stepper motor
184	P25_4	I/O	E	General-purpose input/output port
	SMC1P5			Controller output pin of Stepper motor
185	P25_5	I/O	E	General-purpose input/output port
	SMC1M5			Controller output pin of Stepper motor
186	P25_6	I/O	E	General-purpose input/output port
	SMC2P5			Controller output pin of Stepper motor
187	P25_7	I/O	E	General-purpose input/output port
	SMC2M5			Controller output pin of Stepper motor
189	P13_0	I/O	A	General-purpose input/output port
	DREQ0			DMA external transfer request input
190	P13_1	I/O	Α	General-purpose input/output port
	DACKX0			DMA external transfer acknowledge output pin
191	P13_2	I/O	Α	General-purpose input/output port
	DEOTX0			DMA external transfer EOT (End of Track) output pin
	DEOP0			DMA external transfer EOP (End of Process) output pin
192 to 199	P03_0 to P03_7	I/O	A	General-purpose input/output ports
	D0 to D7			Signal pins of external data bus (bit0 to bit7)
200 to 207	P02_0 to P02_7	I/O	A	General-purpose input/output ports
	D8 to D15			Signal pins of external data bus (bit8 to bit15)

1. For information about the I/O circuit type, refer to I/O Circuit Types.

2. Difference versus CY91460D series: At pins 95+96, RX2 and TX2 of CAN2 are removed.

3.2 Power Supply/Ground Pins

Pin no.	Pin name	I/O	Function
1, 27, 53, 69, 79, 105, 131, 157, 188	VSS5	Supply	Ground pins
163, 173, 183	HVSS5		Ground pins for Stepper motor controller
26, 52, 208	VDD35		Power supply pins for external data bus
78, 104, 130, 156	VDD5		Power supply pins
162, 172, 182	HVDD5		Power supply pins for Stepper motor controller
81, 82	VDD5R		Power supply pins for internal regulator
144	AVSS5		Analog ground pin for A/D converter
146	AVCC5		Power supply pin for A/D converter
145	AVRH5		Reference power supply pin for A/D converter
80	VCC18C		Capacitor connection pin for internal regulator

4. I/O Circuit Types

Туре	Circuit	Remarks
В	pull-up control driver strength control data line pull- down control R CMOS hysteresis type1 CMOS hysteresis type2 CMOS hysteresis type3	CMOS level output (programmable $I_{OL} = 5 \text{ mA}$, $I_{OH} = -5 \text{ mA}$ and $I_{OL} = 2 \text{ mA}$, $I_{OH} = -2 \text{ mA}$) 2 different CMOS hysteresis inputs with input shutdown function Automotive input with input shutdown function TTL input with input shutdown function Programmable pull-up resistor: 50 k Ω approx. Analog input
C	pull-up control	CMOS level output (I_{OL} = 3 mA, I_{OH} = -3 mA) 2 different CMOS hysteresis inputs with input shutdown function Automotive input with input shutdown function TTL input with input shutdown function Programmable pull-up resistor: 50 k Ω approx.

Туре	Circuit	Remarks
D	pull-up control	CMOS level output (I_{OL} = 3 mA, I_{OH} = -3 mA) 2 different CMOS hysteresis inputs with input shutdown function Automotive input with input shutdown function TTL input with input shutdown function Programmable pull-up resistor: 50 k Ω approx. Analog input
E	pull-up control driver strength control data line pull- down control R CMOS hysteresis type1 CMOS hysteresis type2 CMOS hysteresis type2 TTL input standby control for input shutdown	CMOS level output (programmable $I_{OL} = 5 \text{ mA}$, $I_{OH} = -5 \text{ mA}$ and $I_{OL} = 2 \text{ mA}$, $I_{OH} = -2 \text{ mA}$, and $I_{OL} = 30 \text{ mA}$, $I_{OH} = -30 \text{ mA}$) 2 different CMOS hysteresis inputs with input shutdown function - Automotive input with input shutdown function TTL input with input shutdown function Programmable pull-up resistor: $50 \text{ k}\Omega$ approx.

Туре	Circuit	Remarks
F	pull-up control driver strength control data line pull- down control R CMOS hysteresis type1 CMOS hysteresis type2 CMOS hysteresis type3	CMOS level output (programmable $I_{OL} = 5 \text{ mA}$, $I_{OH} = -5 \text{ mA}$ and $I_{OL} = 2 \text{ mA}$, $I_{OH} = -2 \text{ mA}$, and $I_{OL} = 30 \text{ mA}$, $I_{OH} = -30 \text{ mA}$) 2 different CMOS hysteresis inputs with input shutdown function Automotive input with input shutdown function TTL input with input shutdown function Programmable pull-up resistor: $50 \text{ k}\Omega$ approx. Analog input
G	R Hysteresis inputs	Mask ROM and EVA device: CMOS Hysteresis input pin Flash device: CMOS input pin 12 V withstand (for MD [2:0])
H	Pull-up Resistor Hysteresis inputs	CMOS Hysteresis input pin Pull-up resistor value: 50 kΩ approx.

Туре	Circuit	Remarks
J1		High-speed oscillation circuit:
		 Programmable between oscillation mode (external crystal or resonator connected to X0/X1 pins) and Fast external Clock Input (FCI) mode (external clock connected to X0 pin)
	R S FCI	Feedback resistor = approx. 2 * 0.5 MΩ. Feedback resistor is grounded in the center when the oscillator is disabled or in FCI mode.
	FCI or osc disable	
J2		Low-speed oscillation circuit:
	X1A	 Feedback resistor = approx. 2 * 5 MΩ. Feedback resistor is grounded in the center when the oscillator is disabled.
	osc disable	

Туре	Circuit	Remarks
K	pull-up control driver strength outrol pull- down control R CMOS hysteresis type1 CMOS hysteresis type2 CMOS hysteresis type3	CMOS level output (programmable I _{OL} = 5 mA, I _{OH} = -5 mA and I _{OL} = 2 mA, I _{OH} = -2 mA) 2 different CMOS hysteresis inputs with input shutdown function Automotive input with input shutdown function TTL input with input shutdown function Programmable pull-up resistor: 50 kΩ approx. LCD SEG/COM output
L	pull-up control driver strength control data line pull- down control R D CMOS hysteresis type1 CMOS hysteresis type2 CMOS hysteresis type3	CMOS level output (programmable $I_{OL} = 5 \text{ mA}$, $I_{OH} = -5 \text{ mA}$ and $I_{OL} = 2 \text{ mA}$, $I_{OH} = -2 \text{ mA}$) 2 different CMOS hysteresis inputs with input shutdown function Automotive input with input shutdown function TTL input with input shutdown function Programmable pull-up resistor: 50 k Ω approx. Analog input LCD Voltage input

5. Handling Devices

5.1 Preventing Latch-up

Latch-up may occur in a CMOS IC if a voltage higher than ($V_{DD}5$, $V_{DD}35$ or HV_{DD}5) or less than ($V_{SS}5$ or HV_{SS}5) is applied to an input or output pin or if a voltage exceeding the rating is applied between the power supply pins and ground pins. If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Therefore, be very careful not to apply voltages in excess of the absolute maximum ratings.

5.2 Handling of Unused Input Pins

If unused input pins are left open, abnormal operation may result. Any unused input pins should be connected to pull-up or pull-down resistor (2 k Ω to 10 k Ω) or enable internal pullup or pulldown resisters (PPER/PPCR) before the input enable (PORTEN) is activated by software. The mode pins MD_x can be connected to V_{SS}5 or V_{DD}5 directly. Unused ALARM input pins can be connected to AV_{SS}5 directly.

5.3 Power Supply Pins

In CY91460 series, devices including multiple power supply pins and ground pins are designed as follows; pins necessary to be at the same potential are interconnected internally to prevent malfunctions such as latch-up. All of the power supply pins and ground pins must be externally connected to the power supply and ground respectively in order to reduce unnecessary radiation, to prevent strobe signal malfunctions due to the ground level rising and to follow the total output current ratings. Furthermore, the power supply pins and ground pins and ground pins of the CY91460 series must be connected to the current supply source via a low impedance.

It is also recommended to connect a ceramic capacitor of approximately 0.1 µF as a bypass capacitor between power supply pin and ground pin near this device.

This series has a built-in step-down regulator. Connect a bypass capacitor of 4.7 µF (use a X7R ceramic capacitator) to VCC18C pin for the regulator.

5.4 Crystal Oscillator Circuit

Noise in proximity to the X0 (X0A) and X1 (X1A) pins can cause the device to operate abnormally. Printed circuit boards should be designed so that the X0 (X0A) and X1 (X1A) pins, and crystal oscillator, as well as bypass capacitors connected to ground, are located near the device and ground.

It is recommended that the printed circuit board layout be designed such that the X0 and X1 pins or X0A and X1A pins are surrounded by ground plane for the stable operation.

Please request the oscillator manufacturer to evaluate the oscillational characteristics of the crystal and this device.

5.5 Notes on Using External Clock

When using the external clock, it is necessary to simultaneously supply the X0 (X0A) and the X1 (X1A) pins. In the described combination, X1 (X1A) should be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. At X0 and X1, a frequency up to 16 MHz is possible.

5.6 Mode Pins (MD_x)

These pins should be connected directly to the power supply or ground pins. To prevent the device from entering test mode accidentally due to noise, minimize the lengths of the patterns between each mode pin and power supply pin or ground pin on the printed circuit board as possible and connect them with low impedance.

5.7 Notes on Operating in PLL Clock Mode

If the oscillator is disconnected or the clock input stops when the PLL clock is selected, the microcontroller may continue to operate at the free-running frequency of the self-oscillating circuit of the PLL. However, this self-running operation cannot be guaranteed.

5.8 Pull-up Control

The AC standard is not guaranteed in case a pull-up resistor is connected to the pin serving as an external bus pin.

5.9 Notes on PS Register

As the PS register is processed in advance by some instructions, when the debugger is being used, the exception handling may result in execution breaking in an interrupt handling routine or the displayed values of the flags in the PS register being updated. As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, the operation before and after the EIT always proceeds according to specification.

The following behavior may occur if any of the following occurs in the instruction immediately after a DIV0U/DIV0S instruction:

- (a) a user interrupt or NMI is accepted;
- (b) single-step execution is performed;
- (c) execution breaks due to a data event or from the emulator menu.
 - 1. D0 and D1 flags are updated in advance.
 - 2. An EIT handling routine (user interrupt/NMI or emulator) is executed.
 - Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as those in 1.

The following behavior occurs when an ORCCR, STILM, MOV Ri, PS instruction is executed to enable a user interrupt or NMI source while that interrupt is in the active state.

- 1. The PS register is updated in advance.
- 2. An EIT handling routine (user interrupt/NMI or emulator) is executed.
- 3. Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in 1.

6. Notes on Debugger

6.1 Execution of the RETI Command

If single-step execution is used in an environment where an interrupt occurs frequently, the corresponding interrupt handling routine will be executed repeatedly to the exclusion of other processing. This will prevent the main routine and the handlers for low priority level interrupts from being executed (For example, if the time-base timer interrupt is enabled, stepping over the RETI instruction will always break on the first line of the time-base timer interrupt handler).

Disable the corresponding interrupts when the corresponding interrupt handling routine no longer needs debugging.

6.2 Break Function

If the range of addresses that cause a hardware break (including event breaks) is set to the address of the current system stack pointer or to an area that contains the stack pointer, execution will break after each instruction regardless of whether the user program actually contains data access instructions.

To prevent this, do not set (word) access to the area containing the address of the system stack pointer as the target of the hardware break (including an event breaks).

6.3 Operand Break

It may cause malfunctions if a stack pointer exists in the area which is set as the DSU operand break. Do not set the access to the areas containing the address of system stack pointer as a target of data event break.

7. Block Diagram

7.1 CY91F467EA

8. A/D Converter/Range Comparator

The new A/D Converter with Range Comparator is available on CY91FV460B and some new flash devices and is backward compatible to the A/D converter used on older devices. Beside the Range Comparator, 32 separated result data registers, a second interrupt flag and a new behaviour regarding reading the ADCS0.ACH[5:0] bits have been implemented.

There is one software incompatibility: Read-modify-write operation to the register ADCS0 is not allowed. See the description of the ADCS0.ACH[5:0] bits on page 31ff.

This chapter provides an overview of the A/D converter, describes the register structure and functions, and describes the operation of the A/D converter.

8.1 Overview of A/D Converter and A/D Range Comparator

The A/D converter converts analog input voltages into digital values and provides the following features. Any ADC cannel can be assigned to one of 4 Range Comparators.

- 8.1.1 Features of the A/D converter:
- Conversion time: minimum 1 µs per channel.
- RC type successive approximation conversion with sample & hold circuit
- 10-bit or 8-bit resolution
- Program section analog input from 32 channels
- 1 common result data register and 32 dedicated channel result data registers
- Single conversion mode:Convert the specified channel(s) only once.
- Continuous mode:Repeatedly convert the specified channels.
- Scan conversion mode: Continuous conversion of multiple channels, programmable for up to 32 channels
- Stop mode:Convert one channel, then temporarily halt until the next activation.

(Enables synchronization of the conversion start timing.)

- A/D conversion can be followed by an A/D conversion interrupt request to CPU. This interrupt, an option that is ideal for continuous processing can be used to start a DMA transfer of the results of A/D conversion to memory.
- A/D conversion of all enabled channels (scan conversion) can be followed by an A/D End of Scan interrupt request to CPU. The data is stored into dedicated channel result registers, which can be read out using DMA transfer.
- Conversion startup may be by software, external trigger (falling edge) or timer (rising edge).
- 8.1.2 Features of the A/D Range Comparator (RCO):
- 4 conversion result Range Comparator channels, comparing the upper 8 bit of the conversion result with an upper and a lower threshold. The thresholds are programmable for the 4 comparators independendly.
- Any ADC channel can be assigned to one of the 4 range comparators.
- The comparision results will set "overflow" and "interrupt" flags per ADC channel, depending on the configuration. It is possible to configure the comparision for:

□ "out of range": The flags are set if the A/D result is below the lower OR above the upper threshold.

- □ "inside range": The flags are set if the A/D result is above the lower AND below the upper threshold.
- The configuration can be set individually per ADC channel.
- Range comparision can be followed by an A/D Range Comparator interrupt request to CPU.

8.2 A/D Converter Input Impedance

The following figure shows the sampling circuit of the A/D converter:

Do not set Rext over maximum sampling time (Tsamp). Rext = Tsamp / (7*Cin) - Rin

8.3 Block Diagram of A/D Converter

The following figure shows block diagram of A/D converter.

8.4 Registers of the A/D Converter

The A/D converter with Range Comparator has the following registers:

Address	Address	x=0 or 1	for ADC0,	ADC1 ¹ resp	ectively	Pogiotor
(ADC0)	(ADC1 ¹)	+0	+1	+2	+3	Register
0001A0 _H	0005E0 _H	ADx	ERH	ADx	ERL	A/D channel Enable register
0001A4 _H	0005E4 _H	ADxCS1	ADxCS0			A/D Control / Status register 0 + 1, A/D Conversion Result register
0001A8 _H	0005E8 _H	ADxCT1	ADxCT0	ADxSCH	ADxECH	Sampling timer setting register, Start Channel setting register, End Channel setting register
0006B0 _H	0006DC _H	ADxCS2	-	-	-	A/D Control / Status register 2
000688 _H	0006B4 _H	RCOxH0	RCOxL0	RCOxH1	RCOxL1	Range Comparator 0,1 High/Low threshold registers
00068C _H	0006B8 _H	RCOxH2	RCOxL2	RCOxH3	RCOxL3	Range Comparator 2,3 High/Low threshold registers
000690 _H	0006BC _H		RCO	xIRS		Range Comparator Inverted Range Select control
000694 _H	0006C0 _H		RCC)xOF		Range Comparator Overflow flags
000698 _H	0006C4 _H		RCO	XINT		Range Comparator Interrupt flags
0006A0 _H	0006CC _H	ADxCC0	ADxCC1	ADxCC2	ADxCC3	Channel control for ch 0 to 7
0006A4 _H	0006D0 _H	ADxCC4	ADxCC5	ADxCC6 ADxCC7		Channel control for ch 8 to 16
0006A8 _H	0006D4 _H	ADxCC8	ADxCC9	ADxCC10 ADxCC11 (Channel control for ch 16 to 23
0006AC _H	0006D8 _H	ADxCC12	ADxCC13	ADxCC14	ADxCC15	Channel control for ch 24 to 31
0006E0 _H	000720 _H	ADC	xD0	ADC	xD1	ADC Channel Data register, channel 0,1
0006E4 _H	000724 _H	ADC	xD2	ADC	xD3	ADC Channel Data register, channel 2,3
0006E8 _H	000728 _H	ADC	xD4	ADC	xD5	ADC Channel Data register, channel 4,5
0006EC _H	00072C _H	ADC	xD6	ADC	xD7	ADC Channel Data register, channel 6,7
0006F0 _H	000730 _H	ADC	xD8	ADC	xD9	ADC Channel Data register, channel 8,9
0006F4 _H	000734 _H	ADC	xD10	ADC	xD11	ADC Channel Data register, channel 10,11
0006F8 _H	000738 _H	ADC	xD12	ADC	xD13	ADC Channel Data register, channel 12,13
0006FC _H	00073C _H	ADC	xD14	ADCxD15		ADC Channel Data register, channel 14,15
000700 _H	000740 _H	ADC	xD16	ADCxD17		ADC Channel Data register, channel 16,17
000704 _H	000744 _H	ADC	xD18	ADCxD19		ADC Channel Data register, channel 18,19
000708 _H	000748 _H	ADC	xD20	ADCxD21		ADC Channel Data register, channel 20,21
00070C _H	00074C _H	ADC	xD22	ADCxD23		ADC Channel Data register, channel 22,23
000710 _H	000750 _H	ADC	xD24	ADCxD25		ADC Channel Data register, channel 24,25
000714 _H	000754 _H	ADC	xD26	ADC	xD27	ADC Channel Data register, channel 26,27
000718 _H	000758 _H	ADC	xD28	ADC	xD29	ADC Channel Data register, channel 28,29
00071C _H	00075C _H	ADC	xD30	ADC	xD31	ADC Channel Data register, channel 30,31

1. On CY91F467E, ADC1 does not exist.

8.4.1 A/D Input Enable Register (ADER)

This register enables the analog input functions of the A/D converter. On CY91FV460B, additionally the bit **ADCHE** in PORTEN register influences the enabling of analog input.

■ ADERH: Access: Word, Half-word, Byte

31	30	29	28	27	26	25	24	Bit
ADE31	ADE30	ADE29	ADE28	ADE27	ADE26	ADE25	ADE24]
0	0	0	0	0	0	0	0	Initial value
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Attribute
23	22	21	20	19	18	17	16	Bit
ADE23	ADE22	ADE21	ADE20	ADE19	ADE18	ADE17	ADE16	
0	0	0	0	0	0	0	0	Initial value
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Attribute
L: Access: W	ord, Half-wor	d, Byte						
15	14	13	12	11	10	9	8	Bit
ADE15	ADE14	ADE13	ADE12	ADE11	ADE10	ADE9	ADE8	
0	0	0	0	0	0	0	0	Initial value
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Attribute
7	6	5	4	3	2	1	0	Bit
ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	
0	0	0	0	0	0	0	0	Initial value
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Attribute

[ADE31-0]: A/D Input Enable

ADEn	PORTEN. ADCHE	Function
0 [initial]	Х	Analog input of A/D channel n is disabled. The ADC will not sample/convert this channel.
1		Analog input of the channel n is enabled. Additionally, the port function register (PFR,EPFR) of the corresponding port must be set. The PFR/EPFR will switch the port to input direction (output driver = HiZ) and disable the digital input lines.
	1	Analog input of the channel n is enabled. Setting the port function register(s) is not necessary. ADEn will disable the digital input lines of the ports, but it does not change the port's direction.

Software reset (RST) clears ADEn and PORTEN.ADCHE to 0.
 Be sure to set start channel and end channel to cover all enabled channels.

8.4.2 A/D Control Status Registers (ADCS2, ADCS1, ADCS0)

The A/D control status registers control and show the status of A/D converter. Do not overwrite ADCS0 register during A/D converting.

■ ADCS2: Access: Byte

	15	14	13	12	11	10	9	8	Bit
	BUSY	INT	INTE	PAUS	-	-	INT2	INTE2]
_	0	0	0	0	0	0	0	0	Initial value
	R	R	R	R	R0	R0	R/W	R/W	Attribute

[bits 15:12] BUSY, INT, INTE, PAUS

These bits are a mirror of the corresponding bits in ADCS1, intended to quickly read out all status and interrupt information using only one register access. To write the bits, access them via ADCS1.

[bits 11:10] -

These bits do not exist. Read operation returns 0.

[bit 9] INT2 (End of Scan Flag)

The End of Scan flag is set when conversion data of the last channel is stored in ADCR, whereas the last channel is defined by ADECH register setting.

If bit 8 (INTE2) is "1" when this bit is set, and the ADC runs in continous conversion mode, an End of Scan interrupt request is generated or, if activation of DMA is enabled, DMA is activated.

□ Only clear this bit by writing "0" when A/D conversion is halted.

□ Initialized to "0" by a reset.

□ If DMA is used, this bit is cleared at the end of DMA transfer.

□ Read-modify-write operations read this bit as "1".

[bit 8] INTE2 (Enable End of Scan Interrupt)

INTE2 enables the End of Scan interrupt in continous conversion mode. In the other conversion modi, this bit has no effect.

Additionally, setting INTE2 changes the protect function of converted data (see description of ADCS1.PAUS).

INTE2	Function
0 [initial]	Disable End of Scan interrupt, ADC result protection protects the ADCR register data.
1	Enable End of Scan interrupt, ADC result protection protects the ADCD0ADCD31 register data (in continuous conversion mode only)

■ ADCS1: Access: Half-word, Byte

15	14	13	12	11	10	9	8	Bit
BUSY	INT	INTE	PAUS	STS1	STS0	STRT	reserved]
0	0	0	0	0	0	0	0	Initial value
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Attribute

[bit 15] BUSY (busy flag and stop)

BUSY	Function
	A/D converter operation indication bit. Set on activation of A/D conversion and cleared on completion.
Writing	Writing "0" to this bit during A/D conversion forcibly terminates conversion. Use to forcibly terminate in continuous and stop modes.

□ Read-modify-write instructions read the bit as "1".

□ Cleared on the completion of A/D conversion in single conversion mode.

□ In continuous and stop mode, the flag is not cleared until conversion is terminated by writing "0".

□ Initialized to "0" by a software reset (RST).

□ Do not specify forcible termination and software activation (BUSY="0" and STRT="1") at the same time.

[bit 14] INT (End of Conversion Interrupt flag)

This bit is set when conversion data is stored in ADCR.

□ If bit 5 (INTE) is "1" when this bit is set, an interrupt request is generated or, if activation of DMA is enabled, DMA is activated.

□ Only clear this bit by writing "0" when A/D conversion is halted.

□ Initialized to "0" by a software reset (RST).

If DMA is used, this bit is cleared at the end of DMA transfer.

[bit 13] INTE (End of Conversion Interrupt enable)

This bit is enables or disables the conversion completion interrupt.

INTE	Function
0	Disable interrupt [Initial value]
1	Enable interrupt

□ Cleared by a software reset (RST).

[bit 12] PAUS (A/D converter pause)

This bit is set when A/D conversion temporarily halts.

The A/D converter has one register to store the conversion result (ADCR) and additionally 32 ADC channel data registers. If a conversion is finished and the data of the previous conversion has not been read out before, previous data would be overwritten.

To avoid this problem, the next conversion data is not stored in the data registers until the previous value has been read out (e.g. by DMA). A/D conversion halts during this time. A/D conversion resumes when the ADC interrupt flag ADCR1.INT is cleared.

The register protection function depends on the conversion mode and the setting of ADCR2.INTE2:

Mode	INTE2	Function
Single, Stop	Х	Protect ADCR (the common result register)
Continous	0	Protect ADCR (the common result register)
	1	Protect ADCD0ADCD31 (the dedicated channel data registers)

In continous mode with INTE2==1, PAUS is set when data of the start channel (set by ADSCH) is ready for writing to the registers, but IRQ2 (End of Scan interrupt) is active.

In the other modes or if INTE2==0, PAUS is set when data of any channel is ready for writing to the registers, but IRQ (End of Conversion) is active.

PAUS is cleared by writing "0" or by a reset. (Not cleared at the end of DMA transfer.) However when waiting condition of DMA transfer, this bit cannot be cleared.

□ Regarding protect function of converted data, see Section "8.6 Operation of A/D Converter".

[bit 11, 10] STS1, STS0 (Start source select)

These bits select the A/D activation source.

STS1	STS0	Function						
0	0	tware activation [Initial value]						
0	1	ternal trigger pin activation and software activation						
1	0	Timer activation and software activation						
1	1	External trigger pin activation, timer activation and software activation						

□ These bits are initialized "00" by software reset (RST).

□ In multiple-activation modes, the first activation to occur starts A/D conversion.

The activation source changes immediately on writing to the register. Therefore care is required when switching activation mode during A/D operation.

The A/D converter detects falling edges on the external trigger pin. When external trigger level is "L" and if these bits are changed to external trigger activation mode, A/D converting may starts.

 \square Selecting the timer selects the 16-bit reload timer 7.

[bit 9] STRT (Start)

Writing "1" to this bit starts A/D conversion (software activation).

□ Write "1" again to restart conversion.

□ Initialized to "0" by a software reset (RST).

□ In continuous and stop mode, restarting is not occurred. Check BUSY bit before writing "1". (Activate conversion after clearing.)

Do not specify forcible termination and software activation (BUSY="0" and STRT="1") at the same time.

[bit 8] reserved bit

Always write "0" to this bit.

■ ADCS0: Access: Half-word, Byte. Read-modify-write access is not allowed

7	6	5	4	3	2	1	0	Bit
MD1	MD0	S10	ACH4	ACH3	ACH2	ACH1	ACH0 / ACHMD	
0	0	0	0	0	0	0	0	Initial value
R/W	R/W	R/W	R	R	R	R	R, W ¹	Attribute

1. ACHMD is a new, control bit, see "[bit 0] ACHMD (ACH register mode, write-only)" on page 32.

[bit 7, 6] MD1, MD0 (A/D converter mode set)

These bits the operation mode.

MD1	MD0	Operating mode					
0	0 0 Single mode 1 (Reactivation during A/D conversion is allowed)						
0	1	Single mode 2 (Reactivation during A/D conversion is not allowed)					
1	0	Continuous mode (Reactivation during A/D conversion is not allowed)					
1	1	Stop mode (Reactivation during A/D conversion is not allowed)					

Single mode: A/D conversion is continously performed from the selected start channel (ADSCH) to the selected end channel (ADECH). The conversion stops once it has been done for all these channels.

Continuous mode:A/D conversion is repeatedly performed from the selected start channel (ADSCH) to the selected end channel (ADECH) in a row.

Stop mode: A/D conversion is performed from the selected start channel (ADSCH) to the selected end channel (ADECH), followed by a pause after each channel. The conversion is resumed upon activation.

When A/D conversion is started in continuous mode or stop mode, conversion operation continued until stopped by the BUSY bit. Conversion is stopped by writing "0" to the BUSY bit.

On activation after forcibly stopping, conversion starts from the start channel, selected by ADSCH register.

Reactivation during A/D conversion is disabled for any of the timer, external trigger and software start sources in single mode 2, continuous and stop mode.

[bit 5] S10

This bit defines resolution of A/D conversion. If this bit set "0", the resolution is 10-bit. In the other case, resolution is 8-bit and the conversion result is stored to ADCR0 and in the lower 8 bits of the dedicated ADC result registers.

[bit 4 to 0] ACH4-0 (Analog convert select channel, read-only)

These bits show the number of the currently or previously converted analog channel, depending on bit ACHMD (see below).

ACH4	ACH3	ACH2	ACH1	ACH0	Converted channel
0	0	0	0	0	AN0
0	0	0	0	1	AN1
1	1	1	1	0	AN30
1	1	1	1	1	AN31

□ Writing these bits has no effect (bit 0 is writeable with special function ADCHMD).

□ Initialized to "0000" by software reset (RST).

[bit 0] ACHMD (ACH register mode, write-only)

For reading out the ACH4-0 register bits (see below), there is a *direct* mode and a *latched* mode.

In direct mode, ACH4-0 shows the number of the ADC channel which is *currently in conversion*, e.g. the internal conversion channel pointer. This pointer is incremented immediately after a conversion is finished. On CY91460 series devices having the old ADC macro, ACH4-0 always show this mode.

In the new latched mode, ACH4-0 shows the number of the ADC channel whose conversion was *finished previously*. After a conversion is finished, the conversion channel pointer is latched and the latched data can be read in this mode. At the end of the next conversion, the latch is overwritten if no PAUSE condition exists.

ACHMD	Function						
0	irect ACH register mode [Initial value]						
1	Latched ACH register mode						

□ ACHMD is a write-only bit.

□ Read- or read-modify-write access returns the value of bit ACH0, that's why read-modify-write access is not allowed. □ Initial value is 0.

8.4.3 Common Data Register (ADCR1, ADCR0)

These registers store the conversion results of the A/D converter. ADCR0 stores lower 8-bit. ADCR1 stores upper 2-bit. The register values are updated at the completion of each conversion. The registers normally store the results of the previous conversion.

■ ADCR1: Access: Word, Half-word, Byte

15	14	13	12	11	10	9	8	Bit
-	-	-	-	-	-	D9	D8	7
0	0	0	0	0	0	Х	Х	Initial value
R0, W0	R0, W0	R0, W0	R0, W0	R0, W0	R0, W0	R	R	Attribute
0: Access: W	ord, Half-wor	d, Byte						
7	6	5	4	3	2	1	0	Bit
D7	D6	D5	D4	D3	D2	D1	D0	7
Х	Х	Х	Х	Х	Х	Х	Х	Initial value
R	R	R	R	R	R	R	R	Attribute

■ Bit 15 to 10 of ADCR1 are read as "0".

The A/D converter has a conversion data protection function. See the "Operation" section for further information.

8.4.4 Dedicated A/D Channel Data Register (ADCD0 to ADCD31)

There are 32 ADC result data registers, one per channel. The registers are written by hardware at the end of conversion of the attached channel. ADCD0 is attached to channel 0, ADCD31 is attached to channel 31.

ADCD0 ... ADCD31: Access: Word, Half-word, Byte

15	14	13	12	11	10	9	8	Bit
-	-	-	-	-	-	D9	D8	
0	0	0	0	0	0	Х	Х	Initial value
R0	R0	R0	R0	R0	R0	R	R	Attribute
7	6	5	4	3	2	1	0	Bit
D7	D6	D5	D4	D3	D2	D1	D0	
Х	Х	Х	Х	Х	Х	Х	Х	Initial value
R	R	R	R	R	R	R	R	Attribute

■ Bit 15 to 10 of the ADCD registers are read as "0".

The A/D converter has a conversion data protection function. In continuous conversion mode, the protection function can be changed to protect the A/D Channel Data registers rather then the A/D Data Register (ADCR1). See section "8.6.6 Protection of the ADC Channel Data Registers" for further information.

8.4.5 Sampling Timer Setting Register (ADCT)

ADCT register controls the sampling time and comparison time of analog input. This register sets A/D conversion time. Do not update value of this register during A/D conversion operation.

■ ADCT1: Access: Word, Half-word, Byte

15	14	13	12	11	10	9	8	Bit
CT5	CT4	CT3	CT2	CT1	CT0	ST9	ST8	
0	0	0	1	0	0	0	0	Initial value
R/W	Attribute							

■ ADCT0: Access: Word, Half-word, Byte

7	6	5	4	3	2	1	0	Bit
ST7	ST6	ST5	ST4	ST3	ST2	ST1	ST0	
0	0	1	0	1	1	0	0	Initial value
R/W	Attribute							

[bit 15 to 10] CT5-0 (A/D comparison time set)

These bits specify clock division of comparison time.

□ Setting "000001" means one division (=CLKP).

Do not set these bits "000000".

□ Initialized these bits to "000100" by software reset (RST).

□ Comparison time = CT value * CLKP cycle * 10 + (4 * CLKP)

Do not set comparison time over 500 μs.

[bit 9 to 0] ST9-0 (Analog input sampling time set)

These bits specify sampling time of analog input.

□ Initialized these bits to "0000101100" by software reset (RST).

□ Sampling time = ST value * CLKP cycle

 \square Do not set sampling time below 1.2 μs when AVCC is below 4.5 V.

Necessary sampling time and ST value are calculated by following.

□ Necessary sampling time (Tsamp) = (Rext + Rin) * Cin * 7

□ ST9 to ST0 = Tsamp / CLKP cycle

ST has to be set that sampling time is over Tsamp. Example: CLKP = 32 MHz, AVCC >= 4.5 V, Rext = 200K-Tsamp = $(200 \times 103 + 2.52 \times 103) \times 10.7 \times 10.12 \times 7 = 15.17$ [us] ST = 15.17-6 / 31.25-9 = 485.44ST has to be set over 486_D (111100110_B).

Tsamp is decided by Rext. Thus conversion time should be considered together with Rext.

8.4.6 A/D Channel Setting Register (ADSCH, ADECH)

These registers specify the channels for the A/D converter to convert. Do not update these registers while the A/D converting is operating.

■ ADSCH: Access: Word, Half-word, Byte

■ ADECH: Access: Word, Half-word, Byte

7	6	5	4	3	2	1	0	Bit
-	-	-	ANE4	ANE3	ANE2	ANE1	ANE0	
-	-	-	0	0	0	0	0	Initial value
RX, W0	RX, W0	RX, W0	R/W	R/W	R/W	R/W	R/W	Attribute

These bits set the start and end channel for A/D converter.

□ Setting of ANE4 to ANE0 the same channel as in ANS4 to ANS0 specifies conversion for that channel only. (Single conversion)

In continuous or stop mode, conversion is performed up to the channel specified by ANE4 to ANE0. Conversion then starts again from the start channel specified by ANS4 to ANS0.

□ If ANS > ANE, conversion starts with the channel specified by ANS, continuous up to channel 31, starts again from channel 0, and ends with the channel specified by ANE.

□ Initialized to ANS="00000", ANE="00000" by a software reset (RST).

Example: Channel Setting ANS=30 ch, ANE=3 ch, single conversion mode

Operation: Conversion channel 30 ch -> 31 ch -> 0 ch -> 1 ch -> 2 ch -> 3 ch end

[bit 12 to 8] ANS4-0 (Analog start channel set)

[bit 4 to 0] ANE4-0 (Analog end channel set)

ANS4 ANE4	ANS3 ANE3	ANS2 ANE2	ANS1 ANE1	ANS0 ANE0	Start / End Channel
0	0	0	0	0	AN0
0	0	0	0	1	AN1
0	0	0	1	0	AN2
0	0	0	1	1	AN3
1	1	1	0	1	AN29
1	1	1	1	0	AN30
1	1	1	1	1	AN31

8.5 Range Comparator

8.5.1 Range Comparator Structure

The Range Comparator has 4 comparsion groups with an upper and a lower threshold register each. The 32 ADC channels can be enabled for range comparision and assigned to one of the 4 comparators individually. If enabled, the comparsision will set up to 2 flags for this ADC channel:

An interrupt flag RCOINT, signalling that the ADC result is outside the range or, by "inverted" configuration, inside the range.

An overflow flag RCOOF, showing that the range violation was an overflow and no underflow.

Furthermore, each ADC channel can be enabled to send an interrupt request to the CPU, if the RCOINT flag is set.

RCOS[1:0]: Select one of the 4 comparators for this channel RCOE : Enable Comparision for this ADC channel RCOIE: Enable Comparision Interrupt for this ADC channel

instead of outside upper or lower threshold (default).

8.5.2 Range Comparator Registers

The Range Comparator (RCO) has the following registers:

- RCOHx[7:0]: Upper threshold register, one register per comparator block (x = 0...3)
- RCOLx[7:0]: Lower threshold register, one register per comparator block (x = 0...3)
- ADCCm[7:0]: ADC channel control, one register per 2 ADC channels (m = 0...15)
- RCOIRS[0:31]: RCO Inverted Range Selection, one bit per ADC channel
- RCOOF[0:31]: RCO Overflow Flags, one bit per ADC channel, read-only
- RCOINT[0:31]: RCO Interrupt Flags, one bit per ADC channel

Range Comparator Threshold registers (RCOH0/L0 to RCOH3/L3)

■ RCOH0-3: Higher threshold, access: Word, Half-word, Byte

15	14	13	12	11	10	9	8	Bit
RCOH7	RCOH6	RCOH5	RCOH4	RCOH3	RCOH2	RCOH1	RCOH0	
1	1	1	1	1	1	1	1	Initial value
R/W	Attribute							

[bit 7:0] RCOH[7:0] (Range Comparator High threshold)

The RCOH bits define the higher comparision threshold of the Range Comparator channel.

The upper Range Comparator compares that the upper 8 bits of the ADC conversion result are higher then RCOH[7:0]

■ RCOL0-3: Lower threshold, access: Word, Half-word, Byte

7	6	5	4	3	2	1	0	Bit
RCOL7	RCOL6	RCOL5	RCOL4	RCOL3	RCOL2	RCOL1	RCOL0]
0	0	0	0	0	0	0	0	Initial value
R/W	Attribute							

[bit 7:0] RCOL[7:0] (Range Comparator Low threshold)

The RCOL bits define the lower comparision threshold of the Range Comparator channel.

The lower Range Comparator compares that the upper 8 bits of the ADC conversion result are lower then RCOL[7:0]

A/D Converter Channel Control registers (ADCC0 to ADCC15)

The A/D channel control registers serve 2 ADC channels per register and control the range comparision for these channels.

ADCC0 register controls A/D channels 0 + 1, ADCC1 register controls A/D channels 2 + 3,

ADCC15 register controls A/D channels 30 + 31

■ ADCC0-15: Access: Word, Half-word, Byte

7	6	5	4	3	2	1	0	Bit
RCOIE1	RCOE1	RCOS11	RCOS10	RCOIE0	RCOE0	RCOS01	RCOS00]
0	0	0	0	0	0	0	0	Initial value
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Attribute
Bits 7:4 c	Bits 7:4 control A/D channels 1,3,5,7,31				ontrol A/D c	hannels 0,2	2,4,6,,30	

[bit 7,3] RCOIE1, RCOIE0 (Range Comparator Interrupt enable)

The RCOIE bits enable the Range Comparator interrupt for the corresponding ADC channel.

RCOIE	Function
0	RCO interrupt for this ADC channel is disabled [default]
1	RCO interrupt for this ADC channel is enabled

[bit 6,2] RCOE1, RCOE0 (Range Comparator operation enable)

The RCOE bits enable the Range Comparision for the corresponding ADC channel:

RCOE	Function
	RCO disabled, RCO flags for this ADC channel will not be set [default]
1	RCO enabled for this ADC channel

[bits 5:4,1:0] RCOS1[1:0], RCOS0[1:0] (converter channel select)

These bits select the A/D converter channel to be assigned to the Range Comparator channel:

RCOS[1:0]	Function
00	Select range comparator channel 0 for this ADC channel [default]
01	Select range comparator channel 1 for this ADC channel
10	Select range comparator channel 2 for this ADC channel
11	Select range comparator channel 3 for this ADC channel

Inverted Range Selection register

The RCOIRS register controlles that the comparision should check for "out of range" or "inside range". The 32 bits of RCOIRS is organized "per ADC channel". ADC channel 0 is located on the MSB of the register and ADC channel 31 is on the LSB.

RCOIRS: Access: Word, Half-word, Byte

31	30	29	28	27	26	259	24	Bit
RCOIRS0	RCOIRS1	RCOIRS2	RCOIRS3	RCOIRS4	RCOIRS5	RCOIRS6	RCOIRS7	
0	0	0	0	0	0	0	0	Initial value
R/W	Attribute							
23	22	21	20	19	18	17	16	Bit
RCOIRS8	RCOIRS9	RCOIRS10	RCOIRS11	RCOIRS12	RCOIRS13	RCOIRS14	RCOIRS15	
0	0	0	0	0	0	0	0	Initial value
R/W	Attribute							
15	14	13	12	11	10	9	8	Bit
RCOIRS16	RCOIRS17	RCOIRS18	RCOIRS19	RCOIRS20	RCOIRS21	RCOIRS22	RCOIRS23	
0	0	0	0	0	0	0	0	Initial value
R/W	Attribute							
7	6	5	4	3	2	1	0	Bit
RCOIRS24	RCOIRS25	RCOIRS26	RCOIRS27	RCOIRS28	RCOIRS29	RCOIRS30	RCOIRS31	
0	0	0	0	0	0	0	0	Initial value
R/W	Attribute							

Note that bit[31] is assigned to ADC channel 0, bit[30] is assigned to ADC channel one and so on.

[bits 31:0] RCOIRS[0:31] (Inverted Range Select)

The RCOIRS bits control how the Range Comparator result flags are set.

□ If the RCOIRS[n] is 0, the flags are set when the ADC result is above the upper threshold OR below the lower threshold. That is called "**out of range**" mode.

□ If the RCOIRS[n] is 1, the flags are set when the ADC result is below or equal the upper threshold AND above or equal the lower threshold. That is called "**inside range**" mode.

RCOIRSn	Function
0	Range comparision for this ADC channel checks for "out of range" (default)
1	Range comparision for this ADC channel checks for "inside range"

Range Comparator Result Flags

The result of range comparision is stored in 2 flag registers:

- RCOINT[0:31]:Range comparision interrupt flags
- RCOOF[0:31]: Range comparision overflow flags

The Range Comparator Result flags are organized "per ADC channel". There are 32 Range Comparator overflow flags and 32 interrupt flags. In case of a RCO interrupt, all interrupt flags can be read out by one 32-bit read operation and analyzed using the Bit Search Unit. The Bit Search Unit will return the number of the interrupting channel. Since bit search works from MSB to LSB (from left to right), ADC channel 0 is located on the MSB of the registers and ADC channel 31 is on LSB.

RCOINT[0:31]: Access: Word, Half-word, Byte

31	30	29	28	27	26	259	24	Bit
RCOINT0	RCOINT1	RCOINT2	RCOINT3	RCOINT4	RCOINT5	RCOINT6	RCOINT7	
0	0	0	0	0	0	0	0	Initial value
R/W0	Attribute							
23	22	21	20	19	18	17	16	Bit
RCOINT8	RCOINT9	RCOINT10	RCOINT11	RCOINT12	RCOINT13	RCOINT14	RCOINT15	
0	0	0	0	0	0	0	0	Initial value
R/W0	Attribute							
15	14	13	12	11	10	9	8	Bit
	••			· ·			-	
RCOINT16	RCOINT17	RCOINT18	RCOINT19	RCOINT20	RCOINT21	RCOINT22	RCOINT23	
0	0	0	0	0	0	0	0	Initial value
R/W0	Attribute							
7	6	5	4	3	2	1	0	Bit
RCOINT24	RCOINT25	RCOINT26	RCOINT27	RCOINT28	RCOINT29	RCOINT30	RCOINT31	
0	0	0	0	0	0	0	0	Initial value
R/W0	Attribute							

Note that bit[31] is assigned to ADC channel 0, bit[30] is assigned to ADC channel one and so on.

[bits 31:0] RCOINT[0:31] (Range Comparator Interrupt flags)

The RCOINT flags show that a "out of range" or "inside range" condition has been found on the ADC channel.

The bits are set under the following condition:

□ the ADC channel is enabled ADER.ADE[i] is setand

□ the range comparision for this channel is enabledADCCn.RCOE[i] is setand

 $\ensuremath{\square}$ the conversion of the ADC channel is just finished and

 $\ensuremath{\square}$ an interrupt condition was found (see the table on next page).

The bits are cleared by writing 0 or by software reset (RST). Writing 1 has no effect.

□ Read-modify-write operations read 1.

The interrupt condition depends on the comparision results and the RCOIRS setting for this channel:

Mode	RCOIRS	Upper threshold comparator	Lower threshold comparator	Interrupt condition
out of	0	1	х	INT condition: above range, RCOOF is set
range		0	0	-
		х	1	INT condition: below range, RCOOF is cleared

Mode	RCOIRS	Upper threshold comparator	Lower threshold comparator	Interrupt condition
inside	1	1	х	-
range		0	0	INT condition: inside range
		х	1	-

Note: The upper threshold comparator returns 1 if the upper 8 bits of the ADC result are greather then the threshold value in RCOH[7:0]. The lower threshold comparator returns 1 if the upper 8 bits of the ADC result are smaller then the threshold value in RCOL[7:0].

■ RCOOF[0:31]: Access: Read-only, Word, Half-word, Byte

	31	30	29	28	27	26	259	24	Bit
	RCOOF	RCOOF1	RCOOF2	RCOOF3	RCOOF4	RCOOF5	RCOOF6	RCOOF7	
	0	0	0	0	0	0	0	0	Initial value
	R	R	R	R	R	R	R	R	Attribute
	23	22	21	20	19	18	17	16	Bit
	RCOOF8	RCOOF9	RCOOF10	RCOOF11	RCOOF12	RCOOF13	B RCOOF14	RCOOF15	5
	0	0	0	0	0	0	0	0	Initial value
	R	R	R	R	R	R	R	R	Attribute
	15	14	13	12	11	10	9	8	Bit
	RCOOF1	6 RCOOF17	7 RCOOF18	RCOOF19	RCOOF20	RCOOF21	RCOOF22	RCOOF23	3
	0	0	0	0	0	0	0	0	Initial value
	R	R	R	R	R	R	R	R	Attribute
	7	6	5	4	3	2	1	0	Bit
R	COOF24	RCOOF25	RCOOF26	RCOOF27	RCOOF28	RCOOF29	RCOOF30	RCOOF31	
	0	0	0	0	0	0	0	0	Initial value
	R	R	R	R	R	R	R	R	Attribute

Note that bit[31] is assigned to ADC channel 0, bit[30] is assigned to ADC channel one and so on.

[bits 31:0] RCOOF[0:31] (Range Comparator Overflow flag)

The RCOOF read-only flags store the output signal of the upper threshold comparator at the time when an interrupt condition (see above) appeared and the corresponding RCOINT flag was **not** set. So the RCOOF flags indicate the upper comparator state when the RCOINT flag had the last rising edge.

The RCOOF flag for a ADC channel is loaded with the upper threshold comparator output signal under the following condition: the corresponding RCOINT flag is not yet setand

□ the corresponding RCOINT flag has a set condition in this cycle.

The flags are initialized by software reset (RST).

RCOOFn	Function
0	The output of the upper threshold comparator was 0 [default]
1	The output of the upper threshold comparator was 1

8.5.3 Range Comparator Interrupt request

The Range Comparator has one interrupt output line RCOIRQ. The interrupt output line becomes active if at least one of the Range Comparator interrupt flags RCOINT[31:0] is set and the corrsponding interrupt enable bit in the ADCC registers is set.

It is not possible to activate a DMA request from the range comparator interrupts.

8.6 Operation of A/D Converter

The A/D converter operates using the successive approximation method with 10-bit or 8-bit resolution. There is one 16-bit register provided to store conversion results (ADCR), which is updated each time conversion completes. Additionally, there is one ADC Channel Data register per channel (ADCD0...31), which is updated each time the assigned channel is converted. The Channel Data registers especially improve the continous conversion mode.

It is recommended to use the DMA service. The following describes the operation modes.

8.6.1 Single Mode

In single conversion mode, the analog input signals selected by the ANS bits and ANE bits are converted in order until the completion of conversion on the end channel determined by the ANE bits. A/D conversion then ends. If the start channel and end channel are the same (ANS=ANE), only a single channel conversion is performed.

Examples:

□ ANS=00000b, ANE=00011b Start -> AN0 -> AN1 -> AN2 -> AN3 -> End □ ANS=00010b, ANE=00010b Start -> AN2 -> End

8.6.2 Continuous Mode

In continuous mode the analog input signals selected by the ANS bits and ANE bits are converted in order until the completion of conversion on the end channel determined by the ANE bits, then the converter returns to the ANS channel for analog input and repeats the process continuously. When the start and end channels are the same (ANS=ANE), conversion is performed continuously for that channel.

Examples:

- □ ANS=00000b, ANE=00011b
- Start -> AN0 -> AN1 -> AN2 -> AN3 -> AN0 ... -> repeat
- □ ANS=00010b, ANE=00010b

Start -> AN2 -> AN2 -> AN2 ... -> repeat

In continuous mode, conversion is repeated until '0' is written to the BUSY bit. (Writing '0' to the BUSY bit forcibly stops the conversion operation.) Note that forcibly terminating operation halts the current conversion during mid-conversion. (If operation is forcibly terminated, the value in the conversion register is the result of the most recently completed conversion.)

8.6.3 Stop Mode

In stop mode the analog input signal selected by the ANS bits and ANE bits are converted in order, but conversion operation pauses after each channel. The pause is released by applying another start signal.

At the completion of conversion on the end channel determined by the ANE bits, the converter returns to the ANS channel for analog input signal and repeats the conversion process continuously. When the start and end channel are the same (ANS=ANE), only a signal channel conversion is performed.

Examples:

□ ANS=00000b, ANE=00011b

Start -> AN0 -> stop -> start -> AN1 -> stop -> start -> AN2 -> stop -> start -> AN3 -> stop -> start -> AN0 ... -> repeat

□ ANS=00010b, ANE=00010b

Start -> AN2 -> stop -> start -> AN2 -> stop -> start -> AN2 ... -> repeat

In stop mode the startup source is the source determined by the STS1, STS0 bits. This mode enables synchronization of the conversion start signal.

8.6.4 Single-shot Conversion

The following figure shows the operation of A/D converter in Single-shot conversion mode

(1)Channel selection

(2)A/D conversion activation (Trigger input: Software trigger/Reload timer/External trigger)

- (3)INT flag clear, BUSY flag set
- (4)Sample hold

(5)Conversion (Conversion a + Conversion b + Conversion c)

(6)Conversion end, INT flag set, BUSY flag clear

(7)Buffers the conversion value. Buffered data storage

(8)Software-based INT flag clear

8.6.5 Scan Conversion

The following figure shows the operation of A/D converter in Scan conversion mode

(1)Activation channel selection

(2)A/D activation (Trigger: Software trigger/Reload timer/External trigger)

(3)INT flag clear, PAUS flag clear

(4)AN0 conversion

- a. Sample hold, conversion (conversion a + conversion b + conversion c)
- b. Conversion end
- c. Buffers the conversion value.

(5)AN1 conversion

(6)AN2 conversion

(7)AN3 conversion

(8)INT2 (End of Scan) flag is set, AN0 conversion starts

(9)Because INT2 has not been cleared yet, the ADC protects the result register of AN0 against overwriting and enters PAUSE state. (10)INT2 flag cleared by DMA or by software, the ADC stores the result of AN0 and continues sampling AN1.

8.6.6 Protection of the ADC Channel Data Registers

There are 32 ADC result data registers, one register per channel. The registers are written by hardware at the end of conversion of the attached channel. ADCD0 is attached to channel 0, ADCD31 is attached to channel 31.

The CPU can read the data registers any time.

If a conversion is finished and the data of the previous conversion has not been read out before, previous data would be overwritten. To avoid this problem, the next conversion data is not stored in the data registers until the previous value has been read out (e.g. by DMA). A/D conversion halts during this time and the PAUS flag is set. A/D conversion restarts when the ADC interrupt flag ADCR1.INT is cleared.

The register protection function depends on the conversion mode and the setting of ADCR2.INTE2:

Mode	INTE2	Function
Single, Stop	Х	Protection of ADCR
Continous	0	Protection of ADCR
	1	Protection of ADCD0ADCD31

Protection of ADCD0...31

In continous mode with INTE2==1, PAUS is set when data of the start channel (set by ADSCH) is ready for writing to the registers, but IRQ2 (End of Scan interrupt) is already active.

Example: Start channel =4, end channel=7, continous mode, ADCS1.INTE=0, ADCS2.INTE2=1

Start by CPU --> convert channel 4 + safe data to ADCD4, convert channel 5 + safe data to ADCD5, convert channel 6 + safe data to ADCD6, convert channel 7 + safe data to ADCD7 ---> End of Scan interrupt (IRQ2), convert channel 4 + set PAUS (protect ADCD4...7).

After the CPU or DMA have read the data registers and cleared IRQ2, the scan conversion continues.

Protection of ADCR

In the other modes or if INTE2==0, PAUS is set when data of any channel is ready for writing to the registers, but IRQ (End of Conversion) is active. Because in this mode the protection function is active after each single conversion, the ADCR register is protected.

8.7 ADC Interrupt Generation and DMA Access

There are 2 ADC interrupt sources: End of Conversion and End of Scan.

8.7.1 End of Conversion

The End of Conversion (EoC) interrupt is enabled by ADCS1.INTE bit and is compatible to the A/D convertes in old devices of CY91460 series. If EoC is enabled, it appeares after any conversion cycle. It is recommended to use DMA transfer to read out the data from ADCR.

8.7.2 End of Scan

The End of Scan (EoS) interrupt is enabled by ADCS2.INTE2 bit. If EoS is enabled, it appeares after the conversion of the end channel, which is defined by the setting of ADECH register.

If the End of Conversion interrupt is enabled in parallel, both interrupt bits are set. In this case it is recommended that the interrupt routine reads out ADCS2 register (containing mirrored bits of ADCS1[7:4]) to check where the interrupt comes from.

8.7.3 DMA Transfer

DMA transfer can be triggered by End of Conversion interrupt or by End of Scan interrupt. The interrupts are assigned to separate DMA resource numbers (please refer to the Interrupt Vector Table).

The automatic interrupt clear after DMA transfer works for End of Conversion and for End of Scan separately.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

9. Hardware Watchdog (Extension)

This chapter describes a new feature of the Hardware Watchdog. For reference, please refer to chapter 21 Hardware Watchdog in the CY91460 series hardware manual.

9.1 Enabling the Hardware Watchdog in SLEEP and STOP State

The Hardware Watchdog can now be enabled in SLEEP and STOP state by software. On old devices, the watchdog is cleared in SLEEP and STOP and restarts counting at the transition to RUN mode.

Additionally, the restriction of CY91V460A about the settings ED1,ED0 = 01,10,11 has been removed.

9.1.1 HWWDE: Hardware watchdog timer duration register

The Hardware Watchdog Timer Duration register changes like following:

■ Bit7-5: Reserved bits. Always write 0 to these bits.

■ Bit4: STP_RUN (Run in SLEEP/STOP mode):

□ STP_RUN = 1 enables that the Hardware Watchdog continues running in SLEEP and STOP mode. The RC Oscillator will continue operation in SLEEP and STOP too.

□ STP_RUN = 0 (default) the the Hardware Watchdog is cleared in SLEEP and STOP mode.

□ STP_RUN can be set by CPU, but it cannot be cleared by the CPU

□ STP_RUN is cleared by software reset (RST)

■ Bit3-2: Reserved bits. Always write 0 to these bits.

■ Bit1-0: ED (Elongate watchdog duration).]

ED1-0	Function
00	The watchdog period is 2 ¹⁶ CLKRC cycles [initial setting]
01	The watchdog period is 2 ¹⁷ CLKRC cycles
10	The watchdog period is 2 ¹⁸ CLKRC cycles
11	The watchdog period is 2 ¹⁹ CLKRC cycles

□ These bits are cleared by software reset (RST) and can be written and read by CPU.

9.1.2 Caution

The section "Caution" changes as follows:

■ Software disabling is not possible.

The watchdog timer starts counting immediately after reset (release of INITX). Software cannot stop the counting.

■ Hardware disabling is only possible on the evaluation device CY91V460A and CY91FV460B.

The watchdog timer can be permanently disabled by setting the corresponding jumper of the evaluation board (this is not possible on flash devices with this watchdog timer). So always ensure correct configuration of the evaluation system to reflect the behaviour of the flash device.

Postponement of reset

In order to postpone the watchdog reset, the clearing of the watchdog timer is necessary. Whenever the CL bit of register is set to '0' (there is no minimum writing limitation), the timer is cleared and the occurrence of reset is postponed. Just writing to the register without setting CL to '0' does not clear the timer.

Timer stop and clear

In modes where the CPU does not work (SLEEP state, STOP state or STOP with RTC active state), the timer is cleared first then the counting is stopped. If the bit HWWDE.STP_RUN is set, the counting continues, and the RC oscillator will continue too.

During DMA transfer

During DMA transfer between D-bus modules, the writing e0f to CL bit is not possible. Thus, if the transfer timeis more than 328 ms (calculated from the fastest frequency of the RC oscillator as minimum period), a reset occurs.

Duration setting

Unlike on CY91V460 Rev.A it is possible to elongate the duration of the watchdog reset.

CLKRC frequency

Unlike on CY91V460 Rev.A it is possible to change the CLKRC frequency to 2 MHz. Even though the watchdog timer is always operated with a frequency of 100 kHz (10 µs) typical.

Difference between watchdog reset, external reset and Power-on reset

External reset pin (INITX), Clock Supervisor and Hardware Watchdog build a "reset chain":

External reset pin / Power-On reset

- Clock Supervisor
- Hardware Watchdog
- Shutdown Controller ^a

CPU

Each module in the chain transferes the incoming reset signal to its reset output.

External reset pin or Power-On will clear all the modules in the chain, but the Hardware Watchdog reset will not clear the Clock Supervisor.

a. Shutdown Controller is implemented on CY91F467E only.

10. Clock Supervisor (New Feature)

This section gives an overview of the Clock Supervisor. Purpose of the Clock Supervisor is the supervision of the Main- and Sub oscillators. In case of oscillation (OSCMAIN or OSCSUB) failure the Clock Supervisor control logic will take action, i.e. switching to an internal RC-oscillation clock (CLKRC 100 kHz), depending on the operation mode set in the control register.

In CY91FV460B, CY91F467P and other new devices, an new Clock Supervisor version with extended functionality is implemented. This new feature is marked with the keyword "New feature".

10.1 Overview Clock Supervisor

Figure 10-1. Block diagram of the clock supervisor

The purpose of the clock supervisor is the supervision of the main and sub oscillation clocks. In case of a oscillation failure (OSCMAIN and/or OSCSUB) it can be replaced by an on-chip RC-oscillation clock (CLKRC 100 kHz), depending on the configuration. If a clock the MCU currently uses, fails for a certain time (20-80 µs for *Main* clock / 160-640 µs for Sub clock) the MCU is reset by Setting Initialization Request (INIT) and the reset cause can be checked after reset vector fetch.

If the Sub clock is failing while the MCU is in Main clock mode, reset can be delayed until the transition to Sub clock mode or no reset will be initiated. The user can choose the behaviour with a control bit in the Clock Supervisor Control Register.

There are two independent supervisors, one for the Main clock and one for the Sub clock. They can be enabled/disabled separately. Main clock and Sub clock supervisor are disabled and re-enabled automatically if the corresponding oscillator is disabled and re-enabled.

If the MCU changes to STOP state, the RC-oscillator can be automatically disabled by a control bit. It will be enabled again upon wake-up from STOP state.

There are two status bits in the Clock Supervisor Control Register which indicate the failure of the Main clock and Sub clock. These bits can be available at two port pins (device dependent).

Single clock devices can use the CLKRC as Sub clock.

New feature: The two Clock Supervisor status bits can be cleared by CPU access, if the main and/or sub oscillator has resumed oscillation. The clock is switched back to OSCMAIN and/or OSCSUB in this case.

New feature: The RC oscillator is enabled in STOP mode automatically, if the Hardware Watchdog is configured to run during STOP. The RC oscillator can **only** be stopped in STOP mode, and then it depends on the Hardware Watchdog and the control bit in the Clock Supervisor Control Register.

10.2 Clock Supervisor Register

This section lists the Clock Supervisor Control Register and describes the function of each bit in detail.

10.2.1 Clock Supervisor Control Register (CSVCR)

The Clock Supervisor Control Register (CSVCR) sets the operation mode of the Clock Supervisor. Figure 10-2 shows the configuration of the Clock Supervisor Control Register.

Figure 10-2. Configuration Clock Supervisor Control Register (CSVCR)

Table 10-1. describes the function of each bit of the Clock Supervisor Control Register (CSVCR).

Table 10-1. Functional Description of each bit of the Clock Supervisor Control Register

Bit	Name	Function
7	SCKS (Sub clock select)	This bit is to select between 32 kHz external oscillation and internal RC oscillation as Sub clock. If this bit is '0' then the external 32 kHz oscillation is used as Sub clock, if it's '1' then the internal RC oscillation is used as Sub clock. This bit is cleared to '0' by Power-On reset or external reset. Other types of reset will not affect this bit. Note: Don't change this bit while the CPU runs on Sub clock. First switch back to Main clock and then change SCKS!
6	MM (Main clock missing)	If this bit is 1, the Main clock supervisor has detected that the Main oscillation clock coming from X0, X1 is missing, e.g. by a broken crystal. If this bit is '0', a missing Main clock has not been detected. This bit is cleared to '0' by Power-On reset or external reset. Other types of reset will not affect this bit. New feature: This bit can be cleared by CPU access, if the main oscillator has resumed oscillation. If the main oscillator is still failing, the write access is ignored.
5	SM (Sub clock missing)	If this bit is 1, the Sub clock supervisor has detected that the sub oscillation clock coming from X0A, X1A is missing, e.g. by a broken crystal. If this bit is '0', a missing Sub clock has not been detected. This bit is cleared to '0' by Power-On reset or external reset. Other types of reset will not affect this bit. New feature: This bit can be cleared by CPU access, if the sub oscillator has resumed oscillation. If the sub oscillator is still failing, the write access is ignored.
4	RCE (RC-oscillator enable)	Setting this bit to '1' enables the RC-oscillator in STOP mode. Outside STOP mode, the RC-oscil- lator is always enabled. This bit is set to '1' by Power-On reset or external reset. Other types of reset will not affect this bit. New feature: If HWWDE.STP_RUN (=HWWDE[4]) is set in the Hardware Watchdog, then the RC oscillator is enabled and read and read-modify-write operations will return '1' independendly of RCE register setting. Effective RCE = RCE_Register or HWWDE.STP_RUN
3	MSVE (Main clock supervisor enable)	Setting this bit to '1' enables the Main clock supervisor. This bit is set to '1' by Power-On reset only. Other types of reset will not affect this bit.
2	SSVE (Sub clock super- visor enable)	Setting this bit to '1' enables the Sub clock supervisor. This bit is set to '1' by Power-On reset only. Other types of reset will not affect this bit.
1	SRST (Sub clock mode reset)	If this bit is set to '1', a reset is performed upon transition from Main/PLL clock mode to Sub clock mode if the Sub clock is already missing. If this bit is set to '0', no reset is performed in this case. This bit is cleared to '0' by Power-On reset or external reset. Other types of reset will not affect this bit.
0	OUTE (Output enable)	This bit can be used as an output enable to output the signals MCLK_MISSING (bit 3 of CSVCR) and SCLK_MISSING (bit 4 of CSVCR) to port pins. For more information about the pins see the corresponding Datasheet. If this bit is set to '1', the ports are enabled for MCLK_MISSING and SCLK_MISSING output. This bit is cleared to '0' by Power-On reset or external reset. Other types of reset will not affect this bit.

10.3 Block Diagram Clock Supervisor

This section presents a block diagram of the Clock Supervisor. The building blocks of the Clock Supervisor are:

- Main Clock Supervisor
- Sub Clock Supervisor
- Control Logic
- RC-Oscillator

10.3.1 Block Diagram Clock Supervisor

Figure 10-3. Bock Diagram of Clock Supervisor

SCLK_OUT and MCLK_OUT can be observed using the Clock Monitor Module. SCLK_MISSING and MCLK_MISSING can be programmed to device specific outputs (see the datasheet of the used device for the information which pins are used) by setting OUTE=1.

Signal EXT RST IN is the reset input, connected to the external INITX pin.

Signal EXT_RST_OUT is the reset output and causes Setting Initialization Request (INIT).

10.4 Operation Modes

This section describes all operation modes of the Clock Supervisor.

10.4.1 Operation mode with initial settings

In case the clock supervisor control register (CSVCR) is not configured at the beginning of the user program, the RC-oscillator, the Main clock supervisor and the Sub clock supervisor is enabled.

- The RC-oscillator is enabled at power-on.
- The Main clock supervisor is enabled after the 'oscillation stabilization wait time' or in case the Main clock is missing before the completion of the 'oscillation stabilization wait time', after the 'Main clock timeout' (TO_MCLK) from the timeout counter. The timeout counter is clocked with CLKRC. If the Main clock is missing from power-on, the power-on reset state is never left, which in this case is a safe state. The user must make sure with external pull-up/pull-down resistors that all relevant signal are pulled to the correct level.
- The Sub clock supervisor is enabled after the completion of the 'Sub clock timeout' (TO_SCLK) from the timeout counter. The timeout counter is clocked with CLKRC.
- If the Main clock stops while the Main clock supervisor is enabled, the Main clock is replaced with CLKRC 100 kHz, the MM bit is set to '1' and reset (EXT_RST_OUT) is asserted.
- If the Sub clock stops and the Sub clock supervisor is enabled, the behaviour depend on whether the MCU is in Main clock mode or in Sub clock mode. If the Sub clock stops in Sub clock mode, CLKRC divided by two substitutes the Sub clock, the SM bit is set to '1' and reset (EXT_RST_OUT) is asserted. If the Sub clock stops in Main clock mode, CLKRC divided by two substitutes the Sub clock, the SM bit is set to '1' and no reset occurs upon transition to Sub clock mode, since the SRST bit has its initial value of '0'. If the SRST bit is '1' a reset (INIT) occurs.

Figure 10-4. Timing Diagram: Initial settings, Main clock missing during power-on reset

PONR	
MCLK	
SCLK	
RC_CLK	
OSC_STAB	
TO_MCLK	
TO_SCLK	
MSVE	
MSEN	
SSVE	
SSEN	
MCLK_STBY	
SCLK_STBY	
EXT_RST	
EXT_RST_OUT	
MCLK_OUT	
MCLK_MISSING	
SCLK_MISSING	

PONR	
MCLK	
SCLK	
RC_CLK	
TO_MCLK	
TO_SCLK	
MSVE	
MSEN	
SSVE	
SSEN	
MCLK_STBY	
SCLK_STBY	
SRST	
EXT_RST	
EXT_RST_OUT	ப
MCLK_OUT	
SCLK_OUT	
MCLK_MISSING	
SCLK_MISSING	
h	

Figure 10-5. Timing Diagram: Initial settings, Main clock missing during 'oscillation stabilization wait time'

PONR	
MCLK	
SCLK	
OSC_STAB	
TO_MCLK	
TO_SCLK	
MSVE	
MSEN	
SSVE	
SSEN	
MCLK_STBY	
SCLK_STBY	
SRST	
EXT_RST	
EXT_RST_OUT	
MCLK_OUT	
SCLK_OUT	
MCLK_MISSING	
SCLK_MISSING	

Figure 10-6. Timing Diagram: Initial settings, Main clock missing after 'oscillation stabilization wait time'

PONR	
MCLK	
SCLK	
RC_CLK	
OSC_STAB	
TO_MCLK	
MSVE	
MSEN	
SSVE	
SSEN	
MCLK_STBY	
SCLK_STBY	
SRST	
EXT_RST	
EXT_RST_OUT	
MCLK_OUT	
—	
MCLK_MISSING	
SCLK_MISSING	

Figure 10-7. Timing Diagram: Initial settings, Sub clock missing before timeout

PONR	
MCLK	
SCLK	
RC_CLK	
OSC_STAB	
TO_MCLK	
TO_SCLK	
MSVE	
MSEN	
SSVE	
SSEN	
MCLK_STBY	
SCLK_STBY	
SRST	
EXT_RST	
EXT_RST_OUT	
MCLK_OUT	
—	
MCLK_MISSING	
SCLK_MISSING	

Figure 10-8. Timing Diagram: Initial settings, Sub clock missing after timeout

10.4.2 Disabling the RC-oscillator and the clock supervisors

The initial point of this scenario is that the RC-oscillator and Main clock or Sub clock supervisor is enabled.

■ The RC-oscillator can be disabled only in STOP mode.

First check that both SM and MM (bit 5 and bit 6 of CSVCR) are '0'. Then disable the RC-oscillator by setting RCE to '0'. If either SM or MM bit is '1', RCE must not be set to '0'.

- New feature: If the Hardware Watchdog is to run in STOP mode (HWWDE.STP_RUN='1') then the RC-oscillator is enabled by hardware.
- The Main clock supervisor is disabled by setting MSVE (bit 3 of CSVCR) to '0'.
- The Sub clock supervisor is disabled by setting SSVE (bit 2 of CVSVR) to '0'.

Figure 10-9. Timing Diagram: Disabling the RC-oscillator and the clock supervisors

PONR	
MCLK	
SCLK	
RCE	
RC_CLK	
STOP	
OSC_STAB	
TO_MCLK	
TO_SCLK	
MSVE	
MSEN	
SSVE	
SSEN	
MCLK_STBY	
SCLK_STBY	
SRST	
EXT_RST	
EXT_RST_OUT	
MCLK_OUT	
SCLK_OUT	
MCLK_MISSING	
SCLK_MISSING	

10.4.3 Re-enabling the RC-oscillator and the clock supervisors

The initial point of this scenario is that the RC-oscillator and both Main clock and Sub clock supervisor are disabled.

- The RC-oscillator is always enabled in RUN state. It can only be disabled in STOP, and after wakeup from STOP it will re-start automatically.
- The Main clock supervisor is enabled by setting MSVE (bit 3 of CSVCR) to '1'.
- The Sub clock supervisor is enabled by setting SSVE (bit 2 of CSVCR) to '1'.

Figure 10-10. Timing Diagram: Re-enabling the RC-oscillator and the clock supervisors

PONR	
MCLK .	
SCLK	
RCE	
RC_CLK	
STOP .	
OSC_STAB	
TO_SCLK	
MSVE	
MSEN	
SSVE	
SSEN .	
MCLK_STBY	
SCLK_STBY	
SRST	
EXT_RST	
EXT_RST_OUT	
MCLK_OUT	
SCLK_OUT	
SCLK_MISSING	

10.4.4 New feature: Switching back from RC to Main Oscillation

The initial point of this scenario is that the Main clock was missing, the Main clock supervisor has set the MM flag and switched to RC clock. The CPU already got reset (INIT) from clock supervisor and has detected MM=1 as reset source (See "Check if reset was asserted by the Clock Supervisor" on P. 65). The user is quite sure that the Main clock returned meanwhile or will return soon and wants to switch back to Main clock.

- The MM flag can be cleared by writing '0' (bit 6 of CSVCR).
- If the Main clock is still missing during the write access, the write operation has no effect, the MM flag keeps '1' value and the clock supervisor continues giving out RC clock.
- If the Main clock is operating during the write access, the MM flag is cleared and the clock is switched back to Main clock.
- It is possible to poll the MM flag until the Main clock is resumed:

ldi	#_csvcr,r1
clear_CSV_loop:	
bandh	#0b1001,@r1 ;; Clear MM+SM
btsth	#0b0110,@r1;; Check: Is one of them 1?
bne	clear_CSV_loop

10.4.5 New feature: Switching back from RC to Sub Oscillation

The initial point of this scenario is that the CPU is running on Sub clock and Sub clock was missing. The Sub clock supervisor has set the SM flag and switched to RC clock (divided by 2). A clock supervisor reset was not generated because of CSVCR.SRST was '0'. Now the CPU is running user software on RC clock. The flag SM=1 was found by polling. The user is quite sure that the Sub oscillation returned meanwhile or will return soon and wants to switch back to Sub oscillation.

- The SM flag can be cleared by writing '0' (bit 5 of CSVCR).
- If the Sub clock is still missing during the write access, the write operation has no effect, the SM flag keeps '1' value and the clock supervisor continues giving out RC clock.
- If the Sub clock is operating during the write access, the SM flag is cleared and the clock is switched back to Sub clock.
- It is possible to poll the SM flag like described in the Main clock example above.

10.4.6 Sub clock modes

The Main clock supervisor is automatically disabled in Sub clock modes. The enable bit MSVE remains unchanged. At transition from Sub clock mode to Main clock mode the Main clock supervisor is enabled after the 'oscillation stabilization wait time' or in case the Main clock is missing before the completion of the 'oscillation stabilization wait time', after the 'Main clock timeout' (TO_MCLK) from the timeout counter. The timeout counter is clocked with CLKRC.

10.4.7 Changing the behaviour upon transition to Sub clock mode if the Sub clock has already stopped in Main clock mode

If the Sub clock has stopped in Main clock mode and this was detected by the Sub clock supervisor, the behaviour upon transition to Sub clock mode depends on the state of the SRST bit.

- If SRST is set to '0' (initial value), reset is not asserted at the transition to Sub clock mode. The transition is performed using the RC-oscillation clock as Sub clock. In this case it is recommended to check the SM bit before the transition to Sub clock mode to get the information if Sub clock or CLKRC is used.
- If SRST is set to '1', reset is asserted at the transition to Sub clock mode.

The following timing diagrams (Figure 10-11, Figure 10-12, Figure 10-13) illustrate this behaviour.

PONR		
MCLK		
SCLK		
RC_CLK		
OSC_STAB		
TO_MCLK		
TO_SCLK		
MSVE		
MSEN		
SSVE		
SSEN		
MCLK_STBY		
SCLK_STBY		
SRST		
EXT_RST		
EXT_RST_OUT		
MCLK_OUT		
SCLK_OUT		
MCLK_MISSING		
SCLK_MISSING		
Clock Mode	Main	Sub

Figure 10-11. Timing Diagram: Sub clock missing in Main clock mode, SRST=0

PONR	
MCLK	
SCLK	
RC_CLK	
OSC_STAB	
TO_MCLK	
TO_SCLK	
MSVE	
MSEN	
SSVE	
SSEN	
MCLK_STBY	Π
SCLK_STBY	
SRST	
EXT_RST	
EXT_RST_OUT	
MCLK_OUT	
SCLK_OUT	
MCLK_MISSING	
SCLK_MISSING	
Clock Mode	Main 🖁 Main

Figure 10-12. Timing Diagram: Sub clock missing in Main clock mode, SRST=1

PONR -MCLK SCLK RC CLK OSC_STAB TO_MCLK TO_SCLK MSVE -MSEN -SSVE -SSEN -MCLK_STBY _____ SCLK_STBY _____ SRST _ EXT_RST EXT_RST_OUT MCLK_OUT SCLK_OUT MCLK_MISSING _ SCLK MISSING Clock Mode Main Sub Main

Figure 10-13. Timing Diagram: Waking up from Sub clock mode

10.4.8 STOP mode (with both oscillators disabled)

In this section, "STOP mode" means that the CPU is in STOP state and both oscillators are disabled by setting STCR.OSCD1='1' and STCR.OSCD2='1'. The Clock Supervisor's inputs MCLK_SBY and SCLK_SBY are connected to the oscillator disable lines OCSD1 and OSCD2, respectively.

If Main clock and Sub clock supervisors are enabled, they will be automatically disabled at transition into STOP state. The corresponding enable bits in the clock supervisor control register remain unchanged. So after wake-up from STOP mode the clock supervisors will be enabled again. If the corresponding enable bits are set to '0', the clock supervisors will stay disabled after wake-up from STOP mode.

The RC-oscillator is disabled in STOP, if the RCE bit in the CSVCR register is cleared.

New feature: If the Hardware Watchdog is enabled in STOP state (HWWDE.STP_RUN='1'), then the RC-oscillator is enabled by hardware during STOP. The RCE bit is unchanged, but read and read-modify-write operations return '1'.

- The RC-oscillator is enabled immediately after wake-up from STOP mode.
- The Main clock supervisor is enabled after the 'oscillation stabilization wait time' or in case the Main clock is missing after wake-up from STOP mode, after the 'Main clock timeout' (TO_MCLK) from the timeout counter. The timeout counter is clocked with CLKRC.
- The Sub clock supervisor is enabled after the 'Sub clock timeout' (TO_SCLK) from the timeout counter which is clocked with the CLKRC.

PONR		
MCLK		
SCLK		
RCE		
RC_CLK		
OSC_STAB		
TO_MCLK		
TO_SCLK		
MSVE		
MSEN		
SSVE		
SSEN		
MCLK_STBY		
SCLK_STBY		
SRST		
EXT_RST		
EXT_RST_OUT		
MCLK_OUT		
SCLK_OUT		
MCLK_MISSING		
SCLK_MISSING		
Clock Mode	Main	Stop 🖟 Main

Figure 10-14. Timing Diagram: Waking up from STOP state

10.4.9 RTC mode (STOP mode with Real Time Clock enabled)

In this section, "RTC mode" means that the CPU is in STOP state and one of the quartz oscillators is enabled by setting STCR.OSCD1='0' or STCR.OSCD2='0'. The enabled oscillator clock is switched to the Real Time Clock to keep it running during STOP. The behavoiur of the Clock Supervisor depends on several settings.

■ If the RTC is connected to Main clock, the behaviour of the main clock supervisor is like described in Table 10-2.

Table 10-2. Main Clock Supervisor in RTC mode.

RC oscillator enable CSVCR.RCE	Main Oscillator disable STCR.OSCD1	Main clock supervisor enable SVCR.MSVE	Behaviour in STOP mode if Main clock fails and the RTC is con- nected to Main clock
1	1	Х	Main clock fail cannot be seen because the Main oscillator is disabled. The Main clock supervisor is disabled because of the Main oscillator is disabled. The RTC will not run because of the same reason. Note: This is no RTC mode.
1	0	1	The clock supervisor will set MM flag, switch the Main clock to RC clock and generate an reset (INIT) to CPU. The STOP mode is cancelled by the reset. The RTC is initialized by the reset.
1	0	0	Main clock supervisor is disabled by MSVE=0. In case of Main clock fail, the RTC clock simply stopps.
0	Х	Х	Main clock supervisor is disabled because of it does not get RC clock. In case of Main clock fail, the RTC clock simply stopps.

Note New feature: RCE setting is valid if HWWDE.STP_RUN (HWWDE[4]) is '0'. Otherwise, RCE is overwritten to '1'.

■ If the RTC is connected to Sub clock, the behaviour of the sub clock supervisor is like described in Table 10-3.

Table 10-3. Sub Clock Supervisor in RTC mode.

RC oscillator enable CSVCR.RCE	Sub Oscillator disable STCR.OSCD2	Sub clock supervisor enable SVCR.SSVE	Behaviour in STOP mode if Sub clock fails and the RTC is connect- ed to Sub clock
1	1	Х	Sub clock fail cannot be seen because the Sub oscillator is disabled. The Sub clock supervisor is disabled because of the Sub oscillator is disabled. The RTC will not run because of the same reason. Note: This is no RTC mode.
1	0	1	The clock supervisor will set SM flag and switch the Sub clock to RC clock. The RTC continues running on RC clock. A reset is not generated because there is no transition from Main clock to Sub clock during STOP mode.
1	0	0	Sub clock supervisor is disabled by SSVE=0. In case of Sub clock fail, the RTC clock simply stopps.
0	Х	Х	Sub clock supervisor is disabled because of it does not get RC clock. In case of Sub clock fail, the RTC clock simply stopps.

Note New feature: RCE setting is valid if HWWDE.STP_RUN (HWWDE[4]) is '0'. Otherwise, RCE is overwritten to '1'.

- The RC-oscillator is enabled immediately after wake-up from STOP state.
- If the Main clock was disabled in STOP: The Main clock supervisor is enabled after the 'oscillation stabilization wait time' or in case the Main clock is missing after wake-up from STOP state, after the 'Main clock timeout' (TO_MCLK) from the timeout counter. The timeout counter is clocked with CLKRC.
- IF the Sub clock was disabled in STOP: The Sub clock supervisor is enabled after the 'Sub clock timeout' (TO_SCLK) from the timeout counter which is clocked with the CLKRC.

10.4.10 RC-Clock as Sub Clock

The Sub clock supervisor can provide the CLKRC as Sub clock. To enable this feature, SCKS bit (bit7 of CSVCR) must be set to '1'. Figure 10-15. Timing Diagram: Sub clock mode with single clock device

PONR	
MCLK	
SCLK	
RCE	
RC_CLK	
OSC_STAB	
TO_MCLK	
TO_SCLK	
MSVE	
MSEN	
SSVE	
SSEN	
MCLK_STBY	
SCLK_STBY	
SRST	
EXT_RST	
EXT_RST_OUT	
_	
_	
MCLK_MISSING	
SCKS	
Clock Mode	Main Sub

10.4.11 Check if reset was asserted by the Clock Supervisor

To find out whether the Clock Supervisor has asserted reset, the software must check the reset cause by reading the RSRR register (see the hardware manual "RSRR: Reset Cause Register" on P. 229). On the most flash devices, the RSRR register is read and cleared by the Boot ROM software. The content of RSRR can be found in CPU register R4[7:0] after Boot ROM is done. If INIT (bit 7 of RSRR) is set, the cause was either external reset at the INITX pin or the clock supervisor or the hardware watchdog (HWWD). If neither SM bit nor MM bit (bit 5 and bit 6 of CSVCR) is set, reset cause was the external reset or the hardware watchdog. If SM is '1' the reset cause is a missing Sub clock and if MM is '1' the reset cause is a missing Main clock.

10.5 Cautions

After a Clock Supervisor reset, the CLKPLL is not usable as clk source, if the clock supervisor reset was caused by a missing OSCMAIN.

11. USART LIN/FIFO (Extension)

This chapter describes an extension of the USART (LIN/FIFO USART). For reference, please refer to chapter 32 USART (LIN/FIFO) in the CY91460 series hardware manual.

11.1 USART End of Transmission Interrupt (ET)

The USART macros have been extended to generate an "End of Transmission" (ET) interrupt after the last bit of a transmission has been sent. If ET is enabled and there is no FIFO installed, the interrupt is generated after each transmission. If FIFO is installed, ET appeares after the transmission while the FIFO is empty.

The ET interrupt cannot request a DMA transfer.

The ET can be enabled and observed in the FSR (FIFO Status Register). Therefore, also USART modules which are not equipped with FIFO, have the FIFO Status Register.

11.1.1 USART Interrupts

With the ET interrupt, the list of USART interrupts extends to:

Reception/ transmission/	Interrupt request	Flag Register	Operation mode			n	Interrupt cause	Interrupt cause	How to clear the In- terrupt Request	
ICU	flag	Register	0	1	2	3	Cause	enable bit	terrupt Nequest	
Reception	RDRF	SSR	x	x	х	x	receive data is written to RDR (FIFO level reached)	SSR:RIE	Receive data is read	
	ORE	SSR	х	х	х	х	Overrun error		"1" is written to clear	
	FRE	SSR	х	х	1	х	Framing error		rec. error bit (SCR: CRE)	
	PE	SSR	х		2		Parity error			
	LBD	ESCR	х			x	LIN synch break detected	ESCR: LBIE	"0" is written to ESCR:LBD	
	TBI & RBI	ESCR	х	х		x	no bus activity	us activity ECCR:BIE		
Transmission	TDRE	SSR or FSR	х	х	х	х	Empty transmission register	SSR:TIE	Transfer data is written	
	ET	FSR	х	х	x	x	End of transmission FSR:ETII [and FIFO empty ⁴]		"0" is written to FSR:ETINT	
Input Capture Unit	ICP4	IPCP	х			x	1st falling edge of LIN synch field	IPCP:ICE	disable ICE temporary	
	ICP4	IPCP	х			х	5th falling edge of LIN synch field	IPCP:ICE	disable ICE	

1. Only available if ECCR04/SSM = 1

Only available if ECCR04/SSM = 1
 FSR:TDRE is a read-only mirror of the SSR:TDRE bit

4. if FIFO is installed

4. if FIF X: Used

11.1.2 FSR: FIFO Status register for ET interrupt control

The FSR register ontrols and observes the ET interrupt and displays FIFO status (if FIFO is installed).

15	14	13	12	11	10	9	8	Bit
TDRE	ETINT	ETIE	N\	/FD (Num	ber of valio	d FIFO dat	ta)	
Х	Х	0	0	0	0	0	0	Initial value
R	R,W0	R,W	R	R	R	R	R	Attribute

■ bit15: TDRE Transmission Data Register Empty flag (shadow)

This is a read-only shadow of TDRE flag. Interrupt routines can determine the interrupt source (TDRE or ET) by just reading the FSR register.

- bit 14: ETINT End of Transmission interrupt flag
- □ This flag is set when the ET condition has appeared:

If no FIFO is installed, after the last bit of a transmission has been sent,

if FIFO is installed, after the last bit of a transmission has been sent and the FIFO is empty.

 $\ensuremath{\square}$ This flag is cleared by software reset (RST) or by writing 0.

□ Writing 1 has no effect.

□ Read - modify - write access always reads 1.

■ bit13: ETIE End of Transmission interrupt enable

□ ETIE = 1 enables that the ET interrupt request is sent to the CPU when ETINT is set.

 \Box ETIE = 0 (default) disables the ET interrupt request.

□ This bit is cleared by software reset (RST) and can be written and read by CPU.

■ bit12-8: NVFD[4:0] Number of valid FIFO data

These bits indicate the number of stored receptions (SVD=0) or pending transmissions (SVD=1) in the FIFO buffer.

□ If no FIFO is installed, these bits return 0x00.

12. Shutdown Mode

12.1 Overview

In Shutdown mode, the power supply of more then 80% of the internal logic and the main memories is switched off to minimize leakage.

This mode is a type of STOP state.

The device can enter this mode if it goes to STOP state when Shutdown is enabled.

During this mode, the oscillators can stop oscillating and the power is not supplied except for some logic.

The power continues to be supplied to the following circuits even in shutdown state:

- Standby RAM 16 KByte for data (address FFFAC000H to FFFAFFFH)
- Shutdown / recovery control circuit
- Clock control logic
- Real Time Clock
- 4 MHz oscillator + 32 kHz oscillator + RC oscillator
- Hardware Watchdog + Clock Supervisor

In the "Block Diagram" on page 23, this part of the device is called "Always ON Logic":

The device will recover from Shutdown mode after the following events:

- Reset assertion by the INITX pin ^a
- External interrupt (8 sources)
- Real Time Clock interrupt
- Hardware watchdog reset
- Main Clock Supervisor reset

a. Reset by the INITX pin will kill the ShutDown state and restart the device like at power-on.

12.2 Standby RAM

CY91F467E containes a 16 KByte low-leakage RAM used as Standby RAM. The power supply of this RAM is not switched off in Shutdown state.

The Standby RAM is located at addresses FFFAC000H to FFFAFFFH.

To access it, to the RAM must be enabled by setting RAMEN bit in SHDE register. RAMEN is initialized by Software Reset (RST). If the RAM is to be accessed, make sure that no external bus Chip Select area overlaps the Standby RAM addresses.

The bit RAMEN is written using CLKP, while the Standby RAM is accessed with CLKB. If CLKP is slower then CLKB, make sure to have some wait time (at least 2 CLKP periods) between setting of RAMEN and first RAM access.

For the Standby RAM, low-leakage macros have been implemented. Read and write acces are performed with 1 wait cycle.

12.3 Shutdown Registers

12.3.1 Notes About the Reset Signals

The following register description mentiones different reset signals, which are explained shortly here. For more information, please refer to the CY91460 series hardware manual, "Chapter 9 Reset".

Settings Initialization Reset (INIT):

initializes all the device's control and clock settings. INIT can be triggered

- □ by low level on external INITX pin
- □ by low level on external HSTX pin (no hardware standby pin available in CY91460E series)
- by Hardware Watchdog Timer
- by Clock Supervisor
- by Software Watchdog Timer
- by Low Voltage Detection
- Operation Initialization Reset (RST, "Software Reset"):

initializes CPU and peripherals and restarts the software. RST can be triggered

- □ by low level on external RSTX pin (not available in CY91460E series)
- □ by INIT (INIT always causes RST)
- □ by software (STCR.SRST=0)
- Shutdown Recovery: The Shutdown state is released when a valid recovery factor is found. Shutdown recovery causes a Settings Initialization Reset (INIT) with some exceptions. For details, please refer to "Recovery from shutdown mode" on page 77.

12.3.2 SHDE: Shutdown control register

This register enables/disables the shutdown state as well as the Standby RAM.

SHDE: Address 0004D4_H Access: Byte

1. Initial value after external pin INITX=0 or Shutdown Recovery

2. Initial value after Software Reset (RST)

[bit 7] SDENB: Shutdown enable

SDENB	Function
1	Enable shutdown state: On transition to STOP mode, the device enters Shutdown state.
0	Disable shutdown state: On transition to STOP mode, the device enters the normal STOP mode.

[bit 6 to bit 1] Reserved bits

■ The read value is undefined.

Always write 0 to these bits.

[bit 0] RAMEN: Standby RAM enable

RAMEN	Function
1	Enable the Standby RAM ¹ : Read and write access to the Standby RAM is possible
0	Disable the Standby RAM: Read and write access to the Standby RAM is disabled.

1. The Standby RAM is located inside the address space of External Bus. If the Standby RAM is enabled, make sure that no chip select area of the External Bus overlaps the standby RAM area.

Note: RAMEN is cleared by INIT and by Software Reset because the chip select control registers (CSER, ACR0-7, ASR0-7, AWR0-7) are initialized by the same conditions. After both kinds of reset, chip select CS0 is enabled to cover all addresses of external bus area, which would overlap the Standby RAM address space.

Note: The bit RAMEN is written using CLKP, while the Standby RAM is accessed with CLKB. If CLKP is slower then CLKB, make sure to have some wait time (at least 2 CLKP periods) between setting of RAMEN and first RAM access.

12.3.3 EXTE: Shutdown recovery external interrupt enable register

This register enables external interrupts as the source for recovering from the shutdown state.

■ EXTE: Address 0004D6_H Access: Byte

7	6	5	4	3	2	1	0	
RX1	RX0	INT7	INT6	INT3	INT2	INT1	INT0	
0	0	0	0	0	0	0	0	Initial value ¹
retained	Initial value ²							
R/W	Attribute							

1. Initial value after external pin INITX=0 or Shutdown Recovery

2. Initial value after Software Reset (RST)

Eight external interrupts that can be set as recovery sources are allocated to each bit, as shown in the table below:

bit	Pin No	Pin Name
7	93	P32_2/RX1/INT9
6	91	P23_0/RX0/INT8
5	90	P24_7/SCL3/INT7
4	89	P24_6/SDA3/INT6
3	86	P24_3/INT3
2	85	P24_2/INT2
1	84	P24_1/INT1
0	83	P24_0/INT0

[bit 7 to bit 0] Interrupt enable bits

Value	Function
1	Enable recovery interrupt
0	Disable recovery interrupt

□ These bits can be read and written.

□ External pin INITX=0 or Shutdown recovery clear these bits.

12.3.4 SHDINT: Shutdown recovery internal interrupt control and status register

The SHDINT register containes control bits and flags for enabling and indicating internal interrupts for recovery from shutdown mode.

■ SHDINT: Address 0004DB_H Access: Byte

	7	6	5	4	3	2	1	0	
ſ	-	-	-	-	HWWDF	HWWDE	RTCF	RTCE	
L	Х	Х	Х	Х	0	0	0	0	Initial value ¹
	Х	Х	Х	Х	retain	0	retain	0	Initial value ²
	Х	Х	Х	Х	retain	0	retain	retain	Initial value ³
	-	-	-	-	R(RM1)/ W0	R	R(RM1)/ W0	R/W	Attribute

1. Initial value after external pin INITX=0

2. Initial value after Shutdown Recovery

3. Initial value after Software Reset (RST)

[bit 7 to bit 4] Reserved bits

□ The read value is undefined.

□ Always write 0 to these bits.

[bit 3] HWWDF: Hardware Watchdog recovery flag

HWWDF	Function				
1	Recovery factor from Hardware Watchdog found				
0	No recovery factor from Hardware Watchdog found				

This bit is set in Shutdown mode, if HWWDE is set and if an INITX signal from Hardware Watchdog is detected.

□ Writing "1" to this bit does not affect the operation.

□ Writing "0" cleares the bit, external pin INITX=0 cleares the bit.

□ "1" is read by a read-modify-write instruction.

[bit 2] HWWDE: Hardware Watchdog recovery enable (mirror of HWWDE.STP_RUN^a)

HWWDE	Function					
1	Recovery reset from Hardware Watchdog is enabled, RC clock is enabled in STOP/Shutdown mode by hardware					
	Recovery reset from Hardware Watchdog is disabled, RC clock depends on CSVCR.RCE setting in STOP/Shutdown mode					

This bit is a read-only mirror of HWWDE.STP_RUN, which can be set only once after reset and cannot be cleared by CPU access.

This bit is cleared by Software Reset (RST). Note that external pin INITX=0 or Shutdown recovery are always followed by a Software Reset RST.

[bit 1] RTCF: Real Time Clock recovery flag

RTCF	Function			
1	Recovery factor from Real Time Clock found			
0	No recovery factor from Real Time Clock found			

This bit is set in Shutdown mode, if RTCE is set and an interrupt signal from Real Time Clock is detected.

□ Writing "1" to this bit does not affect the operation.

□ Writing "0" cleares the bit, external pin INITX=0 cleares the bit.

□ "1" is read by a read-modify-write instruction.

a. STP_RUN is bit HWWDE[4]

[bit 0] RTCE: Real Time Clock recovery enable

RTCE	Function			
1	Recovery reset from Real Time Clock is enabled			
0	Recovery reset from Real Time Clock is disabled			

□ This bit can be read and written.

□ External pin INITX=0 or Shutdown recovery clear this bit.

12.3.5 EXTF: Shutdown recovery external interrupt source flags

This register indicates the recovery source for when a shutdown recovery external interrupt is used to recover.

■ EXTF: Address 0004D7_H Access: Byte

7	6	5	4	3	2	1	0	
RX1	RX0	INT7	INT6	INT3	INT2	INT1	INT0]
0	0	0	0	0	0	0	0	Initial value ¹
retained	Initial value ²							
retained	Initial value ³							
R(RM1)/	Attribute							
WO	W0	W0	WO	W0	WO	WO	W0	Allibule

1. Initial value after external pin INITX=0

Initial value after Shutdown Recovery
 Initial value after Software Reset (RST)

The bit configuration is the same as for the EXTE register.

[bit 7 to bit 0] Interrupt factor flag bits

The bit corresponding to any input signal found to be valid as a recovery factor is set to "1."

Value	Function Recovery factor found No recovery factor found			
1				
0				

These bits are set in Shutdown mode, when the attached external interrupt channel is enabled by EXTE=1 and a recovery factor (level / edge) from the external interrupt channel is detected.

□ Writing "1" to these bits does not affect the operation.

□ Writing "0" cleares the bits, external pin INITX=0 cleares the bits.

□ "1" is read by a read-modify-write instruction.

12.3.6 EXTLV1/2: Shutdown recovery external interrupt level selection register

This register sets the pin level for recovering from the shutdown state using an external interrupt.

■ EXTLV1: Address 0004D8_H Access: Halfword, Byte

	15	14	13	12	11	10	9	8	
Ī	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	
	0	0	0	0	0	0	0	0	Initial value ¹
	retained	Initial value ²							
	R/W	Attribute							

Initial value after external pin INITX=0 or Shutdown Recovery
 Initial value after Software Reset (RST)

■ EXTLV2: Address 0004D9_H Access: Halfword, Byte

7	6	5	4	3	2	1	0	
LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	
0	0	0	0	0	0	0	0	Initial value ¹
retained	Initial value ²							
R/W	Attribute							

Initial value after external pin INITX=0 or Shutdown Recovery
 Initial value after Software Reset (RST)

Source levels of eight external interrupts that can be set as recovery sources are allocated to each bit, as shown in the table below.

bit	Pin No	Pin Name
15,14	93	P23_2/RX1/INT9
13,12	91	P23_0/RX0/INT8
11,10	90	P24_7/SCL3/INT7C
9,8	89	P24_6/SDA3/INT6D
7,6	86	P24_3/INT3
5,4	85	P24_2/INT2
3,2	84	P24_1/INT1
1,0	83	P24_0/INT0

[bit15 to bit0]: Interrupt level setting register

LBx	LAx	Interrupt Level
0	0	"L" level (initial value)
0	1	"H" level
1	0	Rising edge
1	1	Falling edge

Please refer to "External Interrupts: Level or Edge Setting" on page 76.

12.4 Shutdown Operation

12.4.1 Transition to shutdown state

Shutdown state is a special kind of the STOP state. During Shutdown, the settings in the STCR register for Oscillation Disable (STCR.OSCD1, STCR.OSCD2), Hi-Z mode (STCR.HIZ) and Oscillation Stabilization time (STCR.OS[1:0]) are valid the same kind as in normal STOP state. At recovery from Shutdown, STCR.OS[1:0] are not cleared to maintain the oscillator stabilisation time, while STCR.OSCD1, STCR.OSCD2 and STCR.HIZ are initialized by the recovery.

For transition into Shutdown, do the following:

- Enable at least one recovery condition (otherwise, recovery is only possible by external INITX pin)
- Enable the Shutdown mode

Switch the device to STOP mode

The details are explained below.

Precautions

Before enabling Shutdown, consider the following:

- Data, which is needed after recovery from Shutdown, should be copied into the Standby RAM.
- The CPU should run on Main- or Sub-Oscillation, not on PLL. The PLL should be disabled.
- □ The Sub-Regulator can be set to 1.2 V in STOP mode by setting REGSEL.SUBSEL = 0x00
- □ Specify the levels of external interrupt signals used for recovery in EXTLV1/2 registers
- Enable the channels of external interrupt signals for recovery in EXTE register

Deep Shutdown Settings for maximal power saving

The following settings generate Shutdown without any activity on the device:

- Disable all pin pull-up/pull-down settings which are not required, or set the STCR.HIZ ^a bit when going to STOP.
- Set external bus pins to port mode / input direction (otherwise some pins will output constant values, see "I/O Behaviour in Shutdown" on page 80).
- Don't set Hardware Watchdog Run in STOP mode (HWWDE.STP_RUN b =0, this is default setting)
- □ Disable the RC oscillator in STOP mode (CSVCR.RCE=0)
- □ Disable the Low Voltage Detection in STOP mode (LVDET.LVEPD=1, LVDET.LVIPD=1)
- Disable the Main and the Sub oscillators in STOP mode (STCR.OSCD1=1, STCR.OSCD2=1)
- □ Set the Shutdown Enable bit SHDE.SDENB=1 to enable shutdown mode
- □ Go to STOP: set the STOP request STCR.STOP=1 and read back STCR two times.

Shutdown with Real Time Clock running

The following settings generate Shutdown with the RTC running on Main-Oscillation, Sub-Oscillation or RC clock, and with recovery by RTC enabled:

□ Set the RTC prescaler values depending on the clock speed (WTBR register)

□ If recovery by the RTC is needed:

- Enable at least one of the the RTC interrupts (half-second, second, minute, hour or day) in WTCR and/or WTCE register
- Enable RTC recovery: set SHDINT.RTCE=1
- □ If RTC uses Main Oscillation:
 - Disable the RC oscillator in STOP mode (CSVCR.RCE=0)
 - Disable the Sub oscillator in STOP mode (STCR.OSCD2=1) and keep Main oscillator running (OSCD1=0)
 - The RTC is connected to Main oscillation by default.
- □ If RTC uses Sub Oscillation:
 - Disable the RC oscillator in STOP mode (CSVCR.RCE=0)
 - Disable the Main oscillator in STOP mode (STCR.OSCD1=1) and keep Sub oscillator running (OSCD2=0)
- Connect the RTC to Sub oscillator: set CSCFG.CSC[1:0]=01
- □ If RTC uses RC clock:
 - Enable the RC oscillator in STOP mode (CSVCR.RCE=1, this is default setting)

a. With STCR.HIZ=1, all pull-ups and pull-downs are disabled in STOP/Shutdown.

b. STP_RUN is bit [4] of HWWDE register. It enables running the Hardware Watchdog in STOP mode. STP_RUN can only be set by software, but not cleared. STP_RUN is cleared by INIT.

- Disable the Main and the Sub oscillators in STOP mode (STCR.OSCD1=1, STCR.OSCD2=1)
- Connect the RTC to RC oscillator: set CSCFG.CSC[1:0]=10
- □ Set the Shutdown Enable bit SHDE.SDENB=1 to enable shutdown mode
- □ Go to STOP: set the STOP request STCR.STOP=1 and read back STCR two times.

Hardware Watchdog in Shutdown

The Hardware Watchdog can run in STOP mode, if the bit HWWDE.STP_RUN ^a is set.

- □ Outside STOP mode, the Hardware Watchdog timeout will send an INIT signal to the CPU via the Shutdown control.
- In STOP mode without Shutdown, the Hardware Watchdog timeout will send an INIT signal to the CPU via the (inactive) Shutdown control, which cancelles the STOP mode immediately.
- In STOP mode with Shutdown enabled, the Hardware Watchdog timeout will set the SHDINT.HWWDF flag, causing a recovery from Shutdown.

The Hardware Watchdog can be enabled in Shutdown state like follows:

- Enable the Hardware Watchdog operation in STOP mode: set HWWDE.STP_RUN = 1 In parallel, this enables the RC oscillator by hardware, and the Hardware Watchdog recovery Enable bit SHDINT.HWWDE is set by hardware too.
- □ If RTC is needed, enable it like described in Shutdown with Real Time Clock running above.
- □ Specify the levels of external interrupt signals used for recovery in EXTLV1/2 registers
- Enable the channels of external interrupt signals for recovery in EXTE register
- □ Set the Shutdown Enable bit SHDE.SDENB=1 to enable shutdown mode
- Clear/restart the Hardware Watchdog: write 0 to bit HWWD.CL
- □ Go to STOP: set the STOP request STCR.STOP=1 and read back STCR two times.

If the timeout is reached, the Hardware Watchdog generates INIT, which cancelles the Shutdown state and forces recovery. The CPU will run on Main Oscillation after this recovery.

WARNING: If a Hardware Watchdog timeout INIT signal appeares just at the transition to Standby Mode, the device may enter an unpredictable state. Always make sure that the hardware Watchdog has been cleared just before entering Shutdown.

Clock Supervisor in Shutdown

The INITX pin, Clock Supervisor and Hardware Watchdog form the "external INIT chain", like shown in the figure in section "Determining the Reset Source after Shutdown" on page 78. The Shutdown control is part of this chain.

An INIT signal from the Clock Supervisor will pass the Hardware Watchdog and arrive at the same Shutdown control input line as the INIT signal from Hardware Watchdog. Therefore, clock supervision in Shutdown mode is only possible if the Hardware Watchdog is operating in parallel.

If the Hardware Watchdog is disabled in Shutdown mode, an INIT signal from the Clock Supervisor is ignored in Shutdown.

The Clock Supervisor is enabled by default. In Shutdown mode, as long as the Main- and/or Sub-oscillator is running and the RC clock is not stopped, the CSV is supervising the Main- or Sub-oscillator, respectively.

- The Clock Supervisor needs the RC clock, so set CSVCR.RCE=1, this is default setting.
- □ If the Main-oscillator is not stopped (STCR.OSCD1=0), the Main clock supervisor is running.
- If the Main-oscillator fails, the Main Clock Supervisor generates INIT, which can cancel the Shutdown state and force recovery. The CPU runs on RC clock during and after the recovery.
- □ If the Sub-oscillator is not stopped (STCR.OSCD2=0), the Sub Clock Supervisor is running.
- If the Sub-oscillator fails, the Sub clock is switched to RC clock divided by 2. An INIT is not generated, and the Real Time Clock continues running on on RC clock divided by 2, if RTC is enabled.
- To disable the Clock Supervisor, clear the bits CSVCR.MSVE and CSVCR.SSVE.

Low Voltage Detection in Shutdown

Low Voltage Detection is not supported in Shutdown mode. Always set the Low Voltage Detection into power down mode (LV-DET.LVEPD=1, LVDET.LVIPD=1) before enabling Shutdown.

a. STP_RUN is bit [4] of HWWDE register. It enables running the Hardware Watchdog in STOP mode. STP_RUN can only be set by software, but not cleared. STP_RUN is cleared by INIT.

External Interrupts: Input Voltage Setting

The input voltages (CMOS-Schmitt, Automotive, TTL, CMOS-2) of the external interrupt lines are defined by the setting of PILR and EPILR of the appropriate ports. The PILR and EPILR settings for the 8 external recovery interrupt lines are maintained during Shutdown mode until they are cleared by the Software reset following the Recovery INIT.

EPILR	PILR	Pin No	Pin Name
EPILR23[2]	PILR23[2]	93	P23_2/RX1/INT9
EPILR23[0]	PILR23[0]	91	P23_0/RX0/INT8
EPILR24[7]	PILR24[7]	90	P24_7/SCL3/INT7C
EPILR24[6]	PILR24[6]	89	P24_6/SDA3/INT6D
EPILR24[3]	PILR24[3]	86	P24_3/INT3
EPILR24[2]	PILR24[2]	85	P24_2/INT2
EPILR24[1]	PILR24[1]	84	P24_1/INT1
EPILR24[0]	PILR24[0]	83	P24_0/INT0

External Interrupts: Level or Edge Setting

The registers EXTLV1 and EXTLV2 are used to set the interrupt level or edge for recovery per interrupt channel.

LBx	LAx	Interrupt Level
0	0	"L" level (initial value)
0	1	"H" level
1	0	Rising edge
1	1	Falling edge

The settings "level" and "edge" generate different behaviour if the external source line is not changed back after recovery of if it changes to the sensitive level before Shutdown.

Examples:

INTO is enabled for recovery on risong edge. If a rising edge appeares during Shutdown state, recovery is performed. If a rising edge is outside Shutdown state, there will be no recovery:

INT0	
STOP/ShutDown state	
Recovery INIT	

INTO is enabled for recovery on high level. If INTO changes to high level during Shutdown state, recovery is performed. If INTO changes to high level already before Shutdown state, the Shutdown is recovered immediately because the high level on INTO is valid. Note that, in this case, a complete shut-down/power-up sequence with recovery INIT is performed:

INT0	
STOP/ShutDown state	 Γ
Recoverv INIT	

Note: If "H" level or "L" level is enabled for recovery, the level must be active for minimum 500 μ s.

12.4.2 Recovery from shutdown mode

The following factors are available to recover from the shutdown state:

- Assert the reset signal at the INITX terminal for minimum 10 ms ^{a b}
- Input of a valid recovery request via an external interrupt terminal
- Real Ttime Clock Interrupt (when RTC interrupt is enabled)
- Hardware Watchdog reset (when HWWD is enabled in STOP mode)
- Main Clock Supervisor reset (when Main oscillator is running and Main Clock Supervisor is enabled and recovery by HWWD is enabled)

Shutdown state is released when a valid recovery factor is permitted. After the Shutdown state release, the device restarts with a settings initialization reset (INIT), just like power-up operation. Only the Real Time Clock, the Oscillation Stabilization settings in STCR register, and the recovery source flags in the Shutdown registers EXTF and SHDINT are not cleared.

The internal restart sequence is as follows:

- 1. Resume the internal power supply.
- 2. Reset and assert the initialization reset (INIT).
- 3. Wait for oscillation stabilization.
- 4. Start the reset sequence.

As the external interrupt source flags and the RTC flag are retained in EXTF and SHDINT registers, it is possible to determine whether it is power-up operation or recovery from shutdown state by checking the flags.

The Real Time Clock at Recovery from Shutdown

In normal operation, the registers and settings of the Real Rime Clock are initialized by Software Reset (RST).

At recovery from Shutdown, the RTC is **not** initialized:

The prescaler, second, minute and hour counters continue counting also during the recovery INIT state.

□ The clock selection for the RTC (by CSCFG.OSC1, CSCFG.OSC0) remains unchanged.

□ The RTC interrupt enable bits and interrupt flags (in WTCR and WTCE registers) remain unchanged.

So at each recovery from Shutdown, the RTC continues running and the current time as well as the interrupt flags can be read from the RTC after recovery.

Note: The Interrupt Control Register for RTC (ICR58), the Interrupt Level Mask (ILM) register as well as the Condition Code Register (CCR, containing the I-Flag) are cleared by the recovery INIT, so that all interrupt processing is disabled.

If the software re-enables interrupt processing by setting ICR58, ILM and I-Flag, the software will process the pending RTC interrupt immediately.

a. The minimum INTX=0 pulse length is determined by the time the main oscillator needs for stabilization.

b. Reset by INITX=0 will kill the ShutDown state and restart the device like at power-on.

12.4.3 Determining the Reset Source after Shutdown

The recovery from Shutdown is followed by an Setting Initialization Reset (INIT). Because INIT is always followed by a Software Reset (RST), the CPU fetches the Mode- and Reset-Vectors and jumps to the Reset Vector, which is located in the Boot ROM.

The following drawing shows how the Shutdown Control is located in the external INIT chain:

The following table lists the registers and flags for determination of the reset source, including Shutdown:

Register	Addr.	7	6	5	4	3	2	1	0
RSRR	480 _H ¹	INIT	HSTB	WDOG	ERST	SRST	LINIT	WT1	WT0
EXTF	4D7 _H	RX1	RX0	INT7	INT6	INT3	INT2	INT1	INT0
SHDINT	4DB _H	-	-	-	-	HWWDF	HWWDE	RTCF	RTCE
CSVCR	4AD _H	SCKS	ММ	SM	RCE	MSVE	SSVE	SRST	OUTE
HWWD	4C7 _H	-	-	-	-	CL	-	-	CPUF

1. RSRR is read and cleared by the Boot ROM software. After Boot ROM, the content of RSRR can be found in CPU register R4[7:0] and in a variable in memory.

Note:

RSRR: Reset Source register

EXTF: External shutdown recovery flags, see page page 72

SHDINT: Hardware Watchdog/ Real Time Clock recovery flags, see page page 71

CSVCR: CLock Supervisor Control / Status register

HWWD: Hardware Watchdog register

For details about RSRR, CSVCR and HWWD, please refer to the hardware manual.

Recovery from Shutdown will set the INIT bit in RSRR register. Because the INIT bit can also be set by external INIT (low level at INITX pin), Clock Supervisor or Hardware Watchdog, the flags in EXTF, SHDINT, CSVCR and HWWD should be checked for determining the reset source.

The recovery flags in EXTF and SHDINT are set only in Shutdown mode and only if recovery by this channel is enabled.

12.4.4 Registers which are not initialized by Shutdwon Recovery

As described above, recovery from Shutdown performes a settings initialization reset (INIT) followed by software reset (RST). This sequence will initialize the complete device with some exceptions, explained in the following table.

Registers which are not initialized by Shutdown Recovery:

Register	Address	non-initialized Bits	Reason
STCR	481 _H	OS1, OS0	Keep oscillation stabilization time setting
CSVCR	4AD _H	all bits	Clock Supervisor is not initialized by recovery
CSCFG	4AE _H	all bits	Keep RTC and Calibration clock source settings
CMCFG	4AF _H	all bits	Keep Clock Monitor settings
WTCER	4A1 _H	all bits	Real Time Clock to continue running
WTCR	4A2 _H - 4A3 _H		
WTBR	4A5 _H - 4A7 _H		
WTHR	4A8 _H		
WTMR	4A9 _H		
WTSR	4AA _H		
CUCR	4B0 _H - 4B1 _H	all bits	Subclock Calibration unit is part of RTC module
CUTD	4B2 _H - 4B3 _H		
CUTR1	4B4 _H - 4B5 _H		
CUTR2	4B6 _H - 4B7 _H		
HWWDE	4C6 _H	all bits	Hardware Watchdog is not initialized by recovery
HWWD	4C7 _H	all bits	
EXTF	4D7 _H	all bits	Keep external recovery flags
SHDINT	4DB _H	HWWDF, RTCF	Keep hardware watchdog and RTC recovery flags

Note: If the ShutDown state is killed by external pin INITX=0, these registers are initialized like at normal power-on.

12.4.5 I/O Behaviour in Shutdown

During Shutdown mode, the I/O pins are switched into dedicated states:

Ports/Pins	Port fu	Inction	Setting
P00_0 to P00_7, P01_0 to P01_7, P02_0 to P02_7, P03_0 to P03_7.	D[31:0]	External bus data I/O	The pins are switched to input direction, but it is not possible to input signals on these pins. If STCR.HIZ (HiZ mode in STOP) is not set, the pull-up/pull-down
P08_6, P08_7, P10_5, P13_0	BRQ, RDY, MCLKI, DREQ0	External bus control inputs	settings are maintained during shutdown. If STCR.HIZ is set, the pull-up and pull-down resistors are disabled.
P04_0 to P04_1, P05_0 to P05_7, P06_0 to P06_7, P07_0 to P07_7.	A[25:0]	External bus address outputs	
P08_0 to P08_5, P09_0 to P09_7, P10_1 to P10_4, P10_6, P13_1, P13_2	WRnX, RDX, BGRNTX, CSnX, ASX, BAAX, WEX, MCLKO, MCLKE	External bus control and clock outputs	If the pins were switched to output direction before shutdown (by PFR==1 or DDR==1), the pins will output '1' value and the driver strength is switched to 2 mA. Otherwise, the pins keep input direction, but it is not possible to input signals on these pins. If STCR.HIZ is not set, the pull-up/pull-down settings are maintained. If STCR.HIZ is set, the pull-up and pull-down resistors are disabled.
P24_0 to P24_3, P24_6, P24_7, P23_0, P23_2	INT0 to INT3, INT6, INT7, RX0/INT8, RX1/INT9	Pins used for Shutdown recovery	The pins are switched to input direction. If STCR.HIZ is not set, the pull-up/pull-down settings are maintained during shutdown. If STCR.HIZ is set, the pull-up and pull-down resistors are disabled. If external interrupt is enabled for recovery from Shutdown (Shutdown INTE=1), the input threshold setting (PILR, EPILR) is maintained during the shutdown mode and it is possible to input signals for recovery. After the first recovery factor is accepted, the port settings are initialized when the device proceeds to the reset (INIT/RST) sequence.
		mentioned above	All other pins are switched to input direction, but it is not possible to input signals on these pins. If STCR.HIZ is not set, the pull-up/pull-down settings are maintained during Shutdown. If STCR.HIZ is set, the pull-up and pull-down resistors are disabled.
ALARM_0 ALARM analog input		nalog input	The state of ALARM input is not changed in Shutdown state.
MD_0 to MD_2	MD_0 to MD_2 Mode inputs		The state of MD[2:0] is not changed in Shutdown state
INITX	External INIT		The state of INITX is not changed in Shutdown state. The pull-up is enabled. It is possible to input external INITX signal during Shutdown.
VCC18C	Regulator c	apacitor pin	The capacitor connection pin for internal regulator shows the voltage which is applied to internal Always-ON domain.

1. nn = 14 to 29, m = 0 to 7

13. CPU and Control Unit

The FR family CPU is a high performance core that is designed based on the RISC architecture with advanced instructions for embedded applications.

13.1 Features

Adoption of RISC architecture

Basic instruction: 1 instruction per cycle

- General-purpose registers: 32-bit × 16 registers
- 4 Gbytes linear memory space
- Multiplier installed

32-bit × 32-bit multiplication: 5 cycles 16-bit × 16-bit multiplication: 3 cycles

Enhanced interrupt processing function

Quick response speed (6 cycles) Multiple-interrupt support Level mask function (16 levels)

Enhanced instructions for I/O operation

Memory-to-memory transfer instruction Bit processing instruction Basic instruction word length: 16 bits

Low-power consumption

Sleep mode/stop mode

13.2 Internal Architecture

- The FR family CPU uses the Harvard architecture in which the instruction bus and data bus are independent of each other.
- A 32-bit ↔ 16-bit buffer is connected to the 32-bit bus (D-bus) to provide an interface between the CPU and peripheral resources.
- A Harvard ↔ Princeton bus converter is connected to both the I-bus and D-bus to provide an interface between the CPU and the bus controller.

13.3 Programming Model

13.3.1 Basic Programming Model

13.4 Registers

13.4.1 General-purpose Register

Registers R0 to R15 are general-purpose registers. These registers can be used as accumulators for computation operations and as pointers for memory access.

Of the 16 registers, enhanced commands are provided for the following registers to enable their use for particular applications.

R13: Virtual accumulator

R14: Frame pointer

R15: Stack pointer

Initial values at reset are undefined for R0 to R14. The value for R15 is 0000000_H (SSP value).

13.4.2 PS (Program Status)

This register holds the program status, and is divided into three parts, ILM, SCR, and CCR.

All undefined bits (-) in the diagram are reserved bits. The read values are always "0". Write access to these bits is invalid.

13.4.3 CCR (Condition Code Register)

SV: Supervisor flag

S: Stack flag

- I: Interrupt enable flag
- N: Negative enable flag
- Z: Zero flag
- V: Overflow flag
- C: Carry flag

13.4.4 SCR (System Condition Register)

Flag for step division (D1, D0)

This flag stores interim data during execution of step division.

Step trace trap flag (T)

This flag indicates whether the step trace trap is enabled or disabled.

The step trace trap function is used by emulators. When an emulator is in use, it cannot be used in execution of user programs.

13.4.5 ILM (Interrupt Level Mask Register)

bit 20 bit 19 bit 18 bit 17 bit 16	Initial value
ILM4 ILM3 ILM2 ILM1 ILM0	01111в

This register stores interrupt level mask values, and the values stored in ILM4 to ILM0 are used for level masking. The register is initialized to value " 01111_B " at reset.

13.4.6 PC (Program Counter)

bit 31	bit 0 Initial value XXXXXXXн

The program counter indicates the address of the instruction that is being executed. The initial value at reset is undefined.

13.4.7 TBR (Table Base Register)

bi	t 31 bit 0	Initial value
		000FFC00н

The table base register stores the starting address of the vector table used in EIT processing. The initial value at reset is $000FFC00_{\text{H}}$.

13.4.8 RP (Return Pointer)

bit 31	bit 0 Initial value
	ХХХХХХХ

The return pointer stores the address for return from subroutines.

During execution of a CALL instruction, the PC value is transferred to this RP register.

During execution of a RET instruction, the contents of the RP register are transferred to PC. The initial value at reset is undefined.

13.4.9 USP (User Stack Pointer)

b	bit 31 bit 0	Initial value XXXXXXXXн

The user stack pointer, when the S flag is "1", this register functions as the R15 register.

■ The USP register can also be explicitly specified.

The initial value at reset is undefined.

■ This register cannot be used with RETI instructions.

13.4.10 Multiply & Divide Registers

b	t 31 bit	0
MDH		
MDL		

These registers are for multiplication and division, and are each 32 bits in length. The initial value at reset is undefined.

14. Embedded Program/Data Memory (Flash)

14.1 Flash Features

- CY91F467EA: 1088 Kbytes (16 × 64 Kbytes + 8 × 8 Kbytes) = 8.5 Mbits
- Programmable wait state for read/write access
- Flash and Boot security with security vector at 0x0014:8000 0x0014:800F
- Boot security
- Basic specification: Same as MBM29LV400TC (except size and part of sector configuration)

14.2 Operation Modes

(1) 64-bit CPU mode:

- □ CPU reads and executes programs in word (32-bit) length units.
- □ Flash writing is not possible.
- □ Actual Flash Memory access is performed in d-word (64-bit) length units.
- (2) 32-bit CPU mode:
 - □ CPU reads, writes and executes programs in word (32-bit) length units.
 - □ Actual Flash Memory access is performed in word (32-bit) length units.

(3) 16-bit CPU mode:

- □ CPU reads and writes in half-word (16-bit) length units.
- □ Program execution from the Flash is not possible.
- □ Actual Flash Memory access is performed in half-word (16-bit) length units.

Note: The operation mode of the flash memory can be selected using a Boot-ROM function. The function start address is 0xBF60. The parameter description is given in the Hardware Manual in chapter 54.6 "Flash Access Mode Switching".

14.3 Flash Access in CPU Mode

14.3.1 Flash Configuration

Figure 14-1. Flash memory map CY91F467EA

Address									
0014:FFFFh 0014:C000h		SA6	(8KB)			SA7	(8KB)		
0014:BFFFh 0014:8000h		SA4	(8KB)		SA5 (8KB)				ROMS7
0014:7FFFh 0014:4000h	SA2 (8KB)					SA3 (8KB)			
0014:3FFFh 0014:0000h		SA0	(8KB)			SA1	(8KB)		
0013:FFFFh 0012:0000h		SA22	(64KB)			SA23	(64KB)		ROMS6
0011:FFFFh 0010:0000h	SA20 (64KB)				SA21 (64KB)				ROMSO
000F:FFFFh 000E:0000h	SA18 (64KB)				SA19 (64KB)			ROMS5	
000D:FFFFh 000C:0000h		SA16	(64KB)		SA17 (64KB)			ROMS4	
000B:FFFFh 000A:0000h		SA14	(64KB)		SA15 (64KB)				ROMS3
0009:FFFFh 0008:0000h		SA12	(64KB)			SA13	(64KB)		ROMS2
0007:FFFFh 0006:0000h	SA10 (64KB)				SA11 (64KB)				ROMS1
0005:FFFFh 0004:0000h	SA8 (64KB)					SA9 (64KB)		ROMS0
	addr+0	addr+1	addr+2	addr+3	addr+4	addr+5	addr+6	addr+7	
16bit read/write	dat[31:16] dat[15:0]				dat[31:16] dat[15:0]			15:0]	
32bit read/write		dat[3	31:0]		dat[31:0]				
64bit read	dat[63:0]]	

14.3.2 Flash access timing settings in CPU mode

The following tables list all settings for a given maximum Core Frequency (through the setting of CLKB or maximum clock modulation) for Flash read and write access.

 Table 14-1. Flash read timing settings (synchronous read)

Core clock (CLKB)	ATD	ALEH	EQ	WEXH	WTC	Remark
to 24 MHz	0	0	0	-	1	
to 48 MHz	0	0	1	-	2	
to 80 MHz	1	1	3	-	4	

Table 14-2. Flash write timing settings (synchronous write)

Core clock (CLKB)	ATD	ALEH	EQ	WEXH	WTC	Remark
to 32 MHz	1	-	-	0	4	
to 48 MHz	1	-	-	0	5	
to 64 MHz	1	-	-	0	6	
to 80 MHz	1	-	-	0	7	

14.3.3 Address mapping from CPU to parallel programming mode

The following tables show the calculation from CPU addresses to flash macro addresses which are used in parallel programming.

Table 14-3. Address mapping CY91F467EA

CPU Address (addr)	Condition	Flash sectors	FA (flash address) Calculation
14:0000h to 14:FFFFh	addr[2]==0	SA0, SA2, SA4, SA6 (8 Kbyte)	FA:= addr - addr%00:4000h + (addr%00:4000h)/2 - (addr/2)%4 + addr%4 - 05:0000h
14:0000h to 14:FFFFh	addr[2]==1	SA1, SA3, SA5, SA7 (8 Kbyte)	FA:= addr - addr%00:4000h + (addr%00:4000h)/2 - (addr/2)%4 + addr%4 - 05:0000h + 00:2000h
04:0000h to 13:FFFFh	addr[2]==0	SA8, SA10, SA12, SA14, SA16, SA18, SA20, SA22 (64 Kbyte)	FA:= addr - addr%02:0000 + (addr%02:0000h)/2 - (addr/2)%4 + addr%4 + 0C:0000h
04:0000h to 13:FFFFh	addr[2]==1	SA9, SA11, SA13, SA15, SA17, SA19, SA21, SA23 (64 Kbyte)	FA:= addr - addr%02:0000h + (addr%02:0000h)/2 - (addr/2)%4 + addr%4 + 0C:0000h + 01:0000h

Note: FA result is without 20:0000h offset for parallel Flash programming.

Set offset by keeping FA[21] = 1 as described in section "Parallel Flash programming mode".

14.4 Parallel Flash Programming Mode

14.4.1 Flash configuration in parallel Flash programming mode Parallel Flash programming mode (MD[2:0] = 111):

CY91F467EA

FA[21:0]						
003F:FFFFh 003F:0000h	SA23	(64KB)				
003E:FFFFh 003E:0000h	SA22 (64KB)					
003D:FFFFh 003D:0000h	SA21	(64KB)				
003C:FFFFh 003C:0000h	SA20	(64KB)				
003B:FFFFh 003B:0000h	SA19	(64KB)				
003A:FFFFh 003A:0000h	SA18	(64KB)				
0039:FFFFh 0039:0000h	SA17	(64KB)				
0038:FFFFh 0038:0000h	SA16	(64KB)				
0037:FFFFh 0037:0000h	SA15	(64KB)				
0036:FFFFh 0036:0000h	SA14	(64KB)				
0035:FFFFh 0035:0000h	SA13 (64KB)					
0034:FFFFh 0034:0000h	SA12	(64KB)				
0033:FFFFh 0033:0000h	SA11	(64KB)				
0032:FFFFh 0032:0000h	SA10	(64KB)				
0031:FFFFh 0031:0000h	SA9 (64KB)				
0030:FFFFh 0030:0000h	SA8 (64KB)				
002F:FFFFh 002F:E000h	SA7	(8KB)				
002F:DFFFh 002F:C000h	SA6	(8KB)				
002F:BFFFh 002F:A000h	SA5	(8KB)				
002F:9FFFh 002F:8000h	SA4 (8KB)					
002F:7FFFh 002F:6000h	SA3 (8KB)					
002F:5FFFh 002F:4000h	SA2 (8KB)					
002F:3FFFh 002F:2000h	SA1 (8KB)					
002F:1FFFh 002F:0000h	SA0	(8KB)				
	FA[1:0]=00	FA[1:0]=10				
16bit write mode	DQ[15:0]	DQ[15:0]				

Remark: Always keep FA[0] = 0 and FA[21] = 1

14.4.2 Pin Connections in Parallel Programming Mode

Resetting after setting the MD[2:0] pins to [111] will halt CPU functioning. At this time, the Flash memory's interface circuit enables direct control of the Flash memory unit from external pins by directly linking some of the signals to General Purpose Ports. Please see table below for signal mapping.

In this mode, the Flash memory appears to the external pins as a stand-alone unit. This mode is generally set when writing/erasing using the parallel Flash programmer. In this mode, all operations of the 8.5 Mbits Flash memory's Auto Algorithms are available.

Table 14-4. Correspondence between MBM29LV400TC and Flash Memory Control Signals

MBM29LV400TC		CY9	1F467EA external pin	S	
External pins	FR-CPU mode	Flash memory mode			Comment
_	INITX	—	INITX	73	
RESET	-	FRSTX	P09_6	60	
_	-	MD_2	MD_2	70	Set to '1'
_	-	MD_1	MD_1	71	Set to '1'
_	-	MD_0	MD_0	72	Set to '1'
RY/BY	FMCS:RDY bit	RY/BYX	P09_0	56	
BYTE	Internally fixed to 'H'	BYTEX	P09_2	58	
WE	Internal control signal +	WEX	P13_2	191	
OE	control via interface circuit	OEX	P13_1	190	
CE		CEX	P13_0	189	
_		ATDIN	P25_7	187	Set to '0'
_		EQIN	P25_6	186	Set to '0'
_		TESTX	P09_3	59	Set to '1'
_		RDYI	P09_1	57	Set to '0'
A-1	Internal address bus	FA0	P25_5	185	Set to '0'
A0 to A3		FA1 to FA4	P27_0 to P27_3	158 to 161	
A4 to A7		FA5 to FA8	P27_4 to P27_7	164 to 167	
A8 to A11		FA9 to FA12	P26_0 to P26_3	168 to 171	
A12 to A15	1	FA13 to FA16	P26_4 to P26_7	174 to 177	
A16 to A19	1	FA17 to FA20	P25_0 to P25_3	178 to 181	
_	1	FA21	P25_4	184	Set to '1'
DQ0 to DQ7	Internal data bus	DQ0 to DQ7	P03_0 to P03_7	192 to 199	
DQ8 to DQ15	1	DQ8 to DQ15	P02_0 to P02_7	200 to 207	

14.5 Poweron Sequence in Parallel Programming Mode

The flash memory can be accessed in programming mode after a certain wait time, which is needed for Security Vector fetch:

- Minimum wait time after VDD5/VDD5R power on: 2.76 ms
- Minimum wait time after INITX rising: 1.0 ms

14.6 Flash Security

14.6.1 Vector addresses

Two Flash Security Vectors (FSV1, FSV2) are located parallel to the Boot Security Vectors (BSV1, BSV2) controlling the protection functions of the Flash Security Module:

FSV1: 0x14:8000	BSV1: 0x14:8004
FSV2: 0x14:8008	BSV2: 0x14:800C

14.6.2 Security Vector FSV1

The setting of the Flash Security Vector FSV1 is responsible for the read and write protection modes and the individual write protection of the 8 Kbytes sectors.

FSV1 (bit31 to bit16)

The setting of the Flash Security Vector FSV1 bits [31:16] is responsible for the read and write protection modes.

Table 14-5. Explanation of the bits in the Flash Security Vector FSV1 [31:16]

FSV1[31:19]	FSV1[18] Write Protection Level	FSV1[17] Write Protection	FSV1[16] Read Protection	Flash Security Mode
set all to "0"	set to "0"	set to "0"	set to "1"	Read Protection (all device modes, except INTVEC mode MD[2:0] = "000")
set all to "0"	set to "0"	set to "1"	set to "0"	Write Protection (all device modes, without exception)
set all to "0"	set to "0"	set to "1"	set to "1"	Read Protection (all device modes, except INTVEC mode MD[2:0] = "000") and Write Protection (all device modes)
set all to "0"	set to "1"	set to "0"	set to "1"	Read Protection (all device modes, except INTVEC mode MD[2:0] = "000")
set all to "0"	set to "1"	set to "1"	set to "0"	Write Protection (all device modes, except INTVEC mode MD[2:0] = "000")
set all to "0"	set to "1"	set to "1"	set to "1"	Read Protection (all device modes, except INTVEC mode MD[2:0] = "000") and Write Protection (all device modes except INTVEC mode MD[2:0] = "000")

FSV1 (bit15 to bit0)

The setting of the Flash Security Vector FSV1 bits [15:0] is responsible for the individual write protection of the 8 Kbytes sectors. It is only evaluated if write protection bit FSV1[17] is set.

Table 14-6. Explanation of the bits in the Flash Security Vector FSV1 [15:0]

FSV1 bit	Sector	Enable Write Pro- tection	Disable Write Pro- tection	Comment
FSV1[0]	SA0	set to "0"	set to "1"	
FSV1[1]	SA1	set to "0"	set to "1"	
FSV1[2]	SA2	set to "0"	set to "1"	
FSV1[3]	SA3	set to "0"	set to "1"	
FSV1[4]	SA4	set to "0"	-	Write protection is mandatory!
FSV1[5]	SA5	set to "0"	set to "1"	
FSV1[6]	SA6	set to "0"	set to "1"	
FSV1[7]	SA7	set to "0"	set to "1"	
FSV1[8]	_	set to "0"	set to "1"	not available

FSV1 bit	Sector	Enable Write Pro- tection	Disable Write Pro- tection	Comment
FSV1[9]	_	set to "0"	set to "1"	not available
FSV1[10]	_	set to "0"	set to "1"	not available
FSV1[11]	_	set to "0"	set to "1"	not available
FSV1[12]	_	set to "0"	set to "1"	not available
FSV1[13]	_	set to "0"	set to "1"	not available
FSV1[14]	_	set to "0"	set to "1"	not available
FSV1[15]		set to "0"	set to "1"	not available

Table 14-6. Explanation of the bits in the Flash Security Vector FSV1 [15:0]

Note: It is mandatory to always set the sector where the Flash Security Vectors FSV1 and FSV2 are located to write protected (here sector SA4). Otherwise it is possible to overwrite the Security Vector to a setting where it is possible to either read out the Flash content or manipulate data by writing.

See section "Flash access in CPU mode" for an overview about the sector organisation of the Flash Memory.

14.6.3 Security Vector FSV2

The setting of the Flash Security Vector FSV2 bits [31:0] is responsible for the individual write protection of the 64 Kbytes sectors. It is only evaluated if write protection bit FSV1 [17] is set.

FSV2 bit	Sector	Enable Write Pro- tection	Disable Write Pro- tection	Comment
FSV2[0]	SA8	set to "0"	set to "1"	
FSV2[1]	SA9	set to "0"	set to "1"	
FSV2[2]	SA10	set to "0"	set to "1"	
FSV2[3]	SA11	set to "0"	set to "1"	
FSV2[4]	SA12	set to "0"	set to "1"	
FSV2[5]	SA13	set to "0"	set to "1"	
FSV2[6]	SA14	set to "0"	set to "1"	
FSV2[7]	SA15	set to "0"	set to "1"	
FSV2[8]	SA16	set to "0"	set to "1"	
FSV2[9]	SA17	set to "0"	set to "1"	
FSV2[10]	SA18	set to "0"	set to "1"	
FSV2[11]	SA19	set to "0"	set to "1"	
FSV2[12]	SA20	set to "0"	set to "1"	
FSV2[13]	SA21	set to "0"	set to "1"	
FSV2[14]	SA22	set to "0"	set to "1"	
FSV2[15]	SA23	set to "0"	set to "1"	
FSV2[31:16]	_	set to "0"	set to "1"	not available

Table 14-7. Explanation of the bits in the Flash Security Vector FSV2[31:0]

Note: See section "Flash access in CPU mode" for an overview about the sector organisation of the Flash Memory.

15. Memory Space

The FR family has 4 Gbytes of logical address space (2³² addresses) available to the CPU by linear access.

Direct addressing area

The following address space area is used for I/O.

This area is called direct addressing area, and the address of an operand can be specified directly in an instruction. The size of directly addressable area depends on the length of the data being accessed as shown below.

Byte data access:	000 _H to 0FF _H
Half word access:	000 _H to 1FF _H
Word data access:	000 _H to 3FF _H

16. Memory Maps

16.1 CY91F467EA

CY91F467EA

0000000н	I/O (direct addressing area)
00000400н	Ι/Ο
00001000н	DMA
00002000н	
00004000н	Flash-Cache (8 KByte)
00006000н	
00007000н	Flash memory control
00008000н	
0000B000H	Boot ROM (4 KByte)
0000С000н	CAN
0000D000н	
00020000н	
	D-RAM (0 wait, 64 KByte)
00030000H	ID-RAM (48 KByte)
0003С000н	
00040000H	
	Flash memory (1088 KByte)
00150000 _H	
00180000 _H	External bus area
00500000н	External data bus
FFFAC000H	Standby-RAM (16 KByte)
FFFB0000H	
FFFFFFF	
Note:	Access prohibited areas

17. I/O Map

17.1 CY91F467EA

Address		Pleak			
Address	+ 0	+0 +1 +2 +3			Block
000000 _H	PDR0 [R/W] XXXXXXXX	PDR1 [R/W] XXXXXXXX	PDR2 [R/W] XXXXXXXX	PDR3 [R/W] XXXXXXXX	T-unit port data register
		Register na address 4n Leftmost reg	tial value after re me (column 1 re + 1)	gister at address or word access, tl	4n, column 2 register at ne register in column 1

Note: Initial values of register bits are represented as follows:

"1": Initial value "1"
"0": Initial value "0"
"X": Initial value " undefined "
"-": No physical register at this location Access is barred with an undefined data access attribute.

Address		Block			
Auuress	+ 0	+ 1	+ 2	+ 3	BIOCK
000000 _H	PDR00 [R/W] XXXXXXXX	PDR01 [R/W] XXXXXXXX	PDR02 [R/W] XXXXXXXX	PDR03 [R/W] XXXXXXXX	R-bus Port Data
000004 _H	PDR04 [R/W] XX	PDR05 [R/W] XXXXXXXX	PDR06 [R/W] XXXXXXXX	PDR07 [R/W] XXXXXXXX	Register
000008 _H	PDR08 [R/W] XXXXXXXX	PDR09 [R/W] XX XXXX	PDR10 [R/W] - XXXXXX -	Reserved	
00000C _H	Reserved	PDR13 [R/W] XXX	PDR14 [R/W] XXXXXXXX	PDR15 [R/W] XXXX	
000010 _H	PDR16 [R/W] XXXXXXXX	PDR17 [R/W] XXXX	PDR18 [R/W] - XXX - XXX	PDR19 [R/W] - XXX - XXX	
000014 _H	PDR20 [R/W] XXX	Reserved	PDR22 [R/W] XX - X - X	PDR23 [R/W] XXXXXX	
000018 _H	PDR24 [R/W] XXXXXXXX	PDR25 [R/W] XXXXXXXX	PDR26 [R/W] XXXXXXXX	PDR27 [R/W] XXXXXXXX	
00001C _H	Reserved	PDR29 [R/W] XXXXXXXX	Rese	erved	

		Reg	ister		
Address	+ 0	+ 1	+ 2	+ 3	Block
000020 _H to 00002C _H			Reserved		
000030 _H	EIRR0 [R/W] XXXXXXXX	ENIR0 [R/W] 00000000) [R/W] 00000000	External interrupt (INT 0 to INT 7)
000034 _H	EIRR1 [R/W] XXXXXXXX	ENIR1 [R/W] 00000000		[R/W] 00000000	External interrupt (INT 8 to INT 10, INT 12 to INT 14)
000038 _H	DICR [R/W] 0	HRCL [R/W] 0 11111	Rese	erved	Delay Interrupt
00003C _H to 00004C _H		Rese	erved		Reserved
000050 _H	SCR02 [R/W, W] 00000000	SMR02 [R/W, W] 00000000	SSR02 [R/W, R] 00001000	RDR02/TDR02 [R/W] 00000000	LIN-USART 2
000054 _H	ESCR02 [R/W] 00000X00	ECCR02 [R/W, R, W] -00000XX	FSR02 [<mark>RW/</mark> R] xx00 0000	Reserved	
000058 _H , 00005C _H		Rese	erved		Reserved
000060 _H	SCR04 [R/W, W] 00000000	SMR04 [R/W, W] 00000000	SSR04 [R/W, R] 00001000	RDR04/TDR04 [R/W] 00000000	LIN-USART 4 with FIFO
000064 _H	ESCR04 [R/W] 00000X00	ECCR04 [R/W, R, W] -00000XX	FSR04 [<mark>RW/</mark> R] xx00 0000	FCR04 [R/W] 0001 - 000	
000068 _H	SCR05 [R/W, W] 00000000	SMR05 [R/W, W] 00000000	SSR05 [R/W, R] 00001000	RDR05/TDR05 [R/W] 00000000	LIN-USART 5 with FIFO
00006C _H	ESCR05 [R/W] 00000X00	ECCR05 [R/W, R, W] -00000XX	FSR05 [<mark>RW/</mark> R] xx00 0000	FCR05 [R/W] 0001 - 000	
000070 _H	SCR06 [R/W, W] 00000000	SMR06 [R/W, W] 00000000	SSR06 [R/W, R] 00001000	RDR06/TDR06 [R/W] 00000000	LIN-USART 6 with FIFO
000074 _H	ESCR06 [R/W] 00000X00	ECCR06 [R/W, R, W] -00000XX	FSR06 [RW /R] xx00 0000	FCR06 [R/W] 0001 - 000	
000078 _H	SCR07 [R/W, W] 00000000	SMR07 [R/W, W] 00000000	SSR07 [R/W, R] 00001000	RDR07/TDR07 [R/W] 00000000	LIN-USART 7 with FIFO
00007C _H	ESCR07 [R/W] 00000X00	ECCR07 [R/W, R, W] -00000XX	FSR07 [RW /R] xx00 0000	FCR07 [R/W] 0001 - 000	
000080 _H		Rese	erved	·	Reserved

Address		Reg	ister		Block	
Address	+ 0	+ 1	+ 2	+ 3	DIOCK	
000084 _H	BGR102 [R/W] 00000000	BGR002 [R/W] 00000000	Rese	erved	Baud rate Generator	
000088 _H	BGR104 [R/W] 00000000	BGR004 [R/W] 00000000	BGR105 [R/W] 00000000	BGR005 [R/W] 00000000	LIN-USART 2,4 to 7	
00008C _H	BGR106 [R/W] 00000000	BGR006 [R/W] 00000000	BGR107 [R/W] 00000000	BGR007 [R/W] 00000000		
000090 _H		0 [R/W] XXXXXXXX) [R/W] XXXXXXXX	Stepper Motor 0	
000094 _H	Rese	erved	PWS20 [R/W] -0000000	PWS10 [R/W] 000000		
000098 _H		1 [R/W] XXXXXXXX		1 [R/W] XXXXXXXX	Stepper Motor 1	
00009C _H	Rese	erved	PWS21 [R/W] -0000000	PWS11 [R/W] 000000		
0000A0 _H		2 [R/W] XXXXXXXX		2 [R/W] XXXXXXXX	Stepper Motor 2	
0000A4 _H	Rese	erved	PWS22 [R/W] -0000000	PWS12 [R/W] 000000		
0000A8 _H	PWC2	3 [R/W] XXXXXXXX	PWC13 [R/W]		Stepper Motor 3	
0000AC _H	Reserved		PWS23 [R/W] -0000000	PWS13 [R/W] 000000		
0000B0 _H		VC24 [R/W] PWC14 [R/W] XX XXXXXXXX XX XXXXXXXX		Stepper Motor 4		
0000B4 _H	Rese	erved	PWS24 [R/W] -0000000	PWS14 [R/W] 000000		
0000B8 _H		5 [R/W] XXXXXXXX		5 [R/W] XXXXXXXX	Stepper Motor 5	
0000BC _H	Rese	erved	PWS25 [R/W] -0000000	PWS15 [R/W] 000000		
0000C0 _H	Reserved	PWC0 [R/W] -00000	Reserved	PWC1 [R/W] -00000	Stepper Motor Contro 0 to 5	
0000C4 _H	Reserved	PWC2 [R/W] -00000	Reserved	PWC3 [R/W] -00000		
0000C8 _H	Reserved	PWC4 [R/W] -00000	Reserved	PWC5 [R/W] -00000		
0000CC _H		Rese	erved		Reserved	
0000D0 _H	IBCR0 [R/W] 00000000	IBSR0 [R] 00000000	ITBAH0 [R/W] 00	ITBAL0 [R/W] 00000000	I ² C 0	
0000D4 _H	ITMKH0 [R/W] 00 11	ITMKL0 [R/W] 11111111	ISMK0 [R/W] 01111111	ISBA0 [R/W] - 0000000		
0000D8 _H	Reserved	IDAR0 [R/W] 00000000	ICCR0 [R/W] 00011111	Reserved		
0000DC _H to 000100 _H		Reserved				
000104 _H		1 [R/W] 00010000	Reserved	GCN21 [R/W] 0000	PPG Control 4 to 7	

Address		Reg	ister		Pleat
Address	+ 0	+ 1	+ 2	+ 3	Block
000108 _H	GCN12 00110010		Reserved	GCN22 [R/W] 0000	PPG Control 8 to 11
000110 _H to		Rese	erved		Reserved
00012C _H 000130 _H	PTMR 11111111			4 [<mark>R/W]</mark> XXXXXXXX	PPG 4
000134 _H	PDUT04 XXXXXXXXX		PCNH04 [R/W] 0000000 -	PCNL04 [R/W] 000000 - 0	
000138 _H	PTMR 11111111	05 [R] 11111111		5 [<mark>R/W]</mark> XXXXXXXX	PPG 5
00013C _H	PDUT0: XXXXXXXX		PCNH05 [R/W] 0000000 -	PCNL05 [R/W] 000000 - 0	
000140 _H	PTMR 11111111	1111111	XXXXXXXXX	6 [R/W] XXXXXXXX	PPG 6
000144 _H	PDUT06 XXXXXXXXX	XXXXXXXX	PCNH06 [R/W] 0000000 -	PCNL06 [R/W] 000000 - 0	PR = -
000148 _H	PTMR 11111111	1111111	XXXXXXXX	7 [R/W] XXXXXXXX	PPG 7
00014C _H		XXXXXXXX	PCNH07 [R/W] 0000000 -	PCNL07 [R/W] 000000 - 0	550.0
000150 _H	PTMR 11111111	1111111	XXXXXXXX	8 [R/W] XXXXXXXX	PPG 8
000154 _H	PDUT08 XXXXXXXXX PTMR	XXXXXXXX	PCNH08 [R/W] 0000000 -	PCNL08 [R/W] 000000 - 0 9 [R/W]	PPG 9
000158 _Н 00015С _Н	P DUT09	1111111		PCNL09 [R/W]	FFG 9
000160 _Н	XXXXXXXXX	XXXXXXXX	000000 -	000000 - 0	PPG 10
000164 _H	11111111 PDUT10	1111111		XXXXXXXX PCNL10 [R/W]	
000168 _H	XXXXXXXXX PTMR	XXXXXXXX	0000000 -	000000 - 0	PPG 11
00016C _H	11111111 PDUT1 ²	11111111 I [R/W]	XXXXXXXX XXXXXXXX PCNH11 [R/W] PCNL11 [R/W]		
000170 _H	XXXXXXXX P0TMCSRH [R/W] - 0 - 000 - 0	XXXXXXXX P0TMCSRL [R/W] 00000	0000000 - P1TMCSRH [R/W] - 0 - 000 - 0	000000 - 0 P1TMCSRL [R/W] 00000	PFM
000174 _H	P0TMR XXXXXXXX	LR [W]	POTM	IR [R] XXXXXXXX	
000178 _H	P1TMR XXXXXXXX		P1TM XXXXXXXX		
00017C _H		Rese	erved		Reserved

A alalase e e					
Address	+ 0	+ 1	+ 2	+ 3	Block
000180 _H	Reserved	ICS01 [R/W] 00000000	Reserved	ICS23 [R/W] 00000000	Input Capture
000184 _H	IPCP0 [R] XXXXXXXX XXXXXXXX			²¹ [R] XXXXXXXX	0 to 3
000188 _H	IPCF XXXXXXXX	2 [R] XXXXXXXX		P3 [R] XXXXXXXX	
00018C _H	OCS0 ² 0 00	l [R/W] 0000 00		3 [R/W] 0000 00	Output Compare
000190 _H) [R/W] XXXXXXXX		1 [R/W] XXXXXXXX	0 to 3
000194 _H		2 [R/W] XXXXXXXX		3 [R/W] XXXXXXXX	
000198 _H	SGCRH [R/W] 0000 00	SGCRL [R/W] 0-000		[R/W, R] XXXXXXXX	Sound Generator
00019C _H	SGAR [R/W] 00000000	Reserved	SGTR [R/W] XXXXXXXX	SGDR [R/W] XXXXXXXX	
0001A0 _H	ADERH 00000000			L [R/W] 00000000	A/D Converter 0
0001A4	ADCS1 [R/W] 00000000	ADCS0 [R/W] 00000000 [R] 0 [W]	ADCR1 [R] 000000XX	ADCR0 [R] XXXXXXXX	
0001A8 _H	ADCT1 [R/W] 00010000	ADCT0 [R/W] 00101100	ADSCH [R/W] 00000	ADECH [R/W] 00000	
0001AC _H	Reserved	ACSR0 [R/W] - 11XXX00	Res	erved	Alarm Comparator 0
0001B0 _H	TMRLI XXXXXXXX			R0 [R] XXXXXXXX	Reload Timer 0
0001B4 _H	Rese	erved	TMCSRH0 [R/W] 00000	TMCSRL0 [R/W] 0 - 000000	
0001B8 _H		R1 [W] XXXXXXXX	TMR1 [R] XXXXXXXX XXXXXXX		Reload Timer 1
0001BC _H	Reserved		TMCSRH1 [R/W] 00000	TMCSRL1 [R/W] 0 - 000000	
0001C0 _H	TMRLR2 [W] XXXXXXXX XXXXXXX			2 [R] XXXXXXXX	Reload Timer 2
0001C4 _H	Reserved		TMCSRH2 [R/W] 00000	TMCSRL2 [R/W] 0 - 000000	(PPG 4, PPG 5)
0001C8 _H		R3 [W] XXXXXXXX		R3 [R] XXXXXXXX	Reload Timer 3
0001CC _H	Rese	erved	TMCSRH3 [R/W] 00000	TMCSRL3 [R/W] 0 - 000000	(PPG 6, PPG 7)

Address		Diask			
Address —	+ 0 + 1		+ 2	+ 3	Block
0001D0 _H	TMRLR4 [W] XXXXXXXX XXXXXXX			4 [R] XXXXXXXX	Reload Timer 4
0001D4 _H	Rese	erved	TMCSRH4 [R/W] 00000	TMCSRL4 [R/W] 0 - 000000	(PPG 8, PPG 9)
0001D8 _H	TMRLR5 [W] XXXXXXXX XXXXXXX			5 [R] XXXXXXXX	Reload Timer 5
0001DC _H	Rese	erved	TMCSRH5 [R/W] 00000	TMCSRL5 [R/W] 0 - 000000	(PPG 10, PPG 11)
0001E0 _H	TMRL XXXXXXXX	R6 [W] XXXXXXXX		6 [R] XXXXXXXX	Reload Timer 6
0001E4 _H	Reserved		TMCSRH6 [R/W] 00000	TMCSRL6 [R/W] 0 - 000000	(PPG 12, PPG 13)
0001E8 _H	TMRLR7 [W] XXXXXXXX XXXXXXXX			TMR7 [R] XXXXXXXX XXXXXXX	
0001EC _H	Reserved		TMCSRH7 [R/W] 00000	TMCSRL7 [R/W] 0 - 000000	(PPG 14, PPG 15) (A/D Converter)
0001F0 _H) [R/W] XXXXXXXX	Reserved	TCCS0 [R/W] 00000000	Free Running Timer 0
					(ICU 0, ICU 1)
0001F4 _H		[R/W] XXXXXXXX	Reserved	TCCS1 [R/W] 00000000	Free Running Timer 1
					(ICU 2, ICU 3)
0001F8 _H		2 [R/W] XXXXXXXX	Reserved	TCCS2 [R/W] 00000000	Free Running Timer 2
					(OCU 0, OCU 1)
0001FC _H		3 [R/W] XXXXXXXX	Reserved	TCCS3 [R/W] 00000000	Free Running Timer 3
					(OCU 2, OCU 3)

A status a s		Plack					
Address	+ 0	+ 1	+ 2	+ 3	Block		
000200 _H	00	DMACA0 [R/W] 00000000 0000XXXX XXXXXXXX XXXXXXXX					
000204 _H	00						
000208 _H	00	DMACA 000000 0000XXXX X		XX			
00020C _H	00	DMACB 0000000 0000000 X		xx			
000210 _H	00	DMACA 000000 0000XXXX X		XX			
000214 _H	00	DMACB 0000000 0000000 X		xx			
000218 _H	00	DMACA 000000 0000XXXX X	.3 [R/W] XXXXXXX XXXXXX	XX			
00021C _H	00	DMACB 0000000 0000000 X		xx			
000220 _H	00	DMACA 000000 0000XXXX X		XX			
000224 _H	00	DMACB 0000000 0000000 X		xx			
000228 _H to							
00023C _H 000240 _H	DMACR [R/W] 00 0000						
000244 _H to 0002CC _H	00 0000	Reserved					
0002D0 _H	Reserved	ICS045 [R/W] 00000000	Reserved	ICS67 [R/W] 00000000	Input Capture		
0002D4 _H		24 [R] XXXXXXXX		P5 [R] XXXXXXXX	4 to 7		
0002D8 _H	IPCF XXXXXXXX	°6 [R] XXXXXXXX		P7 [R] XXXXXXXX			
0002DC _H to 0002EC _H			Reserved				
0002F0 _H		ŧ [R/W] XXXXXXXX	Reserved	TCCS4 [R/W] 00000000	Free Running Timer 4		
					(ICU 4, ICU 5)		
0002F4 _H	TCDT5 [R/W] XXXXXXXX XXXXXXXX		Reserved	TCCS5 [R/W] 00000000	Free Running Timer 5		
					(ICU 6, ICU 7)		
0002F8 _H		6 [R/W] XXXXXXXX	Reserved	TCCS6 [R/W] 00000000	Free Running Timer 6		
0002FC _H		7 [R/W] XXXXXXXX	Reserved	TCCS7 [R/W] 00000000	Free Running Timer 7		

A		Diash			
Address	+ 0	+ 1	+ 2	+ 3	Block
000300 _H	Reserved	UDRC0 [W] 00000000	Reserved	UDCR0 [R] 00000000	Up/Down Counter
000304 _H	UDCCH0 [R/W] 00000000	UDCCL0 [R/W] 00001000	Reserved	UDCS0 [R/W] 00000000	0
000308 _H , 00030C _H		Rese	erved		Reserved
000310 _H	UDRC3 [W] 00000000	UDRC2 [W] 00000000	UDCR3 [R] 00000000	UDCR2 [R] 00000000	Up/Down Counter
000314 _H	UDCCH2 [R/W] 00000000	UDCCL2 [R/W] 00001000	Reserved	UDCS2 [R/W] 00000000	2 to 3
000318 _H	UDCCH3 [R/W] 00000000	UDCCL3 [R/W] 00001000	Reserved	UDCS3 [R/W] 00000000	
00031C _H		Rese	erved		Reserved
000320 _H	GCN13 [R/W] 00110010 00010000		Reserved	GCN23 [R/W] 0000	PPG Control 12 to 15
000324 _H to 00032C _H		Reserved			
000330 _H	PTMR12 [R] 11111111 1111111		PCSR12 [<mark>R</mark> /W] XXXXXXXX XXXXXXX		PPG 12
000334 _H	PDUT12 [R/W] XXXXXXXX XXXXXXXX		PCNH12 [R/W] 0000000 -	PCNL12 [R/W] 000000 - 0	
000338 _H	PTMR 11111111	13 [R] 11111111	PCSR13 [R/W] XXXXXXXX XXXXXXX		PPG 13
00033C _H		3 [<mark>R/W]</mark> XXXXXXXX	PCNH13 [R/W] 0000000 -	PCNL13 [R/W] 000000 - 0	
000340 _H	11111111	14 [R] 11111111		4 [<mark>R/W]</mark> XXXXXXXX	PPG 14
000344 _H		4 [<mark>R/W]</mark> XXXXXXXX	PCNH14 [R/W] 0000000 -	PCNL14 [R/W] 000000 - 0	
000348 _H	PTMR 11111111	15 [R] 11111111		5 [<mark>R/W]</mark> XXXXXXXX	PPG 15
00034C _H	PDUT1 XXXXXXXX	5 [<mark>R/W]</mark> XXXXXXXX	PCNH15 [R/W] 0000000 -	PCNL15 [R/W] 000000 - 0	
000350 _H to 000364 _H		Reserved			
000368 _H	IBCR2 [R/W] 00000000	IBSR2 [R] 00000000	ITBAH2 [R/W] 00	ITBAL2 [R/W] 00000000	l ² C 2
00036C _H	ITMKH2 [R/W] 00 11	ITMKL2 [R/W] 11111111	ISMK2 [R/W] 01111111	ISBA2 [R/W] - 0000000	
000370 _H	Reserved	IDAR2 [R/W] 00000000	ICCR2 [R/W] 00011111	Reserved	

Address		Block			
Address	+ 0	+ 1	+ 2	+ 3	DIOCK
000374 _H	IBCR3 [R/W] 00000000	IBSR3 [R] 00000000	ITBAH3 [R/W] 00	ITBAL3 [R/W] 00000000	I ² C 3
000378 _H	ITMKH3 [R/W] 00 11	ITMKL3 [R/W] 11111111	ISMK3 [R/W] 01111111	ISBA3 [R/W] - 0000000	
00037C _H	Reserved	IDAR3 [R/W] 00000000	ICCR3 [R/W] 00011111	Reserved	
000380 _H to 00038C _H	Reserved				Reserved
000390 _H	ROMS [R] Reserved 11111111 00000000 (CY91F467EA)				ROM Select Register
000394 _H to 0003EC _H	Reserved				Reserved
0003F0 _H	BSD0 [W] XXXXXXXX XXXXXXX XXXXXXX XXXXXXXX				Bit Search Module
0003F4 _H	XXX	BSD1 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX			
0003F8 _H	BSDC [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003FC _H	BSRR [R] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000400 _H to 00043C _H		Rese	erved		Reserved

Address		Diasta			
Address	+ 0	+ 1	+ 2	+ 3	Block
000440 _H	ICR00 [R/W] 11111	ICR01 [R/W] 11111	ICR02 [R/W] 11111	ICR03 [R/W] 11111	Interrupt Controller
000444 _H	ICR04 [R/W] 11111	ICR05 [R/W] 11111	ICR06 [R/W] 11111	ICR07 [R/W] 11111	
000448 _H	ICR08 [R/W] 11111	ICR09 [R/W] 11111	ICR10 [R/W] 11111	ICR11 [R/W] 11111	
00044C _H	ICR12 [R/W] 11111	ICR13 [R/W] 11111	ICR14 [R/W] 11111	ICR15 [R/W] 11111	
000450 _H	ICR16 [R/W] 11111	ICR17 [R/W] 11111	ICR18 [R/W] 11111	ICR19 [R/W] 11111	
000454 _H	ICR20 [R/W] 11111	ICR21 [R/W] 11111	ICR22 [R/W] 11111	ICR23 [R/W] 11111	
000458 _H	ICR24 [R/W] 11111	ICR25 [R/W] 11111	ICR26 [R/W] 11111	ICR27 [R/W] 11111	
00045C _H	ICR28 [R/W] 11111	ICR29 [R/W] 11111	ICR30 [R/W] 11111	ICR31 [R/W] 11111	
000460 _H	ICR32 [R/W] 11111	ICR33 [R/W] 11111	ICR34 [R/W] 11111	ICR35 [R/W] 11111	
000464 _H	ICR36 [R/W] 11111	ICR37 [R/W] 11111	ICR38 [R/W] 11111	ICR39 [R/W] 11111	
000468 _H	ICR40 [R/W] 11111	ICR41 [R/W] 11111	ICR42 [R/W] 11111	ICR43 [R/W] 11111	
00046C _H	ICR44 [R/W] 11111	ICR45 [R/W] 11111	ICR46 [R/W] 11111	ICR47 [R/W] 11111	
000470 _H	ICR48 [R/W] 11111	ICR49 [R/W] 11111	ICR50 [R/W] 11111	ICR51 [R/W] 11111	
000474 _H	ICR52 [R/W] 11111	ICR53 [R/W] 11111	ICR54 [R/W] 11111	ICR55 [R/W] 11111	
000478 _H	ICR56 [R/W] 11111	ICR57 [R/W] 11111	ICR58 [R/W] 11111	ICR59 [R/W] 11111	
00047C _H	ICR60 [R/W] 11111	ICR61 [R/W] 11111	ICR62 [R/W] 11111	ICR63 [R/W] 11111	
000480 _H	RSRR [R/W] 10000000	STCR [R/W] 00110011	TBCR [R/W] 00XXX - 00	CTBR [W] XXXXXXXX	Clock Control
000484 _H	CLKR [R/W] 0000	WPR [W] XXXXXXXX	DIVR0 [R/W] 00000011	DIVR1 [R/W] 00000000	
000488 _H	Reserved				Reserved
00048C _H	PLLDIVM [R/W] 0000	PLLDIVN [R/W] 000000	PLLDIVG [R/W] 0000	PLLMULG [W] 00000000	PLL Interface
000490 _H	PLLCTRL [R/W] 0000		Reserved		
000494 _H	OSCC1 [R/W] 010	OSCS1 [R/W] 00001111	OSCC2 [R/W] 010	OSCS2 [R/W] 00001111	Main/Sub Oscillator Control
000498 _H	PORTEN [R/W] 00		Reserved		Port Input Enable Control
00049C _H		Rese	erved		Reserved

Address		Reg	ister		Block
Audress	+ 0	+ 1	+ 2	+ 3	DIOCK
0004A0 _H	Reserved	WTCER [R/W] 00		R [R/W] 000 - 00 - 0	Real Time Clock (Watch Timer)
0004A4 _H	Reserved	XXX	WTBR [R/W] XX XXXXXXXX XX	xxxxxx	
0004A8 _H	WTHR [R/W] 00000	WTMR [R/W] 000000	WTSR [R/W] 000000	Reserved	
0004AC _H	CSVTR [R/W] 00010	CSVCR [R/W/W0] 00011100	CSCFG [R/W] 0X000000	CMCFG [R/W] 00000000	Clock- Supervisor / Selector / Monitor
0004B0 _H		[R/W] 0 00		[R/W] 00000000	Calibration of Sub Clock
0004B4 _H	CUTF	R1 [R] 00000000		R2 [R] 00000000	
0004B8 _H	CMPR 000010	[R/W] 11111101	Reserved	CMCR [R/W] - 001 00	Clock Modulator
0004BC _H	CMT1 00000000	[R/W] 1 0000		[R/W] 000000	
0004C0 _H	CANPRE [R/W] 0 0000	CANCKD [R/W]	Rese	erved	CAN Clock Control
0004C4 _H	LVSEL [R/W] 00000111	LVDET [R/W] 0000 0 - 00	HWWDE [R/W]	HWWD [R/W, W] 00011000	Low Voltage Detection/Hardware Watchdog
0004C8 _H	OSCRH [R/W] 000 001	OSCRL [R/W] 000	WPCRH [R/W] 00 000	WPCRL [R/W] 00	Main-/Sub-Oscillation Stabilisation Timer
0004CC _H	OSCCR [R/W] 00 ³	Reserved	REGSEL [R/W] 11 0110 ⁴	REGCTR [R/W] 000	Main- Oscillation Standby Control Main-/Subregulator Control
0004D0 _H	Reserved			Reserved	
0004D4 _H	SHDE [R/W] 0 0	reserved	EXTE [R/W] 0000 0000	EXTF [R/W0] 0000 0000	Shutdown Control
0004D8 _H	EXTLV [R/W] reserved SHDINT [R/W] 0000 0000 0000 0000				
0004DC _H to 00063C _H		Rese	erved		Reserved

A		Reg	ister		Disals
Address	+ 0	+ 1	+ 2	+ 3	Block
000640 _H	ASR0 [R/W] 00000000 00000000 11		ACR0 1111**00 0	[R/W] 00100000 ⁵	External Bus
000644 _H	ASR1 XXXXXXXX	[R/W] XXXXXXXX		[R/W] XXXXXXXX	
000648 _H		[R/W] XXXXXXXX		[R/W] XXXXXXXX	
00064C _H		[R/W] XXXXXXXX		[R/W] XXXXXXXX	-
000650 _H		[R/W] XXXXXXXX		[R/W] XXXXXXXX	
000654 _H	ASR5 XXXXXXXX	[R/W] XXXXXXXX		[R/W] XXXXXXXX	
000658 _H	ASR6 XXXXXXXX	[R/W] XXXXXXXX		[R/W] XXXXXXXX	
00065C _H		[R/W] XXXXXXXX		[R/W] XXXXXXXX	
000660 _H	AWR0 01001111	[R/W] 11111011		[R/W] XXXXXXXX	
000664 _H		AWR2 [R/W] AWR3 [R/W] XXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXX			
000668 _H	AWR4 [R/W] XXXXXXXX XXXXXXXX		AWR5 [R/W] XXXXXXXX XXXXXXX		
00066C _H		[R/W] XXXXXXXX		' [R/W] XXXXXXXX	
000670 _H	MCRA [R/W] XXXXXXXX	MCRB [R/W] XXXXXXXX	Rese	erved	
000674 _H		Rese	erved		
000678 _H	IOWR0 [R/W] XXXXXXXX	IOWR1 [R/W] XXXXXXXX	IOWR2 [R/W] XXXXXXXX	IOWR3 [R/W] XXXXXXXX	
00067C _H		Rese	erved		
000680 _H	CSER [R/W] 00000001	CHER [R/W] 11111111	Reserved	TCR [R/W] 0000**** ⁶	
000684 _H	RCRH [R/W] 00XXXXXX	RCRL [R/W] XXXX0XXX	Rese	erved	
000688 _H	RCO0H0 [R/W] 11111111	RCO0L0 [R/W] 0000 0000	RCO0H1 [R/W] 1111111	RCO0L1 [R/W] 0000 0000	A/D Converter 0 Range Comparator
00068C _H	RCO0H2 [R/W] 1111111	RCO0L2 [R/W] 0000 0000	RCO0H3 [R/W] 1111111	RCO0L3 [R/W] 0000 0000	
000690 _H	RCO0IRS [R/W] 00000000 00000000 00000000 00000000				
000694 _H	RCO0OF [R] 00000000 00000000 00000000 00000000				
000698 _H	RCO0INT [R/W0] 00000000 00000000 00000000 00000000				
00069C _H		rese	rved		

A alalana a a		Reg	ister		Diask
Address	+ 0	+ 1	+ 2	+ 3	Block
0006A0 _H	AD0CC0 [R/W] 0000 0000	AD0CC1 [R/W] 0000 0000	AD0CC2 [R/W] 0000 0000	AD0CC3 [R/W] 0000 0000	A/D Converter 0 Channel Control
0006A4 _H	AD0CC4 [R/W] 0000 0000	AD0CC5 [R/W] 0000 0000	AD0CC6 [R/W] 0000 0000	AD0CC7 [R/W] 0000 0000	
0006A8 _H	AD0CC8 [R/W] 0000 0000	AD0CC9 [R/W] 0000 0000	AD0CC10 [R/W] 0000 0000	AD0CC11 [R/W] 0000 0000	
0006AC _H	AD0CC12 [R/W] 0000 0000	AD0CC13 [R/W] 0000 0000	AD0CC14 [R/W] 0000 0000	AD0CC15 [R/W] 0000 0000	
0006B0 _H	AD0CS2 [RW] 0000 00		reserved		A/D Converter 0 Control register 2
0006B4 _H to 0006DC _H		Rese	erved		
0006E0 _H	ADC0 XX	D0 [R] XXXXXXXX	ADC0 XX	D1 [R] XXXXXXXX	A/D Converter 0 Channel Data registers
0006E4 _H	ADC0 XX	D2 [R] XXXXXXXX	ADC0 XX	D3 [R] XXXXXXXX	
0006E8 _H	ADC0 XX	D4 [R] XXXXXXXX		D5 [R] XXXXXXXX	
0006EC _H	ADC0D6 [R]		ADC0 XX	D7 [R] XXXXXXXX	
0006F0 _H	ADC0 XX	D8 [R] XXXXXXXX		D9 [R] XXXXXXXX	
0006F4 _H		ADC0D10 [R]		D11 [R] XXXXXXXX	
0006F8 _H	ADC0E XX	D12 [R] XXXXXXXX	ADC01	D13 [R] XXXXXXXX	
0006FC _H	ADC0[XX	D14 [R] XXXXXXXX	ADC0D	015 [R] XXXXXXXX	
000700 _H	ADC0[XX	D16 [R] XXXXXXXX	ADC0[XX	D17 [R] XXXXXXXX	
000704 _H	ADC0E XX		ADC01		A/D Converter 0 Channel Data registers
000708 _H	ADC0E XX	D20 [R] XXXXXXXX	ADC01	D21 [R] XXXXXXXX	
00070C _H	ADC0E XX	D22 [R] XXXXXXXX	ADC01	D23 [R] XXXXXXXX	
000710 _H	ADC0E XX)24 [R] XXXXXXXX	ADC01	D25 [R] XXXXXXXX	
000714 _H	ADC0E XX	D26 [R] XXXXXXXX	ADC01	D27 [R] XXXXXXXX	
000718 _H	ADC0E XX	D28 [R] XXXXXXXX	ADC01 XX	D29 [R] XXXXXXXX	
00071C _H	ADC0E XX	D30 [R] XXXXXXXX		D31 [R] XXXXXXXX	
000720 _H to 0007F8 _H		Rese	erved		

Address		Block			
Address	+ 0	+ 1	+ 2	+ 3	DIOCK
0007FC _H	Reserved	MODR [W] XXXXXXXX	Rese	erved	Mode Register
000800 _H to 000CFC _H			Reserved		
000D00 _H	PDRD00 [R] XXXXXXXX	PDRD01 [R] XXXXXXXX	PDRD02 [R] XXXXXXXX	PDRD03 [R] XXXXXXXX	R-bus Port Data
000D04 _H	PDRD04 [R] XX	PDRD05 [R] XXXXXXXX	PDRD06 [R] XXXXXXXX	PDRD07 [R] XXXXXXXX	Direct Read Register
000D08 _H	PDRD08 [R] XXXXXXXX	PDRD09 [R] XX XXXX	PDRD10 [R] - XXXXXX -	Reserved	
000D0C _H	Reserved	PDRD13 [R] XXX	PDRD14 [R] XXXXXXXX	PDRD15 [R] XXXX	
000D10 _H	PDRD16 [R] XXXXXXXX	PDRD17 [R] XXXX	PDRD18 [R] - XXX - XXX	PDRD19 [R] - XXX - XXX	
000D14 _H	PDRD20 [R] XXX	Reserved	PDRD22 [R] XX - X - X	PDRD23 [R] XXXXXX	
000D18 _H	PDRD24 [R] XXXXXXXX	PDRD25 [R] XXXXXXXX	PDRD26 [R] XXXXXXXX	PDRD27 [R] XXXXXXXX	
000D1C _H	Reserved	PDRD29 [R] XXXXXXXX	Rese	erved	
000D20 _H to 000D3C _H	Reserved				Reserved
000D40 _H	DDR00 [R/W] 00000000	DDR01 [R/W] 00000000	DDR02 [R/W] 00000000	DDR03 [R/W] 00000000	R-bus Port Direction
000D44 _H	DDR04 [R/W] 00	DDR05 [R/W] 00000000	DDR06 [R/W] 00000000	DDR07 [R/W] 00000000	Register
000D48 _H	DDR08 [R/W] 00000000	DDR09 [R/W] 00 0000	DDR10 [R/W] - 000000 -	Reserved	
000D4C _H	Reserved	DDR13 [R/W] 000	DDR14 [R/W] 00000000	DDR15 [R/W] 0000	
000D50 _H	DDR16 [R/W] 00000000	DDR17 [R/W] 0000	DDR18 [R/W] - 000 - 000	DDR19 [R/W] - 000 - 000	
000D54 _H	DDR20 [R/W] 000	Reserved	DDR22 [R/W] 00 - 0 - 0	DDR23 [R/W] 000000	
000D58 _H	DDR24 [R/W] 00000000	DDR25 [R/W] 00000000	DDR26 [R/W] 00000000	DDR27 [R/W] 00000000	
000D5C _H	Reserved	DDR29 [R/W] 00000000	Rese	erved	
000D60 _H to 000D7C _H	Reserved			Reserved	

A		Reg	ister		Diasta
Address	+ 0	+ 1	+ 2	+ 3	Block
000D80 _H	PFR00 [R/W] 00000000 ⁻⁷	PFR01 [R/W] 00000000 ⁷	PFR02 [R/W] 00000000	PFR03 [R/W] 00000000 7	R-bus Port Function
000D84 _H	PFR04 [R/W] 00	PFR05 [R/W] 00000000 7	PFR06 [R/W] 00000000 ⁷	PFR07 [R/W] 00000000 ⁷	Register
000D88 _H	PFR08 [R/W] 00000000	PFR09 [R/W] 00 0000 ⁷	PFR10 [R/W] - 000 000 - ⁷	Reserved	
000D8C _H	Reserved	PFR13 [R/W] 000 ⁷	PFR14 [R/W] 00000000	PFR15 [R/W] 0000	
000D90 _H	PFR16 [R/W] 00000000	PFR17 [R/W] 0000	PFR18 [R/W] - 000 - 000	PFR19 [R/W] - 000 - 000	
000D94 _H	PFR20 [R/W] 000	Reserved	PFR22 [R/W] 00 - 0 - 0	PFR23 [R/W] 000000	
000D98 _H	PFR24 [R/W] 00000000	PFR25 [R/W] 00000000	PFR26 [R/W] 00000000	PFR27 [R/W] 00000000	
000D9C _H	Reserved	PFR29 [R/W] 00000000	erved		
000DA0 _H to 000DBC _H		Rese	erved		Reserved
000DC0 _H	EPFR00 [R/W]	EPFR01 [R/W]	EPFR02 [R/W]	EPFR03 [R/W]	R-bus Extra Port Function
000DC4 _H	EPFR04 [R/W]	EPFR05 [R/W]	EPFR06 [R/W]	EPFR07 [R/W]	Register
000DC8 _H	EPFR08 [R/W]	EPFR09 [R/W]	EPFR10 [R/W] 00	Reserved	
000DCC _H	Reserved	EPFR13 [R/W] 0	EPFR14 [R/W] 00000000	EPFR15 [R/W] 0000	
000DD0 _H	EPFR16 [R/W] 0000	EPFR17 [R/W]	EPFR18 [R/W] - 00 00 -	EPFR19 [R/W] - 0 0	
000DD4 _H	EPFR20 [R/W] 00 -	Reserved	EPFR22 [R/W]	EPFR23 [R/W]	
000DD8 _H	EPFR24 [R/W]	EPFR25 [R/W]	EPFR26 [R/W] 00000000	EPFR27 [R/W] 00000000	
000DDC _H	Reserved	erved			
000DE0 _H		Rese	erved		Reserved
to 000DFC _H					

Address		Reg	ister		Block			
Address	+ 0	+ 1	+ 2	+ 3	DIOCK			
000E00 _H	PODR00 [R/W] 00000000	PODR01 [R/W] 00000000	PODR02 [R/W] 00000000	PODR03 [R/W] 00000000	R-bus Port Output Drive Select			
000E04 _H	PODR04 [R/W] 00	PODR05 [R/W] 00000000	PODR06 [R/W] 00000000	PODR07 [R/W] 00000000	Register			
000E08 _H	PODR08 [R/W] 00000000							
000E0C _H	Reserved	PODR13 [R/W] 000	PODR14 [R/W] 00000000	PODR15 [R/W] 0000				
000E10 _H	PODR16 [R/W] 00000000	PODR17 [R/W] 0000	PODR18 [R/W] - 000 - 000	PODR19 [R/W] - 000 - 000				
000E14 _H	PODR20 [R/W] 000	Reserved	PODR22 [R/W] 00 - 0 - 0	PODR23 [R/W] 000000				
000E18 _H	PODR24 [R/W] 00000000	PODR25 [R/W] 00000000	PODR26 [R/W] 00000000	PODR27 [R/W] 00000000				
000E1C _H	Reserved	Reserved PODR29 [R/W] Reserved 00000000						
000E20 _H to 000E3C _H		Rese	erved		Reserved			
000E40 _H	PILR00 [R/W] 00000000	PILR01 [R/W] 00000000	PILR02 [R/W] 00000000	PILR03 [R/W] 00000000	R-bus Port Input Level Select			
000E44 _H	PILR04 [R/W] 00	PILR05 [R/W] 00000000	PILR06 [R/W] 00000000	PILR07 [R/W] 00000000	Register			
000E48 _H	PILR08 [R/W] 00000000	PILR09 [R/W] 00 0000	PILR10 [R/W] - 000000 -	Reserved				
000E4C _H	Reserved	PILR13 [R/W] 000	PILR14 [R/W] 00000000	PILR15 [R/W] 0000				
000E50 _H	PILR16 [R/W] 00000000	PILR17 [R/W] 0000	PILR18 [R/W] - 000 - 000	PILR19 [R/W] - 000 - 000				
000E54 _H	PILR20 [R/W] 000	Reserved	PILR22 [R/W] 00 - 0 - 0	PILR23 [R/W] 000000				
000E58 _H	PILR24 [R/W] 00000000	PILR25 [R/W] 00000000	PILR26 [R/W] 00000000	PILR27 [R/W] 00000000				
000E5C _H	Reserved	PILR29 [R/W] 00000000	Rese					
000E60 _H to		Reserved						
000E7C _H								

Address		Reg	ister		Block	
Address	+ 0	+ 1	+ 2	+ 3	DIOCK	
000E80 _H	EPILR00 [R/W] 00000000	EPILR01 [R/W] 00000000	EPILR02 [R/W] 00000000	EPILR03 [R/W] 00000000	R-bus Extra Port Input Level	
000E84 _H	EPILR04 [R/W] 00	EPILR05 [R/W] 00000000	EPILR06 [R/W] 00000000	EPILR07 [R/W] 00000000	Select Register	
000E88 _H	EPILR08 [R/W] 00000000	EPILR09 [R/W] 00 0000	EPILR10 [R/W] - 000000 -	Reserved		
000E8C _H	Reserved	EPILR13 [R/W] 000	EPILR14 [R/W] 00000000	EPILR15 [R/W] 0000		
000E90 _H	EPILR16 [R/W] 00000000	EPILR17 [R/W] 0000	EPILR18 [R/W] - 000 - 000	EPILR19 [R/W] - 000 - 000		
000E94 _H	EPILR20 [R/W] 000	Reserved	EPILR22 [R/W] 00 - 0 - 0	EPILR23 [R/W] 000000		
000E98 _H	EPILR24 [R/W] 00000000	EPILR25 [R/W] 00000000	EPILR26 [R/W] 00000000	EPILR27 [R/W] 00000000		
000E9C _H	Reserved	EPILR29 [R/W] 00000000	Rese	erved		
000EA0 _H to 000EBC _H		Rese	erved		Reserved	
000EC0 _H	PPER00 [R/W] 00000000	PPER01 [R/W] 00000000	PPER02 [R/W] 00000000	PPER03 [R/W] 00000000	R-bus Port Pull-Up/Down Enable	
000EC4 _H	PPER04 [R/W] 00	PPER05 [R/W] 00000000	PPER06 [R/W] 00000000	PPER07 [R/W] 00000000	Register	
000EC8 _H	PPER08 [R/W] 00000000	PPER09 [R/W] 00 0000	PPER10 [R/W] - 000000 -	Reserved		
000ECC _H	Reserved	PPER13 [R/W] 000	PPER14 [R/W] 00000000	PPER15 [R/W] 0000		
000ED0 _H	PPER16 [R/W] 00000000	PPER17 [R/W] 0000	PPER18 [R/W] - 000 - 000	PPER19 [R/W] - 000 - 000		
000ED4 _H	PPER20 [R/W] 000	Reserved	PPER22 [R/W] 00 - 0 - 0	PPER23 [R/W] 000000		
000ED8 _H	PPER24 [R/W] 00000000	PPER25 [R/W] 00000000	PPER26 [R/W] 00000000	PPER27 [R/W] 00000000		
000EDC _H	Reserved	PPER29 [R/W] 00000000	Rese			
000EE0 _H		Reserved				
to 000EFC _H						

Address		Reg	ister		Disale
Address	+ 0	+ 1	+ 2	+ 3	Block
000F00 _H	PPCR00 [R/W] 11111111	PPCR01 [R/W] 11111111	PPCR02 [R/W] 11111111	PPCR03 [R/W] 11111111	R-bus Port Pull-Up/Down Control
000F04 _H	PPCR04 [R/W] 11	PPCR05 [R/W] 11111111	PPCR06 [R/W] 11111111	PPCR07 [R/W] 11111111	Register
000F08 _H	PPCR08 [R/W] 11111111	PPCR09 [R/W] 11 1111	PPCR10 [R/W] - 111111 -	Reserved	
000F0C _H	Reserved	PPCR13 [R/W] 111	PPCR14 [R/W] 11111111	PPCR15 [R/W] 1111	
000F10 _H	PPCR16 [R/W] 11111111	PPCR17 [R/W] 1111	PPCR18 [R/W] - 111 - 111	PPCR19 [R/W] - 111 - 111	
000F14 _H	PPCR20 [R/W] 111	Reserved	PPCR22 [R/W] 11 - 1 - 1	PPCR23 [R/W] 111111	
000F18 _H	PPCR24 [R/W] 11111111	PPCR25 [R/W] 11111111	PPCR26 [R/W] 11111111	PPCR27 [R/W] 11111111	
000F1C _H	Reserved	PPCR29 [R/W] 11111111	Rese	erved	
000F20 _H to 000F3C _H		Rese	erved		Reserved
001000 _H	XXX	DMAC			
001004 _H	XXX	DMADA XXXXXX XXXXXXXX	\0 [R/W] XXXXXXXX XXXXX	XXX	
001008 _H	XXX	DMASA XXXXXX XXXXXXXX	.1 [R/W] XXXXXXXX XXXXX	xxx	
00100C _H	XXX	DMADA XXXXXX XXXXXXXX	1 [R/W] XXXXXXXX XXXXX	XXX	
001010 _H	XXX	DMASA XXXXXX XXXXXXXX	2 [R/W] XXXXXXXX XXXXX	xxx	
001014 _H	XXX	DMADA XXXXXX XXXXXXXX	2 [R/W] XXXXXXXX XXXXX	xxx	
001018 _H	XXX	DMASA XXXXXX XXXXXXXX	3 [R/W] XXXXXXXX XXXXX	XXX	
00101C _H	XXX				
001020 _H	XXX				
001024 _H	XXX				
001028 _H to 001FFC _H		Reserved			
002000 _H to 006FFC _H	CY91F467E	A Flash-cache size is	s 8 Kbytes: 004000 _H	to 005FFC _H	Flash-cache / I-RAM area

A al al ma a a		Reg	ister		Disak			
Address	+ 0	+ 1	+ 2	+ 3	Block			
007000 _H	FMCS [R/W] 01101000	FMCR [R] 00000	FCHCF 00	R [R/W] 10000011	Flash Memory/ Flash-cache/			
007004 _H	FMWT 11111111		FMWT2 [R] - 001	FMPS [R/W] 000	I-RAM Control Register			
007008 _H	C	FMA 0000000 00000000	C [R] 00000000 0000000	0				
00700C _H			0 [R/W] 00000000 0000000	00	Flash-cache Non- cacheable area setting Register			
007010 _H		FCHA1 [R/W] 00000 0000000 00000000						
007014 _H to 007FFC _H		Reserved						
008000 _H to 00BFFC _H		CY91F467EA Boot-ROM size is 4 Kbytes: 00B000 _H to 00BFFC _H (instruction access is 1 wait cycle, data access is 1 wait cycle)						
00C000 _H	CTRLR 00000000			0 [R/W] 00000000	CAN 0 Control			
00C004 _H	ERRC1 00000000		BTR0 00100011	[R/W] 00000001	Register			
00C008 _H	INTR 00000000			TESTR0 [R/W] 00000000 X0000000				
00C00C _H	BRPE0 00000000		Rese	erved				
00C010 _H	IF1CRE0 00000000		IF1CMS 00000000	CAN 0 IF 1 Register				
00C014 _H	IF1MSK 11111111		IF1MSK 11111111					
00C018 _H	IF1ARB2 00000000			10 [R/W] 00000000				
00C01C _H	IF1MCTI 00000000		Rese	erved				
00C020 _H	IF1DTA ² 00000000			20 [R/W] 00000000	CAN 0 IF 1 Register			
00C024 _H	IF1DTB ² 00000000			20 [R/W] 00000000				
00C028 _H , 00C02C _H		Reserved						
00C030 _H	IF1DTA2 00000000		10 [R/W] 00000000					
00C034 _H	IF1DTB2 00000000							
00C038 _H , 00C03C _H		Rese	erved					

Adduese		Dissis					
Address —	+ 0	+ 1	+ 2	+ 3	Block		
00C040 _H	IF2CRE0 00000000		IF2CMS 00000000		CAN 0 IF 2 Register		
00C044 _H	IF2MSK2 11111111			10 [R/W] 11111111			
00C048 _H	IF2ARB2 00000000			10 [R/W] 00000000	-		
00C04C _H	IF2MCTF 00000000		Rese	erved	-		
00C050 _H	IF2DTA1 00000000		IF2DTA2 00000000	20 [R/W] 00000000	-		
00C054 _H	IF2DTB1 00000000		20 [R/W] 00000000	-			
00C058 _H , 00C05C _H							
00C060 _H	IF2DTA2 00000000		IF2DTA ² 00000000	10 [R/W] 00000000			
00C064 _H	IF2DTB2 00000000	10 [R/W] 00000000					
00C068 _H to 00C07C _H		Res	erved				
00C080 _H	TREQF 00000000			R10 [R] 00000000	CAN 0 Status Flags		
00C084 _H to 00C08C _H		Reserved					
00C090 _H	NEWD7 00000000		NEWD 00000000	T10 [R] 00000000	-		
00C094 _H to 00C09C _H		Res	erved				
00C0A0 _H	INTPNE 00000000		INTPNI 00000000	D10 [R] 00000000			
00C0A4 _H to 00C0AC _H		Res	erved				
00C0B0 _H	MSGVA 00000000			L10 [R] 00000000	1		
00C0B4 _H to		Res	erved		Reserved		
00C0FC _H	CTRLR ⁻ 00000000		STATR 00000000	1 [R/W] 00000000	CAN 1 Control		
00C104 _H	ERRCN 00000000	IT1 [R]		[R/W]	Register		
00C108 _H	INTR 00000000		TESTR 00000000	1 [R/W] X0000000	1		
00C10C _H	BRPE1 00000000		Rese	Reserved			

Address		Reg	ister		Disak
Address	+ 0	+ 1	+ 2	+ 3	Block
00C110 _H	IF1CREC 00000000		IF1CMSF 00000000		CAN 1 IF 1 Register
00C114 _H	IF1MSK2 11111111		IF1MSK [*] 11111111		
00C118 _H	IF1ARB2 00000000		IF1ARB ² 00000000		
00C11C _H	IF1MCTF 00000000		Rese	erved	
00C120 _H	IF1DTA1 00000000		IF1DTA2 00000000		
00C124 _H	IF1DTB1 00000000		IF1DTB2 00000000		
00C128 _H , 00C12C _H		Rese	erved		CAN 1 IF 1 Register
00C130 _H	IF1DTA2 00000000		IF1DTA1 00000000	I1 [R/W] 00000000	
00C134 _H	IF1DTB2 00000000		11 [R/W] 00000000		
00C138 _H , 00C13C _H		Rese	erved		
00C140 _H	IF2CREC 00000000		IF2CMSF 00000000		CAN 1 IF 2 Register
00C144 _H	IF2MSK2 11111111		IF2MSK [.] 11111111		
00C148 _H	IF2ARB2 00000000		IF2ARB ² 00000000		
00C14C _H	IF2MCTF 00000000		Rese	erved	
00C150 _H	IF2DTA1 00000000		IF2DTA2 00000000	21 [R/W] 00000000	
00C154 _H	IF2DTB1 00000000		IF2DTB2 00000000		
00C158 _H , 00C15C _H		Rese	erved		
00C160 _H	IF2DTA2 00000000		IF2DTA1 00000000		
00C164 _H	IF2DTB21 [R/W] IF2DTB11 [R/W] 00000000 00000000				
00C168 _H to		Rese	erved		
00C17C _H					

Address			Block					
Audress	+ 0	+ 1	+ 2	+ 3	Бюск			
00C180 _H	TREQF 00000000	21 [R] 00000000		R11 [R] 00000000	CAN 1 Status Flags			
00C184 _H to		Rese	erved					
00C18C _H			· ·		-			
00C190 _H	NEWD1 00000000	NEWDT21 [R] NEWDT11 [R] 00000000 00000000						
00C194 _H to		Rese	erved					
00C19C _H								
00C1A0 _H	INTPNE 00000000	CAN 1 Status Flags						
00C1A4 _H to 00C1AC _H		Rese	erved					
00C1B0 _H	MSGVA 00000000		AL11 [R] 00000000					
00C1B4 _H to 00C1FC _H		Reserved						
00C200 _H		Resedved						
to 00EFFC _H								
00F000 _H		BCTRL [R/W]						
00F004 _H			[R/W] 00000000 10 00	000				
00F008 _H			C [R] 00000000 000000	00				
00F00C _H			C [R] 00000000 000000	00				
00F010 _H		BIRQ	[R/W] 00000000 000000	00				
00F014 _H to 00F01C _H		Rese	erved					
00F020 _H	-	BCR0 0000000	[R/W] 00000000 0000000	0				
00F024 _H	-	BCR1 [R/W]						
00F028 _H			[R/W] 00000000 0000000	0				
00F02C _H	-	BCR3	[R/W] 00000000 0000000	0				
00F030 _H to		Rese	erved		Reserved			
00F07C _H								

Address		Block			
Address	+ 0	DIOCK			
00F080 _H	XXXX	BAD(XXXXX XXXXXXXXX) [R/W] XXXXXXXX X	xxxxxx	EDSU / MPU
00F084 _H	XXXX	BAD [,] XXXXX XXXXXXXX	1 [R/W] XXXXXXXX X	xxxxxx	
00F088 _H	XXXX	BAD2 XXXXX XXXXXXXX	2 [R/W] XXXXXXXX X	xxxxxx	
00F08C _H	XXXX	BAD: XXXXX XXXXXXXXX	3 [R/W] XXXXXXXX X	xxxxxx	
00F090 _H	XXXX	BAD4 XXXXX XXXXXXXXX	4 [R/W] XXXXXXXX X	xxxxxx	
00F094 _H	XXXX	xxxx xxxxxxxx		xxxxxx	
00F098 _H	XXXX	XXXXX XXXXXXXXX		xxxxxx	
00F09C _H	XXXX	xxxx xxxxxxxx		xxxxxx	EDSU / MPU
00F0A0 _H	XXXX	xxxx xxxxxxxx		xxxxxx	
00F0A4 _H	XXXX	xxxx xxxxxxx		xxxxxx	
00F0A8 _H	XXXX	xxxx xxxxxxxx		XXXXXXX	
00F0AC _H	XXXX	xxxx xxxxxxxx		XXXXXXX	
00F0B0 _H	XXXX	xxxx xxxxxxxx		XXXXXXX	
00F0B4 _H	XXXX	xxxx xxxxxxxx		xxxxxxx	
00F0B8 _H	XXXX	XXXXX XXXXXXXXX		xxxxxxx	
00F0BC _H	XXXX	xxxx xxxxxxx		xxxxxxx	Description
00F0C0 _H to 01FFFC _H		Kes	erved		Reserved
020000 _H to 02FFFC _H	CY91F46	7EA D-RAM size is 6 (data access	4 Kbytes: 02000 is 0 wait cycles)	D _H to 02FFFC _H	D-RAM area
030000 _H to 03FFFC _H		7EA ID-RAM size is 4 n access is 0 wait cy			ID-RAM area

Depends on the number of available CAN channels. 1.

Depends on the number of available CAN channels.
 HWWDE[4] is STP_RUN, see "Hardware Watchdog (Extension)" on page 46
 OSCCR[1] is OSCDS2, see CY91460 series hardware manual
 Main regulator default is 1.9 V, sub regulator 1.8 V (CY91F467D regulator defaults are 1.8 V/1.6 V)
 ACR0 [11 : 10] depends on bus width setting in Mode vector fetch information.
 TCR [3 : 0] INIT value = 0000, keeps value after RST
 In internal vector fetch mode (MD[2:0]=000) PFR00 to PFR13 are initialized to 0x00 for GPIO mode. In external vector fetch mode (MD[2:0]=001) PFR00 to PFR13 are initialized to 0xFF to enable the external bus.

17.2 Flash Memory and External Bus Area

32bit read/write		dat[31:0]			dat[
16bit read/write	dat[3	31:16]	dat[15:0]	dat[3	31:16]	dat[15:0]	
Address		Register							Block
Address	+ 0	+ 1	+ 2	+ 3	+ 4	+ 5	+ 6	+ 7	BIOCK
040000 _H to 05FFF8 _H	SA8 (64KB)					SA9 (64KB)		ROMS0
060000 _H to 07FFF8 _H		SA10	(64KB)			SA11	(64KB)		ROMS1
080000 _H to 09FFF8 _H		SA12	(64KB)			SA13	(64KB)		ROMS2
0A0000 _H to 0BFFF8 _H	SA14 (64KB)					SA15	(64KB)		ROMS3
0C0000 _H to 0DFFF8 _H	SA16 (64KB)					SA17 (64KB)			ROMS4
0E0000 _H to 0FFFF0 _H	SA18 (64KB)					SA19 (64KB) FRV [R] ²			ROMS5
0FFFF8 _H			[R] ¹ 00 00 _H			FRV 00 00 1			
100000 _H to 11FFF8 _H		SA20	(64KB)		SA21 (64KB)				ROMS6
120000 _H to 13FFF8 _H		SA22	(64KB)			SA23			
140000 _H to 143FF8 _H		SA0	(8KB)		SA1 (8KB)				ROMS7
144000 _H to 147FF8 _H		SA2	(8KB)		SA3 (8KB)				
148000 _H to 14BFF8 _H		SA4	(8KB)		SA5 (8KB)				
14C000 _H to 14FFF8 _H		SA6	(8KB)		SA7 (8KB)				
150000 _H to 17FFF8 _H				Res	erved				

32bit read/write		dat[3	31:0]			dat[3	31:0]		
16bit read/write	dat[3	1:16]	dat[15:0]	dat[3	1:16]	dat[15:0]	
Address	Register							Block	
Address	+ 0	+ 1	+ 2	+ 3	+ 4	+ 5	+ 6	+ 7	BIOCK
180000 _H				External	Bus Area				ROMS8
to 1BFFF8 _H									
1C0000 _H									ROMS9
to 1FFFF8 _H									
200000 _H									ROMS10
to 27FFF8 _H									
280000 _H									ROMS11
to 2FFFF8 _H									
300000 _H									ROMS12
to 37FFF8 _H									
380000 _H									ROMS13
to 3FFFF8 _H									
400000 _H									ROMS14
to 47FFF8 _H									
480000 _H									ROMS15
to									
4FFF8 _H 500000 _H				External	Bus Area				
to				External	5457464				
FFFABFF8 _H		0)/04				aa (1			Chandhy DAM
FFFAC000 _H to		C191	F40/EAS	Standby-RA		es (1 walt o	cycle)		Standby RAM
FFFAFFF8 _H									
FFFB0000 _H to				External	Bus Area				
FFFFFF8 _H									

Write operations to address 0FFFF8_H is not possible. When reading these addresses, the values shown above will be read.
 Write operations to address 0FFFFC_H is not possible. When reading these addresses, the values shown above will be read.

18. Interrupt Vector Table

Interrunt	Inte nu	errupt mber	Interru	pt level ¹	Inter	rupt vector ²	DMA Resource
Interrupt	Deci- mal	Hexa-de cimal	Setting Register	Register address	Offset	Default Vector address	number
Reset	0	00	_	—	3FC _H	000FFFFC _H	-
Mode vector	1	01	_	—	3F8 _H	000FFFF8 _H	-
System reserved	2	02	_	—	3F4 _H	000FFFF4 _H	
System reserved	3	03	_	—	3F0 _H	000FFFF0 _H	-
System reserved	4	04	_	—	3EC _H	000FFFEC _H	
CPU supervisor mode (INT #5 instruction) ³	5	05	_	-	3E8 _H	000FFFE8 _H	-
Memory Protection exception ³	6	06	_	_	3E4 _H	000FFFE4 _H	-
System reserved	7	07	_	_	3E0 _H	000FFFE0 _H	-
System reserved	8	08	_	_	3DC _H	000FFFDC _H	-
System reserved	9	09	_	_	3D8 _H	000FFFD8 _H	-
System reserved	10	0A	_	_	3D4 _H	000FFFD4 _H	-
System reserved	11	0B	_	_	3D0 _H	000FFFD0 _H	
System reserved	12	0C	_	_	3CC _H	000FFFCC _H	
System reserved	13	0D	_	_	3C8 _H	000FFFC8 _H	
Undefined instruction exception	14	0E	_	_	3C4 _H	000FFFC4 _H	
NMI request	15	0F	F _H	fixed	3C0 _H	000FFFC0 _H	
External Interrupt 0	16	10	ICR00	440 _H	3BC _H	000FFFBC _H	0, 16
External Interrupt 1	17	11			3B8 _H	000FFFB8 _H	1, 17
External Interrupt 2	18	12	ICR01	441 _H	3B4 _H	000FFFB4 _H	2, 18
External Interrupt 3	19	13			3B0 _H	000FFFB0 _H	3, 19
External Interrupt 4	20	14	ICR02	442 _H	3AC _H	000FFFAC _H	20
External Interrupt 5	21	15			3A8 _H	000FFFA8 _H	21
External Interrupt 6	22	16	ICR03	443 _H	3A4 _H	000FFFA4 _H	22
External Interrupt 7	23	17			3A0 _H	000FFFA0 _H	23
External Interrupt 8	24	18	ICR04	444 _H	39C _H	000FFF9C _H	1
External Interrupt 9	25	19			398 _H	000FFF98 _H	-
External Interrupt 10	26	1A	ICR05	445 _H	394 _H	000FFF94 _H	-
Reserved	27	1B			390 _H	000FFF90 _H	-
External Interrupt 12	28	1C	ICR06	446 _H	38C _H	000FFF8C _H	-
External Interrupt 13	29	1D			388 _H	000FFF88 _H	-
External Interrupt 14	30	1E	ICR07	447 _H	384 _H	000FFF84 _H	I
Reserved	31	1F			380 _H	000FFF80 _H	I
Reload Timer 0	32	20	ICR08	448 _H	37C _H	000FFF7C _H	4, 32
Reload Timer 1	33	21			378 _H	000FFF78 _H	5, 33
Reload Timer 2	34	22	ICR09	449 _H	374 _H	000FFF74 _H	34
Reload Timer 3	35	23			370 _H	000FFF70 _H	35

late and the		errupt mber	Interrup	ot level ¹	Inter	rupt vector ²	DMA
Interrupt	Deci- mal	Hexa-de cimal	Setting Register	Register address	Offset	Default Vector address	Resource number
Reload Timer 4	36	24	ICR10	44A _H	36C _H	000FFF6C _H	36
Reload Timer 5	37	25			368 _H	000FFF68 _H	37
Reload Timer 6	38	26	ICR11	44B _H	364 _H	000FFF64 _H	38
Reload Timer 7	39	27			360 _H	000FFF60 _H	39
Free Run Timer 0	40	28	ICR12	44C _H	35C _H	000FFF5C _H	40
Free Run Timer 1	41	29			358 _H	000FFF58 _H	41
Free Run Timer 2	42	2A	ICR13	44D _H	354 _H	000FFF54 _H	42
Free Run Timer 3	43	2B			350 _H	000FFF50 _H	43
Free Run Timer 4	44	2C	ICR14	44E _H	34C _H	000FFF4C _H	44
Free Run Timer 5	45	2D			348 _H	000FFF48 _H	45
Free Run Timer 6	46	2E	ICR15	44F _H	344 _H	000FFF44 _H	46
Free Run Timer 7	47	2F			340 _H	000FFF40 _H	47
CAN 0	48	30	ICR16	450 _H	33C _H	000FFF3C _H	_
CAN 1	49	31			338 _H	000FFF38 _H	_
Reserved	50	32	ICR17	451 _H	334 _H	000FFF34 _H	_
Reserved	51	33			330 _H	000FFF30 _H	_
Reserved	52	34	ICR18	452 _H	32C _H	000FFF2C _H	_
Reserved	53	35			328 _H	000FFF28 _H	_
Reserved	54	36	ICR19	453 _H	324 _H	000FFF24 _H	6, 48
Reserved	55	37			320 _H	000FFF20 _H	7, 49
Reserved	56	38	ICR20	454 _H	31C _H	000FFF1C _H	8, 50
Reserved	57	39			318 _H	000FFF18 _H	9, 51
LIN-USART 2 RX	58	3A	ICR21	455 _H	314 _H	000FFF14 _H	52
LIN-USART 2 TX LIN-USART (FIFO) 2 EoT	59	3B			310 _H	000FFF10 _H	53
Reserved	60	3C	ICR22	456 _H	30C _H	000FFF0C _H	54
Reserved	61	3D			308 _H	000FFF08 _H	55
Reserved	62	3E	ICR23 ⁴	457 _H	304 _H	000FFF04 _H	-
Delayed Interrupt	63	3F			300 _H	000FFF00 _H	_
System reserved ⁵	64	40	(ICR24)	(458 _H)	2FC _H	000FFEFC _H	-
System reserved ⁵	65	41			2F8 _H	000FFEF8 _H	_
LIN-USART (FIFO) 4 RX	66	42	ICR25	459 _H	2F4 _H	000FFEF4 _H	10, 56
LIN-USART (FIFO) 4 TX LIN-USART (FIFO) 4 EoT	67	43			2F0 _H	000FFEF0 _H	11, 57
LIN-USART (FIFO) 5 RX	68	44	ICR26	45A _H	2EC _H	000FFEEC _H	12, 58
LIN-USART (FIFO) 5 TX LIN-USART (FIFO) 5 EoT	69	45			2E8 _H	000FFEE8 _H	13, 59
LIN-USART (FIFO) 6 RX	70	46	ICR27	45B _H	2E4 _H	000FFEE4 _H	60
LIN-USART (FIFO) 6 TX LIN-USART (FIFO) 6 EoT	71	47			2E0 _H	000FFEE0 _H	61

Internet		errupt mber	Interrup	ot level ¹	Inter	rupt vector ²	DMA Resource
Interrupt	Deci- mal	Hexa-de cimal	Setting Register	Register address	Offset	Default Vector address	number
LIN-USART (FIFO) 7 RX	72	48	ICR28	45C _H	2DC _H	000FFEDC _H	62
LIN-USART (FIFO) 7 TX LIN-USART (FIFO) 7 EoT	73	49			2D8 _H	000FFED8 _H	63
I ² C 0 / I ² C 2	74	4A	ICR29	45D _H	2D4 _H	000FFED4 _H	_
I ² C 3	75	4B			2D0 _H	000FFED0 _H	
Reserved	76	4C	ICR30	45E _H	2CC _H	000FFECC _H	64
Reserved	77	4D			2C8 _H	000FFEC8 _H	65
Reserved	78	4E	ICR31	45F _H	2C4 _H	000FFEC4 _H	66
Reserved	79	4F			2C0 _H	000FFEC0 _H	67
Reserved	80	50	ICR32	460 _H	2BC _H	000FFEBC _H	68
Reserved	81	51			2B8 _H	000FFEB8 _H	69
Reserved	82	52	ICR33	461 _H	2B4 _H	000FFEB4 _H	70
Reserved	83	53			2B0 _H	000FFEB0 _H	71
Reserved	84	54	ICR34	462 _H	2AC _H	000FFEAC _H	72
Reserved	85	55			2A8 _H	000FFEA8 _H	73
Reserved	86	56	ICR35	463 _H	2A4 _H	000FFEA4 _H	74
Reserved	87	57			2A0 _H	000FFEA0 _H	75
Reserved	88	58	ICR36	464 _H	29C _H	000FFE9C _H	76
Reserved	89	59			298 _H	000FFE98 _H	77
Reserved	90	5A	ICR37	465 _H	294 _H	000FFE94 _H	78
Reserved	91	5B			290 _H	000FFE90 _H	79
Input Capture 0	92	5C	ICR38	466 _H	28C _H	000FFE8C _H	80
Input Capture 1	93	5D			288 _H	000FFE88 _H	81
Input Capture 2	94	5E	ICR39	467 _H	284 _H	000FFE84 _H	82
Input Capture 3	95	5F			280 _H	000FFE80 _H	83
Input Capture 4	96	60	ICR40	468 _H	27C _H	000FFE7C _H	84
Input Capture 5	97	61			278 _H	000FFE78 _H	85
Input Capture 6	98	62	ICR41	469 _H	274 _H	000FFE74 _H	86
Input Capture 7	99	63			270 _H	000FFE70 _H	87
Output Compare 0	100	64	ICR42	46A _H	26C _H	000FFE6C _H	88
Output Compare 1	101	65			268 _H	000FFE68 _H	89
Output Compare 2	102	66	ICR43	46B _H	264 _H	000FFE64 _H	90
Output Compare 3	103	67			260 _H	000FFE60 _H	91
Reserved	104	68	ICR44	46C _H	25C _H	000FFE5C _H	92
Reserved	105	69			258 _H	000FFE58 _H	93
Reserved	106	6A	ICR45	46D _H	254 _H	000FFE54 _H	94
Reserved	107	6B			250 _H	000FFE50 _H	95
Sound Generator	108	6C	ICR46	46E _H	24C _H	000FFE4C _H	_
Phase Frequency Modulator	109	6D			248 _H	000FFE48 _H	_

Interret	Inte nu	errupt mber	Interrup	ot level ¹	Interi	rupt vector ²	DMA
Interrupt	Deci- mal	Hexa-de cimal	Setting Register	Register address	Offset	Default Vector address	Resource number
Reserved	110	6E	ICR47 ⁴	46F _H	244 _H	000FFE44 _H	_
Reserved	111	6F			240 _H	000FFE40 _H	_
Reserved	112	70	ICR48	470 _H	23C _H	000FFE3C _H	15, 96
Reserved	113	71			238 _H	000FFE38 _H	97
Reserved	114	72	ICR49	471 _H	234 _H	000FFE34 _H	98
Reserved	115	73			230 _H	000FFE30 _H	99
PPG4	116	74	ICR50	472 _H	22C _H	000FFE2C _H	100
PPG5	117	75			228 _H	000FFE28 _H	101
PPG6	118	76	ICR51	473 _H	224 _H	000FFE24 _H	102
PPG7	119	77			220 _H	000FFE20 _H	103
PPG8	120	78	ICR52	474 _H	21C _H	000FFE1C _H	104
PPG9	121	79			218 _H	000FFE18 _H	105
PPG10	122	7A	ICR53	475 _H	214 _H	000FFE14 _H	106
PPG11	123	7B			210 _H	000FFE10 _H	107
PPG12	124	7C	ICR54	476 _H	20C _H	000FFE0C _H	108
PPG13	125	7D			208 _H	000FFE08 _H	109
PPG14	126	7E	ICR55	477 _H	204 _H	000FFE04 _H	110
PPG15	127	7F			200 _H	000FFE00 _H	111
Up/Down Counter 0	128	80	ICR56	478 _H	1FC _H	000FFDFC _H	_
Reserved	129	81			1F8 _H	000FFDF8 _H	_
Up/Down Counter 2	130	82	ICR57	479 _H	1F4 _H	000FFDF4 _H	_
Up/Down Counter 3	131	83			1F0 _H	000FFDF0 _H	_
Real Time Clock	132	84	ICR58	47A _H	1EC _H	000FFDEC _H	_
Calibration Unit	133	85			1E8 _H	000FFDE8 _H	_
A/D Converter 0	134	86	ICR59	47B _H	1E4 _H	000FFDE4 _H	14, 112
Reserved	135	87			1E0 _H	000FFDE0 _H	_
Alarm Comparator 0	136	88	ICR60	47C _H	1DC _H	000FFDDC _H	_
Reserved	137	89			1D8 _H	000FFDD8 _H	_
Low Voltage Detection	138	8A	ICR61	47D _H	1D4 _H	000FFDD4 _H	_
SMC Comparator 0 to 5	139	8B			1D0 _H	000FFDD0 _H	_
Timebase Overflow	140	8C	ICR62	47E _H	1CC _H	000FFDCC _H	_
PLL Clock Gear	141	8D			1C8 _H	000FFDC8 _H	_
DMA Controller	142	8E	ICR63	47F _H	1C4 _H	000FFDC4 _H	_
Main/Sub OSC stability wait	143	8F			1C0 _H	000FFDC0 _H	_
Security vector	144	90	_	_	1BC _H	000FFDBC _H	_
Used by the INT instruction.	145 to 255	91 to FF	_	_	1B8 _H to 000 _H	000FFDB8 _H to 000FFC00 _H	-

1. The Interrupt Control Registers (ICRs) are located in the interrupt controller and set the interrupt level for each interrupt request. An ICR is provided for each interrupt request.

- The vector address for each EIT (exception, interrupt or trap) is calculated by adding the listed offset to the table base register value (TBR). The TBR specifies
 the top of the EIT vector table. The addresses listed in the table are for the default TBR value (000FFC00H). The TBR is initialized to this value by a reset. The
 TBR is set to 000FFC00H after the internal boot ROM is executed.
- 3. Memory Protection Unit (MPU) support
- 4. ICR23 and ICR47 can be exchanged by setting the REALOS compatibility bit (addr 0C03_H: IOS[0])

5. Used by REALOS

19. Recommended Settings

19.1 PLL and Clockgear Settings

Please note that for CY91F467EA the core base clock frequencies are valid in the 1.9 V operation mode of the Main regulator and Flash.

PLL Input (CLK) [MHz]	Frequency	equency Parameter Clockgear Parameter			PLL Output (X) [MHz]	Core Base Clock [MHz]	Remarks
נאורובן	DIVM	DIVN	DIVG	MULG	MULG		
4	2	25	16	24	200	100	
4	2	24	16	24	192	96	
4	2	23	16	24	184	92	
4	2	22	16	24	176	88	
4	2	21	16	20	168	84	
4	2	20	16	20	160	80	
4	2	19	16	20	152	76	
4	2	18	16	20	144	72	
4	2	17	16	16	136	68	
4	2	16	16	16	128	64	
4	2	15	16	16	120	60	
4	2	14	16	16	112	56	
4	2	13	16	12	104	52	
4	2	12	16	12	96	48	
4	2	11	16	12	88	44	
4	4	10	16	24	160	40	
4	4	9	16	24	144	36	
4	4	8	16	24	128	32	
4	4	7	16	24	112	28	
4	6	6	16	24	144	24	
4	8	5	16	28	160	20	
4	10	4	16	32	160	16	
4	12	3	16	32	144	12	

Recommended PLL Divider and Clockgear Settings

19.2 Clock Modulator Settings

The following table shows all possible settings for the Clock Modulator in a base clock frequency range from 32 MHz up to 98 MHz. The Flash access time settings need to be adjusted according to Fmax while the PLL and clockgear settings should be set according to base clock frequency.

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
1	3	026F	88	79.5	98.5	
1	3	026F	84	76.1	93.8	
1	3	026F	80	72.6	89.1	
1	5	02AE	80	68.7	95.8	
2	3	046E	80	68.7	95.8	
1	3	026F	76	69.1	84.5	
1	5	02AE	76	65.3	90.8	
1	7	02ED	76	62	98.1	
2	3	046E	76	65.3	90.8	
3	3	066D	76	62	98.1	
1	3	026F	72	65.5	79.9	
1	5	02AE	72	62	85.8	
1	7	02ED	72	58.8	92.7	
2	3	046E	72	62	85.8	
3	3	066D	72	58.8	92.7	
1	3	026F	68	62	75.3	
1	5	02AE	68	58.7	80.9	
1	7	02ED	68	55.7	87.3	
1	9	032C	68	53	95	
2	3	046E	68	58.7	80.9	
2	5	04AC	68	53	95	
3	3	066D	68	55.7	87.3	
4	3	086C	68	53	95	
1	3	026F	64	58.5	70.7	
1	5	02AE	64	55.3	75.9	
1	7	02ED	64	52.5	82	
1	9	032C	64	49.9	89.1	
1	11	036B	64	47.6	97.6	
2	3	046E	64	55.3	75.9	
2	5	04AC	64	49.9	89.1	
3	3	066D	64	52.5	82	
4	3	086C	64	49.9	89.1	
5	3	0A6B	64	47.6	97.6	
1	3	026F	60	54.9	66.1	
1	5	02AE	60	51.9	71	
1	7	02ED	60	49.3	76.7	
1	9	032C	60	46.9	83.3	
1	11	036B	60	44.7	91.3	
2	3	046E	60	51.9	71	

Clock Modulator Settings, Frequency Range and Supported Supply Voltage

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
2	5	04AC	60	46.9	83.3	
3	3	066D	60	49.3	76.7	
4	3	086C	60	46.9	83.3	
5	3	0A6B	60	44.7	91.3	
1	3	026F	56	51.4	61.6	
1	5	02AE	56	48.6	66.1	
1	7	02ED	56	46.1	71.4	
1	9	032C	56	43.8	77.6	
1	11	036B	56	41.8	84.9	
1	13	03AA	56	39.9	93.8	
2	3	046E	56	48.6	66.1	
2	5	04AC	56	43.8	77.6	
2	7	04EA	56	39.9	93.8	
3	3	066D	56	46.1	71.4	
3	5	06AA	56	39.9	93.8	
4	3	086C	56	43.8	77.6	
5	3	0A6B	56	41.8	84.9	
6	3	0C6A	56	39.9	93.8	
1	3	026F	52	47.8	57	
1	5	02AE	52	45.2	61.2	
1	7	02ED	52	42.9	66.1	
1	9	032C	52	40.8	71.8	
1	11	036B	52	38.8	78.6	
1	13	03AA	52	37.1	86.8	
1	15	03E9	52	35.5	96.9	
2	3	046E	52	45.2	61.2	
2	5	04AC	52	40.8	71.8	
2	7	04EA	52	37.1	86.8	
3	3	066D	52	42.9	66.1	
3	5	06AA	52	37.1	86.8	
4	3	086C	52	40.8	71.8	
5	3	0A6B	52	38.8	78.6	
6	3	0C6A	52	37.1	86.8	
7	3	0E69	52	35.5	96.9	
1	3	026F	48	44.2	52.5	
1	5	02AE	48	41.8	56.4	
1	7	02ED	48	39.6	60.9	
1	9	032C	48	37.7	66.1	
1	11	036B	48	35.9	72.3	
1	13	03AA	48	34.3	79.9	

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
1	15	03E9	48	32.8	89.1	
2	3	046E	48	41.8	56.4	
2	5	04AC	48	37.7	66.1	
2	7	04EA	48	34.3	79.9	
3	3	066D	48	39.6	60.9	
3	5	06AA	48	34.3	79.9	
4	3	086C	48	37.7	66.1	
5	3	0A6B	48	35.9	72.3	
6	3	0C6A	48	34.3	79.9	
7	3	0E69	48	32.8	89.1	
1	3	026F	44	40.6	48.1	
1	5	02AE	44	38.4	51.6	
1	7	02ED	44	36.4	55.7	
1	9	032C	44	34.6	60.4	
1	11	036B	44	33	66.1	
1	13	03AA	44	31.5	73	
1	15	03E9	44	30.1	81.4	
2	3	046E	44	38.4	51.6	
2	5	04AC	44	34.6	60.4	
2	7	04EA	44	31.5	73	
2	9	0528	44	28.9	92.1	
3	3	066D	44	36.4	55.7	
3	5	06AA	44	31.5	73	
4	3	086C	44	34.6	60.4	
4	5	08A8	44	28.9	92.1	
5	3	0A6B	44	33	66.1	
6	3	0C6A	44	31.5	73	
7	3	0E69	44	30.1	81.4	
8	3	1068	44	28.9	92.1	
1	3	026F	40	37	43.6	
1	5	02AE	40	34.9	46.8	
1	7	02ED	40	33.1	50.5	
1	9	032C	40	31.5	54.8	
1	11	036B	40	30	59.9	
1	13	03AA	40	28.7	66.1	
1	15	03E9	40	27.4	73.7	
2	3	046E	40	34.9	46.8	
2	5	04AC	40	31.5	54.8	
2	7	04EA	40	28.7	66.1	
2	9	0528	40	26.3	83.3	

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
3	3	066D	40	33.1	50.5	
3	5	06AA	40	28.7	66.1	
3	7	06E7	40	25.3	95.8	
4	3	086C	40	31.5	54.8	
4	5	08A8	40	26.3	83.3	
5	3	0A6B	40	30	59.9	
6	3	0C6A	40	28.7	66.1	
7	3	0E69	40	27.4	73.7	
8	3	1068	40	26.3	83.3	
9	3	1267	40	25.3	95.8	
1	3	026F	36	33.3	39.2	
1	5	02AE	36	31.5	42	
1	7	02ED	36	29.9	45.3	
1	9	032C	36	28.4	49.2	
1	11	036B	36	27.1	53.8	
1	13	03AA	36	25.8	59.3	
1	15	03E9	36	24.7	66.1	
2	3	046E	36	31.5	42	
2	5	04AC	36	28.4	49.2	
2	7	04EA	36	25.8	59.3	
2	9	0528	36	23.7	74.7	
3	3	066D	36	29.9	45.3	
3	5	06AA	36	25.8	59.3	
3	7	06E7	36	22.8	85.8	
4	3	086C	36	28.4	49.2	
4	5	08A8	36	23.7	74.7	
5	3	0A6B	36	27.1	53.8	
6	3	0C6A	36	25.8	59.3	
7	3	0E69	36	24.7	66.1	
8	3	1068	36	23.7	74.7	
9	3	1267	36	22.8	85.8	
1	3	026F	32	29.7	34.7	
1	5	02AE	32	28	37.3	
1	7	02ED	32	26.6	40.2	
1	9	032C	32	25.3	43.6	
1	11	036B	32	24.1	47.7	
1	13	03AA	32	23	52.5	
1	15	03E9	32	22	58.6	
2	3	046E	32	28	37.3	
2	5	04AC	32	25.3	43.6	

Modulation Degree (k)	Random No (N)	CMPR [hex]	Baseclk [MHz]	Fmin [MHz]	Fmax [MHz]	Remarks
2	7	04EA	32	23	52.5	
2	9	0528	32	21.1	66.1	
2	11	0566	32	19.5	89.1	
3	3	066D	32	26.6	40.2	
3	5	06AA	32	23	52.5	
3	7	06E7	32	20.3	75.9	
4	3	086C	32	25.3	43.6	
4	5	08A8	32	21.1	66.1	
5	3	0A6B	32	24.1	47.7	
5	5	0AA6	32	19.5	89.1	
6	3	0C6A	32	23	52.5	
7	3	0E69	32	22	58.6	
8	3	1068	32	21.1	66.1	
9	3	1267	32	20.3	75.9	
10	3	1466	32	19.5	89.1	

20. Electrical Characteristics

20.1 Absolute Maximum Ratings

Devementer	Cumhal	Rat	ting	l lm:4	Demerke
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply slew rate	—	_	50	V/ms	
Power supply voltage 1*1	V _{DD} 5R	- 0.3	+ 6.0	V	
Power supply voltage 2*1	V _{DD} 5	- 0.3	+ 6.0	V	
Power supply voltage 3*1	HV _{DD} 5	- 0.3	+ 6.0	V	
Power supply voltage 4*1	V _{DD} 35	- 0.3	+ 6.0	V	
Relationship of the supply voltages	HV _{DD} 5	V _{DD} 5-0.3	V _{DD} 5+0.3	V	SMC mode
		V _{SS} 5-0.3	V _{DD} 5+0.3	V	General purpose port mode
	AV _{CC} 5	V _{DD} 5-0.3	V _{DD} 5+0.3	V	At least one pin of the Ports 25 to 29 (SMC, ANn) is used as digital input or output.
		V _{SS} 5-0.3	V _{DD} 5+0.3	V	<u>All pins</u> of the Ports 25 to 29 (SMC, ANn) follow the condition of V _{IA}
Analog power supply voltage*1	AV _{CC} 5	- 0.3	+ 6.0	V	*2
Analog reference power supply voltage* ¹	AVRH5	- 0.3	+ 6.0	V	*2
Input voltage 1* ¹	V _{I1}	Vss5 – 0.3	$V_{DD}5 + 0.3$	V	
Input voltage 2*1	V _{I2}	Vss5 – 0.3	$V_{DD}35 + 0.3$	V	External bus
Input voltage 3*1	V _{I3}	HVss5 – 0.3	HV _{DD} 5 + 0.3	V	Stepper motor controller
Analog pin input voltage*1	V _{IA}	AVss5 – 0.3	AVcc5 + 0.3	V	
Output voltage 1 ^{*1}	V _{O1}	Vss5 – 0.3	$V_{DD}5 + 0.3$	V	
Output voltage 2*1	V _{O2}	Vss5 – 0.3	$V_{DD}35 + 0.3$	V	External bus
Output voltage 3 ^{*1}	V _{O3}	HVss5 – 0.3	$HV_{DD}5 + 0.3$	V	Stepper motor controller
Maximum clamp current	I _{CLAMP}	- 4.0	+ 4.0	mA	*3
Total maximum clamp current	$\Sigma I_{CLAMP} $	_	20	mA	*3
"L" level maximum	I _{OL}	_	10	mA	
output current* ⁴		_	40	mA	Stepper motor controller
"L" level average	I _{OLAV}	—	8	mA	
output current* ⁵		_	30	mA	Stepper motor controller
"L" level total maximum	ΣI_{OL}	—	100	mA	
output current		—	360	mA	Stepper motor controller
"L" level total average	ΣI_{OLAV}	—	50	mA	
output current*6		_	230	mA	Stepper motor controller
"H" level maximum	I _{ОН}	—	- 10	mA	
output current* ⁴		_	- 40	mA	Stepper motor controller
"H" level average	I _{OHAV}	_	- 4	mA	
output current* ⁵		_	- 30	mA	Stepper motor controller
"H" level total maximum	ΣI_{OH}	—	- 100	mA	
output current		_	- 360	mA	Stepper motor controller

Parameter	Symbol	Rat	ing	Unit	Remarks	
Falanielei	Symbol	Min	Max		Rellia KS	
"H" level total average output	Σ I _{OHAV}	_	- 25	mA		
current* ⁶		—	- 230	mA	Stepper motor controller	
Permitted power dissipation *7	PD	—	1100 ^{*8}	mW	at T _A ≤ 85 °C	
		_	1100 ^{*8}	mW	at T _A ≤ 105 °C, no Flash program/erase ^{*9}	
		—	555 ^{*8}	mW	at T _A ≤ 105 °C	
Operating temperature	Τ _Α	- 40	+ 105	°C		
Storage temperature	Tstg	- 55	+ 150	°C		

*1: The parameter is based on $V_{SS}5 = HV_{SS}5 = AV_{SS}5 = 0.0$ V.

*2: AV_{CC}5 and AVRH5 must not exceed V_{DD}5 + 0.3 V.

*3:

□ Use within recommended operating conditions.

□ Use with DC voltage (current).

+B signals are input signals that exceed the V_{DD}5 voltage. +B signals should always be applied by connecting a limiting resistor between the +B signal and the microcontroller.

The value of the limiting resistor should be set so that the current input to the microcontroller pin does not exceed the rated value at any time, either instantaneously or for an extended period, when the +B signal is input.

Note that when the microcontroller drive current is low, such as in the low power consumption modes, the +B input potential can increase the potential at the power supply pin via a protective diode, possibly affecting other devices.

Note that if the +B signal is input when the microcontroller is off (not fixed at 0 V), power is supplied through the +B input pin; therefore, the microcontroller may partially operate.

Note that if the +B signal is input at power-on, since the power is supplied through the pin, the power-on reset may not function in the power supply voltage.

Do not leave +B input pins open.

Example of recommended circuit:

*4: Maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.

*5: Average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 100 ms period.

*6: Total average output current is defined as the value of the average current flowing through all of the corresponding pins for a 100 ms period.

*7: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

$$P_D = P_{IO} + P_{INT}$$

 $P_{IO} = \sum (|V_{SS}-V_{OL}| * I_{OL} + |V_{DD}-V_{OH}| * I_{OH})$ (IO load power dissipation, sum is performed on all IO ports) $P_{INT} = V_{DD} SR * I_{CC} + AV_{CC} S * I_A + AVRH S * I_R (internal power dissipation)$

*8:Worst case value for the QFP package mounted on a 4-layer PCB at specified T_A without air flow.

*9: Please contact Cypress for reliability limitations when using under these conditions.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

20.2 Recommended Operating Conditions

 $(V_{SS}5 = AV_{SS}5 = 0.0 \text{ V})$

Parameter	Symbol		Value		Unit	Remarks
Farameter	Symbol	Min	Тур	Max	Unit	Remarks
Power supply voltage	V _{DD} 5	3.0	_	5.5	V	
	V _{DD} 5R	3.0	_	5.5	V	Internal regulator
	V _{DD} 35	3.0	_	5.5	V	External bus
	$HV_{DD}5$	4.5	_	5.5	V	Stepper motor controller
		3.0	-	5.5	V	Stepper motor controller (when all pins are used as general-purpose ports)
	AV _{CC} 5	3.0	_	5.5	V	A/D converter
Smoothing capacitor at VCC18C pin	C _S	_	4.7	-	μF	Use a X7R ceramic capacitor or a capacitor that has similar frequency characteristics.
Power supply slew rate		_	_	50	V/ms	
Operating temperature	T _A	- 40	_	+ 105	°C	
Stepper motor control slew rate			40		ns	Cload = 0 pF
Main Oscillation stabilisation time		10			ms	
Lock-up time PLL (4 MHz ->16100 MHz)				0.6	ms	
ESD Protection (Human body model)	Vsurge	2			kV	R _{discharge} = 1.5 kΩ C _{discharge} = 100 pF
RC Oscillator	fRC100kH z	50	100	200	kHz	VDD _{CORE} ≥ 1.65 V
	fRC2MHz	1	2	4	MHz	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their Cypress representatives beforehand.

20.3 DC Characteristics

Note: In the following tables, " V_{DD} " means V_{DD} 35 for pins of ext. bus or HV_{DD} 5 for SMC pins or V_{DD} 5 for other pins. In the following tables, " V_{SS} " means Hvss5 for ground Pins of the stepper motor and V_{SS} 5 for the other pins.

Devenuetor	Cumhal	Din nome	Condition		Value		11	Bomarka
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
Input "H" voltage			Port inputs if CMOS Hysteresis 0.8/0.2 input is selected	$0.8 \times V_{DD}$	1	V _{DD} + 0.3	V	CMOS hysteresis input
		_	Port inputs if CMOS	$0.7 imes V_{DD}$	Ι	$V_{DD} + 0.3$	V	$4.5~V \leq V_{DD} \leq 5.5~V$
			Hysteresis 0.7/0.3 input is selected	$0.74 \times V_{DD}$		V _{DD} + 0.3	V	$3 \text{ V} \le \text{V}_{\text{DD}}$ < 4.5 V
		_	AUTOMOTIVE Hysteresis input is selected	$0.8 imes V_{DD}$	-	V _{DD} + 0.3	V	
		-	Port inputs if TTL input is selected	2.0		V _{DD} + 0.3	V	
	V _{IHR}	INITX	_	$0.8 \times V_{DD}$		V _{DD} + 0.3	V	INITX input pin (CMOS Hysteresis)
	V _{IHM}	MD_2 to MD_0	_	$V_{DD} - 0.3$	Ι	$V_{DD} + 0.3$	V	Mode input pins
	V _{IHX0S}	X0, X0A	_	2.5		V _{DD} + 0.3	V	External clock in "Oscillation mode"
	V _{IHX0F}	X0	_	$0.8 \times V_{DD}$	_	V _{DD} + 0.3	V	External clock in "Fast Clock Input mode"
Input "L" voltage	V _{IL}	-	Port inputs if CMOS Hysteresis 0.8/0.2 input is selected	V _{SS} – 0.3	_	$0.2 \times V_{DD}$	V	
		_	Port inputs if CMOS Hysteresis 0.7/0.3 input is selected	V _{SS} – 0.3	1	$0.3 \times V_{DD}$	V	
		—	Port inputs if	$V_{SS} - 0.3$	Ι	$0.5 \times V_{DD}$	V	$4.5~V \leq V_{DD} \leq 5.5~V$
			AUTOMOTIVE Hysteresis input is selected	V _{SS} – 0.3	_	$0.46 \times V_{DD}$	V	$3 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V}$
		-	Port inputs if TTL input is selected	V _{SS} - 0.3	-	0.8	V	
	V _{ILR}	INITX	_	V _{SS} – 0.3	_	$0.2 \times V_{DD}$	V	INITX input pin (CMOS Hysteresis)
	V _{ILM} MD_2 to MD_0		_	$V_{SS} - 0.3$	_	V _{SS} + 0.3	V	Mode input pins
	V _{ILXDS}	X0, X0A	_	V _{SS} - 0.3	_	0.5	V	External clock in "Oscillation mode"
Input "L" voltage	V _{ILXDF}	X0	_	V _{SS} – 0.3	_	$0.2 \times V_{DD}$	V	External clock in "Fast Clock Input mode"

$(V_{DD}5 = AV_{CC}5 = 3.0 \text{ V to } 5.5 \text{ V}, V_{SS}5 = AV_{SS}5 = 0 \text{ V}, T_A = -40 ^{\circ}\text{C} \text{ to } + 105 ^{\circ}\text{C})$

_		_			Value			_	
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks	
Output "H" voltage	V _{OH2}	Normal outputs	$\begin{array}{l} 4.5 \ V \leq V_{DD} \leq 5.5 \ V, \\ I_{OH} = - \ 2 \ mA \end{array}$	V _{DD} - 0.5	-	-	V	Driving strength set to 2 mA	
			$3.0 \text{ V} \le \text{V}_{DD} \le 4.5 \text{ V},$ $\text{I}_{OH} = -1.6 \text{ mA}$						
	V _{OH5}	Normal outputs	$\begin{array}{l} \text{4.5 V} \leq \text{V}_{DD} \leq \text{5.5 V}, \\ \text{I}_{OH} = - \text{5 mA} \end{array}$	V _{DD} – 0.5	_	_	V	Driving strength set to 5 mA	
			$\begin{array}{l} 3.0 \text{ V} \leq \text{ V}_{DD} \leq 4.5 \text{ V}, \\ \text{I}_{OH} = - 3 \text{ mA} \end{array}$						
	V _{OH3}	I ² C outputs	$\begin{array}{l} 3.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \\ \text{I}_{OH} = - 3 \text{ mA} \end{array}$	V _{DD} - 0.5	—	l	V		
	V _{OH30}	High current outputs	$\begin{array}{l} \text{4.5 V} \leq \text{V}_{DD} \leq \text{5.5 V}, \\ \text{T}_{\text{A}} = \text{-40 °C}, \\ \text{I}_{\text{OH}} = \text{-40 mA} \end{array}$	V _{DD} - 0.5			V	Driving strength set to 30 mA	
			$\begin{array}{l} \text{4.5 V} \leq \text{V}_{\text{DD}} \leq \text{5.5 V,} \\ \text{I}_{\text{OH}} \text{ = -30 mA} \end{array}$						
			$\begin{array}{l} 3.0 \text{ V} \leq \text{V}_{DD} \leq 4.5 \text{ V}, \\ \text{I}_{OH} \text{ = -20 mA} \end{array}$						
Output "L" voltage	V _{OL2}	Normal outputs	$\begin{array}{l} 4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \\ \text{I}_{OL} = + 2 \text{ mA} \end{array}$	-	_	0.4	V	Driving strength set to 2 mA	
			$3.0 \text{ V} \le \text{V}_{DD} \le 4.5 \text{ V},$ $\text{I}_{OL} = + 1.6 \text{ mA}$						
	V _{OL5}	Normal outputs	$\begin{array}{l} 4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \\ \text{I}_{OL} = + 5 \text{ mA} \end{array}$	-	—	0.4	V	Driving strength set to 5 mA	
			$\begin{array}{l} 3.0 \text{ V} \leq \text{V}_{DD} \leq 4.5 \text{ V}, \\ \text{I}_{OL} = + 3 \text{ mA} \end{array}$						
	V _{OL3}	I ² C outputs	$\begin{array}{l} 3.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, \\ \text{I}_{OL} = + 3 \text{ mA} \end{array}$	_	-	0.4	V		
	V _{OL30}	High current outputs	$\begin{array}{l} 4.5 \ \text{V} \leq \ \text{V}_{DD} \leq \ 5.5 \ \text{V}, \\ \text{T}_{\text{A}} = -40 \ ^{\circ}\text{C}, \\ \text{I}_{\text{OL}} = +40 \ \text{mA} \end{array}$			0.5	V	Driving strength set to 30 mA	
			$4.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ I_{OL} = +30 mA						
			$\begin{array}{l} 3.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.5 \text{ V}, \\ \text{I}_{\text{OL}} \text{ = +20 mA} \end{array}$						
Input leakage current	Ι _{ΙL}	Pnn_m ∗⊺	$\begin{array}{c} 3.0 \ V \leq V_{DD} \leq 5.5 \ V \\ V_{SS}5 < V_{I} < V_{DD} \\ T_{A} \mbox{=} 25 \ ^{\circ} \mbox{C} \end{array}$	- 1	_	+ 1	μA		
			$\begin{array}{c} 3.0 \ V \leq V_{DD} \leq 5.5 \ V \\ V_{SS} 5 < V_I < V_{DD} \\ T_A \mbox{=} 105 \ ^\circ \mbox{C} \end{array}$	- 3	_	+ 3			
Analog input leakage	I _{AIN}	ANn * ²	$3.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$ T _A =25 °C	- 1	-	+ 1	μA		
current			$3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ T _A =105 °C	- 3	—	+ 3	μA		

(V_{DD}5 = AV_{CC}5 = 3.0 V to 5.5 V, V_{SS}5 = AV_{SS}5 = 0 V, T_A = -40 \ ^{\circ}C to + 105 $^{\circ}C$)

Denne	0	Disc	O an all's'		Value			Dame 1	
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks	
Sum input leakage current	ΣIL	Pnn_m ^{*3} , ALARM_0	$\begin{array}{l} V_{DD}5 \geq V_{IN} \geq V_{SS}5,\\ AV_{CC}5 \geq V_{IN} \geq AV_{SS}5\\ \boldsymbol{\Sigma} \ (1 \ to \ n)\\ [max(I_LHi , \ I_LLi)] \end{array}$	_	8	30	μA	n = number of IO = 65 GPIO + 1 ALARM I_LH : leakage at high level input; I_LL : leakage at low level input	
Pull-up	R _{UP}	Pnn_m *4	$3.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	40	100	160	kΩ		
resistance		INITX	$4.5~V \leq V_{DD} \leq 5.5~V$	25	50	100			
Pull-down	R _{DOWN}	Pnn_m * ⁵	$3.0 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$	40	100	180	kΩ		
resistance			$4.5~V{\leq}V_{DD}{\leq}5.5~V$	25	50	100			
Input capacitance	C _{IN}	All except $V_{DD}5$, $V_{DD}5R$, $V_{SS}5$, $AV_{CC}5$, AV_{SS} , $AVRH5$	f = 1 MHz	-	5	15	pF		
Power supply current CY91	I _{CC}	V _{DD} 5R	CY91F467EA: CLKB: 100 MHz CLKP: 50 MHz CLKT: 50 MHz CLKCAN: 50 MHz	_	110	140	mA	Code fetch from Flash	
F467EA I _{CCH} V _{DD} 5R * ⁶	V _{DD} 5R * ⁶	T _A = + 25 °C	_	10	30	μA	ShutDown mode		
			T _A = + 85 °C	_	80	150	μA	with RTC running on 32 kHz Sub clock * ⁷	
			$T_A = + 105 \ ^{\circ}C$	_	160	300	μA		
			$T_A = +25 \ ^\circ C$	_	15	35	μA	ShutDown mode	
			$T_A = + 85 \ ^\circ C$	_	85	160	μA	with RTC running on 100 kHz RC clock *8	
			$T_A = + 105 \ ^{\circ}C$	—	170	320	μA		
			T _A = + 25 °C	—	30	100	μA	At STOP mode *9	
			T _A = + 85 °C	—	450	1000	μA		
			$T_{A} = + 105 \ ^{\circ}C$	—	1000	2200	μA		
			$T_A = +25 \ ^{\circ}C$	—	140	300	μA	RTC: 4 MHz mode ^{*10}	
			T _A = + 85 °C	_	500	1200	μA		
			T _A = + 105 °C	—	1000	2400	μA		
			$T_A = +25 \ ^{\circ}C$	_	120	200	μA	RTC: 100 kHz mode ^{*11}	
			T _A = + 85 °C	_	500	1100	μA		
			$T_A = + 105 \ ^\circ C$	—	1000	2300	μA		
	I _{LVE}	V _{DD} 5	-	_	70	150	μA	External low voltage detection	
	I _{LVI}	V _{DD} 5R	-	_	50	100	μA	Internal low voltage detection	
	I _{OSC}	V _{DD} 5	-	_	250	500	μA	Main clock (4 MHz)	
			-	_	20	40	μA	Sub clock (32 kHz)	

(V_{DD}5 = AV_{CC}5 = 3.0 V to 5.5 V, V_{SS}5 = AV_{SS}5 = 0 V, T_A = -40 \ ^\circ C to + 105 $^\circ C$)

Pnn_m includes all GPIO pins. Analog (AN) channels and PullUp/PullDown are disabled.
 ANn includes all pins where AN channels are enabled.

- 3. Pnn_m includes all GPIO pins beside the external bus pins (P00 to P13) and Stepper Motor pins (P25, P26, P27). Analog (AN) channels and PullUp/PullDown are disabled.
- Pnn_m includes all GPIO pins. The pull up resistors must be enabled by PPER/PPCR setting and the pins must be in input direction.
 Pnn_m includes all GPIO pins. The pull down resistors must be enabled by PPER/PPCR setting and the pins must be in input direction.
 Current on regulator supply pin V_{DD}5R does not include I_{OSC} and I_{CC} of the I/O ring.
 ShutDown mode with standby RAM enabled, sub regulator set to 1.2 V, Low voltage detection disabled. Same current consumption if RTC and Sub oscillator are disabled.
 ShutDown mode with standby RAM enabled, sub regulator set to 1.2 V, Low voltage detection disabled, RC oscillator enabled 100 kHz.
 STOP mode, sub regulator set to 1.2 V, Low voltage detection disabled.
 STOP mode, sub regulator set to 1.2 V, Low voltage detection disabled.
 STOP mode, sub regulator set to 1.2 V, Low voltage detection disabled. 4. Pnn_m includes all GPIO pins. The pull up resistors must be enabled by PPER/PPCR setting and

- Main oscillator enabled. 11. STOP mode, sub regulator set to 1.2 V, Low voltage detection disabled, RC oscillator enabled 100 kHz.

20.4 A/D Converter Characteristics

Deversion	Cumb al	Din rome		Value		l les it	Remarks
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Resolution	_	_	_	_	10	bit	
Total error	_	_	- 3	_	+ 3	LSB	
Nonlinearity error	_	_	- 2.5	_	+ 2.5	LSB	
Differential nonlinearity error	-	_	- 1.9	_	+ 1.9	LSB	
Zero reading voltage	V _{OT}	ANn	AVRL – 1.5 LSB	AVRL + 0.5 LSB	AVRL + 2.5 LSB	V	
Full scale reading voltage	V _{FST}	ANn	AVRH – 3.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	V	
Compare time	T _{comp}	_	0.6	_	t.b.d. ¹	μs	$\begin{array}{l} \text{4.5 V} \leq \text{AV}_{\text{CC}} 5 \leq \\ \text{5.5 V} \end{array}$
			2.0	_	t.b.d. ¹	μs	$\begin{array}{l} 3.0 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 4.5 \text{ V} \end{array}$
Sampling time	T _{samp}	_	0.4	_	-	μs	$\begin{array}{l} \text{4.5 V} \leq \text{AV}_{\text{CC}} \text{5} \leq \\ \text{5.5 V,} \\ \text{R}_{\text{EXT}} < 2 \ \text{k} \Omega \end{array}$
			1.0	_	-	μs	$\begin{array}{l} 3.0 \text{ V} \leq \text{AV}_{\text{CC}} 5 \leq \\ 4.5 \text{ V}, \\ \text{R}_{\text{EXT}} < 1 \text{ k}\Omega \end{array}$
Conversion time	T _{conv}	_	1.0	_	-	μs	$\begin{array}{l} 4.5 \text{ V} \leq \text{AV}_{\text{CC}} 5 \leq \\ 5.5 \text{ V} \end{array}$
			3.0	_	-	μs	$\begin{array}{l} 3.0 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 4.5 \text{ V} \end{array}$
Input capacitance	C _{IN}	ANn	-	_	11	pF	
Input resistance	R _{IN}	ANn	-	_	2.6	kΩ	$\begin{array}{l} 4.5 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 5.5 \text{ V} \end{array}$
			-	_	12.1	kΩ	$\begin{array}{l} 3.0 \text{ V} \leq \text{AV}_{CC} 5 \leq \\ 4.5 \text{ V} \end{array}$
Analog input leakage	I _{AIN}	ANn	– 1	-	+ 1	μA	$T_A = +25 \ ^{\circ}C$
current			- 3	_	+ 3	μA	T _A = + 105 °C
Analog input voltage range	V _{AIN}	ANn	AVRL	_	AVRH	V	
Offset between input channels	_	ANn	_	-	4	LSB	
Reference voltage range	AVRH	AVRH5	0.75 imes AV _{CC} 5	_	AV _{CC} 5	V	
	AVRL	AV _{SS} 5	AV _{SS} 5	-	$\text{AV}_{\text{CC}}5 \times 0.25$	V	
Power supply current	Ι _Α	AV _{CC} 5	_	2.5	5	mA	A/D Converter active
	I _{AH}	AV _{CC} 5	-	_	5	μA	A/D Converter not operated *1
Reference voltage current	I _R	AVRH5	_	0.7	1	mA	A/D Converter active
	I _{RH}	AVRH5	_	_	5	μA	A/D Converter not operated * ²

 $(V_{DD}5 = AV_{CC}5 = 3.0 \text{ V to } 5.5 \text{ V}, V_{SS}5 = AV_{SS}5 = 0 \text{ V}, T_A = -40 \text{ }^{\circ}\text{C to } + 105 \text{ }^{\circ}\text{C})$

1. Paramater is under re-evaluation.

Note: The accuracy gets worse as AVRH - AVRL becomes smaller

- ^{*1}: Supply current at AV_{CC}5, if A/D converter and ALARM comparator are not operating, ($V_{DD}5 = AV_{CC}5 = AVRH = 5.0 V$)
- ^{*2}: Input current at AVRH5, if A/D converter is not operating, $(V_{DD}5 = AV_{CC}5 = AVRH = 5.0 V)$

Sampling Time Calculation

$$\begin{split} \text{T}_{\text{samp}} = (\text{ 2.6 kOhm} + \text{R}_{\text{EXT}}) \times 11 \text{ pF} \times 7 \text{; for 4.5 V} \leq \text{AV}_{\text{CC}}5 \leq 5.5 \text{ V} \\ \text{T}_{\text{samp}} = (12.1 \text{ kOhm} + \text{R}_{\text{EXT}}) \times 11 \text{ pF} \times 7 \text{; for 3.0 V} \leq \text{AV}_{\text{CC}}5 \leq 4.5 \text{ V} \end{split}$$

Conversion Time Calculation

 $T_{conv} = T_{samp} + T_{comp}$

20.4.1 Definition of A/D converter terms

Resolution

Analog variation that is recognizable by the A/D converter.

Nonlinearity error

Deviation between actual conversion characteristics and a straight line connecting the zero transition point (00 0000 $0000_B \leftrightarrow 00\ 0000\ B)$ and the full scale transition point (11 1111 $1110_B \leftrightarrow 11\ 1111\ 1111_B)$.

Differential nonlinearity error

Deviation of the input voltage from the ideal value that is required to change the output code by 1 LSB.

Total error

This error indicates the difference between actual and theoretical values, including the zero transition error, full scale transition error, and nonlinearity error.

(Continued)

20.5 Alarm Comparator Characteristics

Deremeter	Symbol	Din nomo		Value		Unit	Remarks
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Power supply current	I _{A5ALMF}	AV _{CC} 5	_	25	40	μA	Alarm comparator enabled in fast mode (per channel) ^{*1}
	I _{A5ALMS}		-	7	10	μΑ	Alarm comparator enabled in normal mode (per channel) ^{*1}
	I _{A5ALMH}		_	_	5	μA	Alarm comparator disabled
ALARM pin input	I _{ALIN}	ALARM_n	– 1	—	+ 1	μΑ	T _A =25 °C
current			- 3	_	+ 3	μΑ	T _A =105 °C
ALARM pin input voltage range	V _{ALIN}		0	—	AV _{CC} 5	V	
Alarm upper limit voltage	V _{IAH}		$\begin{array}{c} \text{AV}_{CC}5 \times 0.78 \\ - 3\% \end{array}$	$AV_{CC}5 \times 0.78$	$\begin{array}{c} \text{AV}_{CC}5 \times 0.78 \\ + 3\% \end{array}$	V	
Alarm lower limit voltage	V _{IAL}		$\begin{array}{c} \text{AV}_{CC}5 \times 0.36 \\ -5\% \end{array}$	$AV_{CC}5 \times 0.36$	$\begin{array}{c} \text{AV}_{CC}5 \times 0.36 \\ + 5\% \end{array}$	V	
Alarm hysteresis voltage	V _{IAHYS}		50	_	250	mV	
Alarm input resistance	R _{IN}		5	_	_	MΩ	
Comparion time	t _{COMPF}		_	0.1	0.2	μs	Alarm comparator enabled in fast mode ^{*1}
	t _{COMPS}		_	1	2	μs	Alarm comparator enabled in normal mode ^{*1}

Note: *1:

The fast Alarm Comparator mode is enabled by setting ACSR.MD=1 Setting ACSR.MD=0 sets the normal mode.

20.6 FLASH Memory Program/Erase Characteristics

20.6.1 CY91F467EA

 $(T_A = 25^{\circ}C, Vcc = 5.0 V)$

Parameter		Value		Unit	Remarks		
Falameter	Min Typ Ma		Max	Onit	Keniarka		
Sector erase time	-	0.5	2.0	S	Erasure programming time not included		
Chip erase time	-	n*0.5	n*2.0	S	n is the number of Flash sector of the device		
Word (16 or 32-bit width) programming time	-	6	100	μs	System overhead time not included		
Programme/Erase cycle	10 000			cycle			
Flash data retention time	20			year	*1		

*1:This value was converted from the results of evaluating the reliability of the technology (using Arrhenius equation to convert high temperature measurements into normalized value at 85°C)

20.7 AC Characteristics

20.7.1 Clock Timing

(V_{DD}5 = 3.0 V to 5.5 V, Vss5 = AVss5 = 0 V, T_A = -40 ~^{\circ}C to + 105 $^{\circ}C)$

Parameter Sy	Symbol	Pin name	Value			Unit	Condition
	Symbol	i in name	Min	Тур	Max	Onic	Condition
Clock frequency	f _C	X0 X1	3.5	4	16	MHz	Opposite phase external supply or crystal
			3.5	4	8	MHz	Opposite phase external supply or ceramic resonator
		X0A X1A	32	32.768	100	kHz	

Clock timing condition

20.7.2 Reset Input Ratings

Parameter	Symbol	Pin name	Condition	Va	Unit	
Falameter	Symbol		Condition	Min	Max	Unit
INITX input time (at power-on)	t _{INTL}	INITX	_	10	_	ms
INITX input time (other than the above)				20	_	μs

20.7.3 LIN-USART Timings at $V_{DD}5 = 3.0$ to 5.5 V

- Conditions during AC measurements
- All AC tests were measured under the following conditions:

 - $\Box IO_{drive} = 5 \text{ mA}$ $\Box V_{DD}5 = 3.0 \text{ V to 5.5 V, } I_{load} = 3 \text{ mA}$
 - \Box V_{SS}5 = 0 V

 - □ $T_a = -40$ °C to +105× °C □ C_I = 50 pF (load capacity value of pins when testing)
 - □ VOL = 0.2 x V_{DD}5
 - □ VOH = 0.8 x V_{DD}5

□ EPILR = 0, PILR = 1 (Automotive Level = worst case)

$(V_{PP}5 = 3.0 \text{ V to})$	$55VV_{00}5 = A$	$V_{00}5 = 0 V T_{0} =$	= −40 °C to + 105 °C)
$(v_{DD}) = 0.0 v to$	3.3 v, vgg = A	$v_{SS} = 0 v, r_A =$	+0 0 (0 + 100 0)

 $(V_{DD}5 = 3.0 \text{ V to } 5.5 \text{ V}, V_{SS}5 = \text{AV}_{SS}5 = 0 \text{ V}, T_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 105 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition -	V _{DD} 5 = 3.0	V to 4.5 V	V _{DD} 5 = 4.	5 V to 5.5 V	Unit
	Symbol	i in name		Min	Max	Min	Max	Onit
Serial clock cycle time	t _{SCYCI}	SCKn	Internal clock	4 t _{CLKP}	-	4 t _{CLKP}	_	ns
$\begin{array}{l} SCK \downarrow \to SOT \\ delay \ time \end{array}$	t _{SLOVI}	SCKn SOTn	operation (master mode)	- 30	30	- 20	20	ns
$\begin{array}{l} \text{SOT} \rightarrow \text{SCK} \downarrow \\ \text{delay time} \end{array}$	t _{ovshi}	SCKn SOTn		$m \times t_{CLKP} - 30^{*}$	-	$m \times t_{CLKP} - 20^*$	-	ns
Valid SIN \rightarrow SCK \uparrow setup time	t _{IVSHI}	SCKn SINn		t _{CLKP} + 55	-	t _{CLKP} + 45	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	t _{SHIXI}	SCKn SINn		0	-	0	-	ns

Parameter	Symbol	Pin name	Condition	V _{DD} 5 = 3.0) V to 4.5 V	$V_{DD}5 = 4.$	5 V to 5.5 V	Unit
Farameter	Symbol	Fininame	Condition	Min	Max	Min	Max	Onit
Serial clock "H" pulse width	t _{SHSLE}	SCKn	External clock	t _{CLKP} + 10	_	t _{CLKP} + 10	-	ns
Serial clock "L" pulse width	t _{SLSHE}	SCKn	operation (slave mode)	t _{CLKP} + 10	_	t _{CLKP} + 10	—	ns
$\begin{array}{l} SCK \downarrow \to SOT \\ delay \ time \end{array}$	t _{SLOVE}	SCKn SOTn		-	2 t _{CLKP} + 55	_	2 t _{CLKP} + 45	ns
Valid SIN \rightarrow SCK \uparrow setup time	t _{IVSHE}	SCKn SINn		10	-	10	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	t _{SHIXE}	SCKn SINn		t _{CLKP} + 10	_	t _{CLKP} + 10	—	ns
SCK rising time	t _{FE}	SCKn		_	20	_	20	ns
SCK falling time	t _{RE}	SCKn		_	20	_	20	ns

(V_{DD}5 = 3.0 V to 5.5 V, V_{SS}5 = AV_{SS}5 = 0 V, T_A = -40 ~^{\circ}C to + 105 $^{\circ}C$)

*: Parameter m depends on $t_{\mbox{SCYCI}}$ and can be calculated as:

□ if $t_{SCYCI} = 2^{*}k^{*}t_{CLKP}$, then m = k, where k is an integer > 2

□ if $t_{\text{SCYCI}} = (2^*k + 1)^* t_{\text{CLKP}}$, then m = k + 1, where k is an integer > 1

Notes:

□ The above values are AC characteristics for CLK synchronous mode.

 \square t_{CLKP} is the cycle time of the peripheral clock.

■ Internal clock mode (master mode)

External clock mode (slave mode)

20.7.4 P^2 CAC Timings at $V_{DD}5 = 3.0$ to 5.5 V

Conditions during AC measurements

All AC tests were measured under the following conditions:

Fast Mode:

Deveneder	Question	Din nome	Val	ue	11	Demerik
Parameter	Symbol	Pin name	Min	Max	Unit	Remark
SCL clock frequency	f _{SCL}	SCLn	0	400	kHz	
Hold time (repeated) START condition. After this period, the first clock pulse is generated	t _{hd;sta}	SCLn, SDAn	0.6	_	μs	
LOW period of the SCL clock	t _{LOW}	SCLn	1.3	_	μs	
HIGH period of the SCL clock	t _{HIGH}	SCLn	0.6	—	μs	
Setup time for a repeated START condition	t _{SU;STA}	SCLn, SDAn	0.6	-	μs	
Data hold time for I ² C-bus devices	t _{HD;DAT}	SCLn, SDAn	0	0.9	μs	
Data setup time	t _{SU;DAT}	SCLn SDAn	100	_	ns	
Rise time of both SDA and SCL signals	t _r	SCLn, SDAn	20 + 0.1Cb	300	ns	
Fall time of both SDA and SCL signals	t _f	SCLn, SDAn	20 + 0.1Cb	300	ns	
Setup time for STOP condition	t _{su;sто}	SCLn, SDAn	0.6	—	μs	
Bus free time between a STOP and START condition	t _{BUF}	SCLn, SDAn	1.3	-	μs	
Capacitive load for each bus line	Cb	SCLn, SDAn	_	400	pF	
Pulse width of spike suppressed by input filter	t _{SP}	SCLn, SDAn	0	(11.5)× t _{CLKP}	ns	*1

(V_{DD}5 = 3.0 V to 5.5 V, V_{SS}5 = AV_{SS}5 = 0 V, T_A = -40 ~^{\circ}C to + 105 $^{\circ}C$)

1. The noise filter will suppress single spikes with a pulse width of 0ns and between (1 to 1.5) cycles of peripheral clock, depending on the phase relationship between I2C signals (SDA, SCL) and peripheral clock

Note: t_{CLKP} is the cycle time of the peripheral clock.

20.7.5 Free-run Timer Clock

Paramotor	Symbol	Pin name	Condition	Va	lue	Unit		
Parameter	Symbol Pin name	Condition	Min	Max	Onit			
Input pulse width	t _{TIWH} t _{TIWL}	CKn	_	4t _{CLKP}	_	ns		

(V_{DD}5 = 3.0 V to 5.5 V, V_{SS}5 = AV_{SS}5 = 0 V, T_A = -40 \ ^{\circ}C to + 105 $^{\circ}C$)

Note: $t_{\mbox{CLKP}}$ is the cycle time of the peripheral clock.

20.7.6 Trigger Input Timing

(V_{DD}5 = 3.0 V to 5.5 V, V_{SS}5 = AV_{SS}5 = 0 V, T_A = -40 \ ^{\circ}C to + 105 $^{\circ}C)$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit
	Symbol		Condition	Min	Max	Onit
Input capture input trigger	t _{INP}	ICUn	_	5t _{CLKP}	_	ns
A/D converter trigger	t _{ATGX}	ATGX	—	5t _{CLKP}	-	ns

Note: t_{CLKP} is the cycle time of the peripheral clock.

20.7.7 External Bus AC Timings at $V_{DD}35 = 4.5$ to 5.5 V

Conditions during AC measurements

All AC tests were measured under the following conditions:

 \Box IO_{drive} = 5 mA $\Box V_{DD} 35 = 4.5 \text{ V to } 5.5 \text{ V, } I_{\text{load}} = 5 \text{ mA}$ □ $V_{SS}5 = 0 V$ □ Ta = -40 °C to + 105 °C □ C_I = 50 pF $\Box \text{ VOL} = 0.5 \times V_{DD}35$ \Box VOH = 0.5 × V_{DD}35 \Box EPILR = 0, PILR = 1 (Automotive Level = worst case)

Basic Timing

(V_DD35 = 4.5 V to 5.5 V, Vss5 = AVss5 = 0 V, T_A = -40 ~C to + 105 ~C)

Parameter	Symbol	Pin name	Va	lue	Unit
Faranieler	Symbol	Fin name	Min	Max	Unit
MCLKO	t _{CLCH}	MCLKO	1/2 x t _{CLKT} – 2	$1/2 \times t_{CLKT} + 2$	ns
	t _{CHCL}		$1/2 \times t_{CLKT} - 2$	$1/2 \times t_{CLKT} + 2$	ns
MCLKO \downarrow to CSXn delay time	t _{CLCSL}	MCLKO	_	7	ns
	t _{CLCSH}	CSXn	_	7	ns
MCLKO \uparrow to CSXn delay time (Addr \rightarrow CS delay)	t _{CHCSL}		- 1	+ 6	ns
MCLKO \downarrow to ASX delay time	t _{CLASL}	MCLKO	—	7	ns
	t _{CLASH}	ASX	—	7	ns
MCLKO \downarrow to BAAX delay time	t _{CLBAL}	MCLKO	_	7	ns
	t _{CLBAH}	BAAX	2	_	ns
MCLKO \downarrow to Address valid delay time	t _{CLAV}	MCLKO A25 to A0	_	8	ns

Note: $t_{\mbox{CLKT}}$ is the cycle time of the external bus clock.

Synchronous/Asynchronous Read Access with External MCLKI Input

(V_{DD}35 = 4.5 V to 5.5 V, Vss5 = AVss5 = 0 V, T_A = -40 °C to + 105 °C)

Parameter	Symbol	Pin name	Va	lue	Unit
Farameter	Symbol	Pin name	Min	Max	Unit
MCLKO [↑] /MCLKI [↑] to RDX delay time	t _{CHRL}	MCLKO RDX	- 1	6	ns
	t _{CHRH}	MCLKI RDX	8	16	ns
Data valid to RDX \uparrow setup time	t _{DSRH}	RDX D31 to D0	19	_	ns
RDX [↑] to Data valid hold time (external MCLKI input)	t _{RHDX}	RDX D31 to D0	0	_	ns
Data valid to MCLKI ↑ setup time	t _{DSCH}	MCLKI D31 to D0	3	_	ns
MCLKI ↑ to Data valid hold time	t _{CHDX}	MCLKI D31 to D0	1	_	ns
MCLKO \downarrow to WRXn (as byte enable) delay	t _{CLWRL}	MCLKO	—	9	ns
time	t _{CLWRH}	WRXn	- 1	—	ns
MCLKO \downarrow to CSXn delay time	t _{CLCSL}	MCLKO	—	7	ns
	t _{CLCSH}	CSXn	_	7	ns

Note: The usage of the external feedback from MCLKO to MCLKI is not recommended.

Synchronous/Asynchronous Read Access with Internal MCLKO --> MCLKI Feedback

Parameter	Symbol	Pin name	Va	lue	Unit
Parameter	Symbol	Pin name	Min	Max	Unit
MCLKO ↑ to RDX delay time	t _{CHRL}	MCLKO RDX	– 1	6	ns
	t _{CHRH}		– 1	7	ns
Data valid to RDX ↑ setup time	t _{DSRH}	RDX D31 to D0	16	_	ns
RDX [↑] to Data valid hold time (internal MCLKO → MCLKI / /MCLKI feedback)	t _{RHDX}	RDX D31 to D0	0	_	ns
MCLKO↓ to WRXn	t _{CLWRL}	MCLKO	—	9	ns
(as byte enable) delay time	t _{CLWRH}	WRXn	– 1	—	ns
MCLKO \downarrow to CSXn delay time	t _{CLCSL}	MCLKO	_	7	ns
	t _{CLCSH}	CSXn	_	7	ns

Synchronous Write Access - Byte Control Type

Parameter	Symbol	Pin name	Value		Unit
Faiameter	Symbol	Fin hame	Min	Max	Unit
MCLKO \downarrow to WEX delay time	t _{CLWL}	MCLKO	—	7	ns
	t _{CLWH}	WEX	2	_	ns
Data valid to WEX \downarrow setup time	t _{DSWL}	WEX D31 to D0	- 4	_	ns
WEX \uparrow to Data valid hold time	t _{WHDH}	WEX D31 to D0	t _{CLKT} – 5	_	ns
MCLKO \downarrow to WRXn (as byte enable) delay	t _{CLWRL}	MCLKO	—	9	ns
time	t _{CLWRH}	WRXn	- 1	—	ns
MCLKO \downarrow to CSXn delay time	t _{CLCSL}	MCLKO	_	7	ns
	t _{CLCSH}	CSXn	_	7	ns

Synchronous Write Access - No Byte Control Type

Parameter	Symbol	Pin name	Value		Unit
Farameter	Symbol	Fin name	Min	Max	Unit
MCLKO \downarrow to WRXn delay time	t _{CLWRL}	MCLKO	_	9	ns
	t _{CLWRH} WRXn		- 1	-	ns
Data valid to WRXn \downarrow setup time	t _{DSWRL}	WRXn D31 to D0	- 6	_	ns
WRXn $ m ^{\uparrow}$ to Data valid hold time	t _{WRHDH}	WRXn D31 to D0	t _{CLKT} – 6	_	ns
MCLKO \downarrow to CSXn delay time	t _{CLCSL}	MCLKO	—	7	ns
	t _{CLCSH}	CSXn	_	7	ns

Asynchronous Write Access - Byte Control Type

Parameter	Symbol	Pin name	Val	Unit	
Faiameter	Symbol	Fininame	Min	Max	Unit
WEX \downarrow to WEX \uparrow pulse width	t _{WLWH}	WEX	t _{CLKT} – 2	_	ns
Data valid to WEX \downarrow setup time	t _{DSWL}	WEX D31 to D0	$1/2 \times t_{CLKT} - 16$	_	ns
WEX \uparrow to Data valid hold time	twhdh	WEX D31 to D0	$1/2 \times t_{CLKT} - 6$	_	ns
WEX to WRXn delay time	t _{WRLWL}	WEX	_	$1/2 \times t_{CLKT} + 2$	ns
	t _{WHWRH}	WRXn	$1/2 \times t_{CLKT} - 1$	_	ns
WEX to CSXn delay time	t _{CLWL}	WEX	_	$1/2 \times t_{CLKT} + 1$	ns
	t _{WHCH}	CSXn	$1/2 \times t_{CLKT} - 1$		ns

Asynchronous Write Access - No Byte Control Type

Parameter	Symbol Pin name		Va	Value		
Falalletei	Symbol	r III IIailie	Min	Max	Unit	
WRXn \downarrow to WRXn \uparrow pulse width	t _{WRLWRH}	WRXn	t _{CLKT} – 1	_	ns	
Data valid to WRXn \downarrow setup time	t _{DSWRL}	WRXn D31 to D0	$1/2 \times t_{CLKT} - 6$	_	ns	
WRXn \uparrow to Data valid hold time	t _{WRHDH}	WRXn D31 to D0	$1/2 \times t_{CLKT} - 6$	_	ns	
WRXn to CSXn delay time	t _{CLWRL}	WRXn	_	$1/2 \times t_{CLKT} - 1$	ns	
	t _{WRHCH}	CSXn	$1/2 \times t_{CLKT} - 2$	_	ns	

RDY Waitcycle Insertion

Parameter	Symbol Pin name		Va	Unit	
Farameter	Symbol	Fill lidille	Min	Max	onit
RDY setup time	t _{RDYS}	MCLKO RDY	12	_	ns
RDY hold time	t _{RDYH}	MCLKO RDY	0	-	ns

Bus Hold Timing

Parameter	Symbol	Pin name	Val	Unit	
Farameter	Symbol	Fill lidine	Min	Max	
MCLKO \downarrow to BGRNTX delay time	t _{CLBGL}	MCLKO	-	5	ns
	t _{CLBGH}	BGRNTX	_	6	ns
Bus HIZ to BGRNTX \downarrow	t _{AXBGL}	BGRNTX	t _{CLKT} + 5	_	ns
BGRNTX [↑] to Bus drive	t _{BGHAV}	MCLK* A0 to An RDX, ASX WRXn,WEX CSXn,BAAX	t _{CLKT} + 6	-	ns

(V_{DD}35 = 4.5 V to 5.5 V, Vss5 = AVss5 = 0 V, T_A = -40 \ ^{\circ}C to + 105 $^{\circ}C$)

Note: BRQ must be kept High until the bus is granted (this is acknowledged by the falling edge of BGRNTX). It must be kept High as long as the bus shall be hold. After releasing the bus (BRQ set to Low) this is acknowledged by the rising edge of BGRNTX.

Note: Condition for t_{AXBGL} and t_{BGHAV} : \Box VOL = 0.2 × V_{DD}35 \Box VOH = 0.8 × V_{DD}35

Clock Relationships

$(V_{DD}35 = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss5} = \text{AVss5} = 0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } + 100 ^{\circ}\text{C} $						
Parameter	Symbol	Din nome	Value		Unit	
	Symbol	Pin name	Min	Max		
MCLKO \downarrow to MCLKE (in sleep mode)	t _{CLML}	MCLKO	_	7	ns	
	t _{CLMH}	MCLKE	- 1	—	ns	

DMA Transfer

(V_{DD}35 = 4.5 V to 5.5 V, Vss5 = AVss5 = 0 V, T_A = -40 ~C to + 105 ~C)

Parameter	Symbol	Pin name	Value		Unit
	Symbol	Pin name	Min	Max	Unit
MCLKO \downarrow to DACKX delay time	t _{CLDAL}	MCLKO	_	7	ns
	t _{CLDAH}	DACKXn	_	7	ns
MCLKO \downarrow to DEOP delay time	t _{CLDEL}	MCLKO	_	9	ns
	t _{CLDEH}	DEOPn	_	9	ns
$\begin{array}{l} MCLKO \uparrow to \; DACKX \; delay \; time \\ (ADDR \to delayed \; CS) \end{array}$	t _{CHDAL}	MCLKO DACKXn	1	6	ns
$\begin{array}{l} \text{MCLKO} \uparrow \text{to DEOP delay time} \\ \text{(ADDR} \rightarrow \text{delayed CS)} \end{array}$	t _{CHDEL}	MCLKO DEOPn	1	8	ns
DREQ setup time	t _{DRQS}	MCLKO DREQn	12	_	ns
DREQ hold time	t _{DRQH}	MCLKO DREQn	0	_	ns
DEOTXn setup time	t _{DTXS}	MCLKO DEOTXn	12	_	ns
DEOTXn hold time	t _{DTXH}	MCLKO DEOTXn	0	_	ns

Note: DREQ and DEOTX must be applied for at least $5 \times t_{CLKT}$ to ensure that they are really sampled and evaluated. Under best case conditions (DMA not busy) only setup and hold times are required.

20.7.8 External Bus AC Timings at V_{DD} 35 = 3.0 to 4.5 V

■ Conditions during AC measurements

All AC tests were measured under the following conditions:

Basic Timing

Parameter	Symbol	Pin name	Va	Unit			
i di dificici	Symbol	Finname	Min	Мах	Unit		
MCLKO	t _{CLCH}	MCLKO	$1/2 \times t_{CLKT} - 2$	$1/2 \times t_{CLKT} + 4$	ns		
	t _{CHCL}		$1/2 \times t_{CLKT} - 4$	$1/2 \times t_{CLKT} + 2$	ns		
MCLKO \downarrow to CSXn delay time	t _{CLCSL}	MCLKO	-	6	ns		
	t _{CLCSH}	CSXn	_	8	ns		
MCLKO \uparrow to CSXn delay time (Addr \rightarrow CS delay)	t _{CHCSL}		– 1	+ 5	ns		
MCLKO \downarrow to ASX delay time	t _{CLASL}	MCLKO ASX	-	7	ns		
	t _{CLASH}		-	9	ns		
MCLKO \downarrow to BAAX delay time	t _{CLBAL}	MCLKO	-	7	ns		
	t _{CLBAH}	BAAX	2	—	ns		
MCLKO \downarrow to Address valid delay time	t _{CLAV}	MCLKO A25 to A0	_	13	ns		

(V_{DD}35 = 3.0 V to 4.5 V, Vss5 = AVss5 = 0 V, T_A = -40 °C to + 105 °C)

Note: $t_{\mbox{CLKT}}$ is the cycle time of the external bus clock.

Synchronous/Asynchronous Read Access with External MCLKI Input

(V_{DD}35 = 3.0 V to 4.5 V, Vss5 = AVss5 = 0 V, T_A = -40 ~C to + 105 ~C)

Deremeter	Cumb al	Din nome	Value		l lm it
Parameter	Symbol	Pin name	Min	Max	Unit
MCLKO ↑/MCLKI ↑ to RDX delay time	t _{CHRL}	MCLKO RDX	- 1	5	ns
	t _{CHRH}	MCLKI RDX	8	16	ns
Data valid to RDX [↑] setup time	t _{DSRH}	RDX D31 to D0	19	_	ns
RDX [↑] to Data valid hold time (external MCLKI input)	t _{RHDX}	RDX D31 to D0	0	_	ns
Data valid to MCLKI ↑ setup time	t _{DSCH}	MCLKI D31 to D0	3	_	ns
MCLKI [↑] to Data valid hold time	t _{CHDX}	MCLKI D31 to D0	1	_	ns
MCLKO↓ to WRXn	t _{CLWRL}	MCLKO	-	12	ns
(as byte enable) delay time	t _{CLWRH}	WRXn	0	—	ns
MCLKO \downarrow to CSXn delay time	t _{CLCSL}	MCLKO	_	6	ns
	t _{CLCSH}	CSXn	_	9	ns

Note: The usage of the external feedback from MCLKO to MCLKI is not recommended.

Synchronous/Asynchronous Read Access with Internal MCLKO --> MCLKI Feedback

(V_{DD}35 = 3.0 V to 4.5 V, Vss5 = AVss5 = 0 V, T_A = -40 $^\circ C$ to + 105 $^\circ C$)

Parameter	Symbol Pin name		Value		Unit
Farameter	Symbol	Finname	Min	Max	Onit
MCLKO \uparrow to RDX delay time	t _{CHRL}	MCLKO RDX	– 1	5	ns
	t _{CHRH}		– 1	7	ns
Data valid to RDX ↑ setup time	t _{DSRH}	RDX D31 to D0	18	_	ns
$RDX \uparrow$ to Data valid hold time (internal MCLKO \rightarrow MCLKI / /MCLKI feedback)	t _{RHDX}	RDX D31 to D0	0	-	ns
MCLKO↓ to WRXn	t _{CLWRL}	MCLKO	—	12	ns
(as byte enable) delay time	t _{CLWRH}	WRXn	0	—	ns
MCLKO \downarrow to CSXn delay time	t _{CLCSL}	MCLKO	—	6	ns
	t _{CLCSH}	CSXn	_	8	ns

Synchronous Write Access - Byte Control Type

Parameter	Symbol	Pin name	Value		Unit
Faiametei	Symbol	Fininanie	Min	Max	Onit
MCLKO \downarrow to WEX delay time	t _{CLWL}	MCLKO	_	7	ns
	t _{CLWH}	WEX	1	_	ns
Data valid to WEX \downarrow setup time	t _{DSWL}	WEX D31 to D0	– 11	_	ns
WEX \uparrow to Data valid hold time	t _{WHDH}	WEX D31 to D0	t _{CLKT} – 5	_	ns
MCLKO \downarrow to WRXn (as byte enable) delay	t _{CLWRL}	MCLKO	—	12	ns
time	t _{CLWRH}	WRXn	0	—	ns
MCLKO \downarrow to CSXn delay time	t _{CLCSL}	MCLKO	_	6	ns
	t _{CLCSH}	CSXn	_	8	ns

Synchronous Write Access - No Byte Control Type

Parameter	Symbol Pin name	Value		Unit	
	Symbol	Fill hame	Min	Max	Ome
MCLKO \downarrow to WRXn delay time	t _{CLWRL}	MCLKO	_	12	ns
	t _{CLWRH}	WRXn	0	_	ns
Data valid to WRXn \downarrow setup time	t _{DSWRL}	WRXn D31 to D0	– 11	_	ns
WRXn [↑] to Data valid hold time	t _{WRHDH}	WRXn D31 to D0	t _{CLKT} – 6	_	ns
MCLKO \downarrow to CSXn delay time	t _{CLCSL}	MCLKO	_	6	ns
	t _{CLCSH}	CSXn	_	8	ns

Asynchronous Write Access - Byte Control Type

(V _{DD} $35 = 3.0$ V to 4.5 V, Vss $5 = AVss5 = 0$ V, T _A = -40 °C to + 105 °C	;)
	/

Parameter	Sumbol Din	Pin name	Va	Unit	
Falameter	Symbol	Fin hame	Min	Мах	Onit
WEX \downarrow to WEX \uparrow pulse width	t _{WLWH}	WEX	t _{CLKT} – 2	_	ns
Data valid to WEX \downarrow setup time	t _{DSWL}	WEX D31 to D0	1/2 × t _{CLKT} – 11	-	ns
WEX \uparrow to Data valid hold time	t _{WHDH}	WEX D31 to D0	$1/2 \times t_{CLKT} - 6$	-	ns
WEX to WRXn delay time	t _{WRLWL}	WEX	—	$1/2 \times t_{CLKT} + 3$	ns
	t _{WHWRH}	WRXn	$1/2 \times t_{CLKT} - 3$	_	ns
WEX to CSXn delay time	t _{CLWL}	WEX	_	$1/2 imes t_{CLKT} - 3$	ns
	t _{whCH}	CSXn	$1/2 \times t_{CLKT} - 3$	_	ns

Asynchronous Write Access - No Byte Control Type

Parameter	Symbol	Pin name	Val	Unit	
	Symbol	Fin name	Min	Max	Onit
WRXn \downarrow to WRXn \uparrow pulse width	t _{WRLWRH}	WRXn	t _{CLKT} – 2	—	ns
Data valid to WRXn \downarrow setup time	t _{DSWRL}	WRXn D31 to D0	$1/2 \times t_{CLKT} - 11$	_	ns
WRXn \uparrow to Data valid hold time	t _{WRHDH}	WRXn D31 to D0	$1/2 \times t_{CLKT} - 6$	_	ns
WRXn to CSXn delay time	t _{CLWRL}	WRXn	_	$1/2 \times t_{CLKT} - 2$	ns
	t _{WRHCH}	CSXn	$1/2 \times t_{CLKT} - 3$	_	ns

RDY Waitcycle Insertion

Parameter	Symbol F	Pin name	Va	Unit	
		Fill fidine	Min	Max	Unit
RDY setup time	t _{RDYS}	MCLKO RDY	14	_	ns
RDY hold time	t _{RDYH}	MCLKO RDY	0	_	ns

Bus Hold Timing

	. 5	2			
Parameter	Symbol	Pin name	Value		Unit
Parameter			Min	Max	Unit
MCLKO \downarrow to BGRNTX delay time			—	5	ns
	t _{CLBGH}	BGRNTX	—	6	ns
Bus HIZ to BGRNTX \downarrow	t _{AXBGL}	BGRNTX	t _{CLKT} + 8	-	ns
BGRNTX ↑ to Bus drive	t _{BGHAV}	MCLK* A0 to An RDX, ASX WRXn,WEX CSXn,BAAX	t _{CLKT} + 1	_	ns

(V_{DD}35 = 3.0 V to 4.5 V, Vss5 = AVss5 = 0 V, T_A = -40 ~C to + 105 ~C)

Note: BRQ must be kept High until the bus is granted (this is acknowledged by the falling edge of BGRNTX). It must be kept High as long as the bus shall be hold. After releasing the bus (BRQ set to Low) this is acknowledged by the rising edge of BGRNTX.

Note: Condition for t_{AXBGL} and t_{BGHAV} : \Box VOL = 0.2 × V_{DD}35 \Box VOH = 0.8 × V_{DD}35

Clock Relationships

			,	Ý A	
Parameter	Symbol	Pin name	Value		Unit
raiameter	Symbol	Fiii liailie	Min	Max	Unit
MCLKO↓ to MCLKE	t _{CLML}	MCLKO MCLKE		3	ns
(in sleep mode)	t _{CLMH}		0	_	ns

DMA Transfer

Parameter	Symbol Pin name		Value		l lmit
Parameter	Symbol	Pin name	Min	Max	– Unit
MCLKO \downarrow to DACKX delay time	t _{CLDAL}	MCLKO	—	7	ns
	t _{CLDAH}	DACKXn	_	8	ns
MCLKO \downarrow to DEOP delay time	t _{CLDEL}	MCLKO	—	7	ns
	t _{CLDEH}	DEOPn	_	11	ns
MCLKO \uparrow to DACKX delay time (ADDR \rightarrow delayed CS)	t _{CHDAL}	MCLKO DACKXn	- 1	4	ns
MCLKO \uparrow to DEOP delay time (ADDR \rightarrow delayed CS)	t _{CHDEL}	MCLKO DEOPn	- 1	6	ns
DREQ setup time	t _{DRQS}	MCLKO DREQn	16	_	ns
DREQ hold time	t _{DRQH}	MCLKO DREQn	0	_	ns
DEOTXn setup time	t _{DTXS}	MCLKO DEOTXn	16	_	ns
DEOTXn hold time	t _{DTXH}	MCLKO DEOTXn	0	_	ns

(V_{DD}35 = 3.0 V to 4.5 V, Vss5 = AVss5 = 0 V, T_A = -40 ~C to + 105 ~C)

Note: DREQ and DEOTX must be applied for at least $5 \times t_{CLKT}$ to ensure that they are really sampled and evaluated. Under best case conditions (DMA not busy) only setup and hold times are required.

21. Ordering Information

Part number	Package	Remarks
CY91F467EAPMC-GS-UJE2	208-pin low profile QFP (LQR208)	Lead-free package

22. Package Dimension

SYMBOL	DIN	D IM ENSION S		
SINIDUE	MIN.	N OM.	MAX.	
A	—	—	1.70	
A1	0.05	—	0.15	
ь	0.17	0.22	0.27	
G	0.09	—	0.20	
D	30.00 BSC			
D1	28.00 BSC			
e	0	.50 890		
E	3	0.00 B SK	3	
E1	2	8.00 E SX	2	
L	0.45	0.60	0.75	
ы	0.30	0.50	0.70	
θ	0"	—	8"	

NOTES

- 1. ALC DIMENSIONS ARE IN MILLIPHETERS.
- △ DATUM PLANE HIS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- 🖄 DATUMS A-BIAND DITO BE DETERMINED AT DATUM PLANE II.
- TO BE DETERMINED AT SEATING PLANE C. ADIMENSIONS D1 AND 21 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PREISIDE.
 - DIMENSIONS D1 AND E1 INCLUDE WOLD MISMATCH AND ARE DETERMINED. AT DATUM PLANE H.
- AD-TAILS OF PIN 1 DENTITIER ARE OPTIONAL BUT MUST BELICCATED. WITHIN THE ZONE INDICATED.
- $riangle {
 m Regardless}$ of the relative size of the upper and lower body. SECTIONS, DIMENSIONS DI AND EL ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BIT INCLUDING ANY MISMATCH BETWEEN THE TIPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- A DIMENSION F DOES NOT INCLUDE DAMBER PROTRUSION, THE DAMBAR CAN EXPLANDED (5) SHALL NOT CALISE THE LEAD WIDTH TO EXPLAND MAXIMUM BY MORE THAN 9 08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.26mm FROM THE LEAD TIP.

002-15151 **

PACKAGE OUTLINE, 208 LEAD LOIFF 28.0x28.0x1.7 MM LOIF208 REV*

23. Appendix

23.1 Revision History

Ver- sion/Date	Page	Section	Change Results
Ver. 0.01 2009-04-16	-	-	Initial version based on MB91F467D
Ver. 0.2 2009-07-03	all	all	Various updates following the proof read results on other MB91460 series datasheets
	page 68	Shutdown Mode	Chapter "Shutdown Mode" added
Ver. 0.3 2009-08-03	page 4	Product Lineup	Corrected that the software watchdog cannot be activated in SLEEP/STOP
	page 68-pa ge 81	Chapter Shutdown Mode	Total update
	page 105	IO Map; SHDINT register	Removed bits [3:2]
		ELECTRICAL CHARACTERISTICS, Absolute maximum ratings	Permitted power dissipation (calculated) added
	page 136	DC Characteristics	Added Sum input leakage current
	page 138	A/D converter characteristics; Zero reading voltage, Full scale reading voltage	Changed the units from "LSB" into "V" and the values from <value>+<n> into <value>+<n lsb=""></n></value></n></value>
	page 143	AC Characteristics	Removed the AC specification temporary
	page 178	Package Dimension	Updated the the drawing of FPT-208P-M04 into FPT-208P-M06, updated the URL for download
Ver. 0.4 2009-08-04	all	Total update after first spec review	No change bars in this revision!
Ver. 0.5 2009-08-19	page 66	USART LIN/FIFO (Extension)	This chapter added for "End of Transmission" IRQ
	page 95	I/O Мар	Marked all differences versus MB91F467D with colors
	page 120	Interrupt Vector Table	Added the USART "End of Transmission" IRQs

Ver- sion/Date	Page	Section	Change Results
Ver. 0.6 2009-09-08	page 76	Shutdown mode: External Interrupts: Level or Edge Setting	Added this section
	page 76	Shutdown mode: Input Voltage Selection	Added this section
	page 71	Shutdown mode: SHDINT register	Re-added bits [3:2] HWWDF, HWWDE for hardware watchdog
	page 69	Shutdown mode: All registers	Updated the bit descriptions of all flags, updated the reset conditions of all registers
	page 78	Shutdown mode: Determining the reset source	Figure updated, Hardware watchdog + Clock supervisor updated
	page 75	Shutdown mode: Hardware watchdog	Updated the parts about Hardware watchdog, Clock Super- visor completely
	page 75	Shutdown mode: Clock Supervisor	
Ver. 0.8 2009-10-19	page 69	Shutdwon Mode: Standby RAM	Changed: 1 wait cycle for read, 0 wait cycles for write
	78	Hardware Watchdog: Caution	Updated "Difference between watchdog reset, external reset and Power-on reset"
	page 74	Shutdown Mode: Precautions	Add setting of EXTE and EXTLV; removed this from Deep Shutdown settings
	page 79	Shutdown Mode: Registers which are not initialized by Shutdown Recovery	Added this section
	page 23	Block Diagram	Corrected the connection of Standby RAM (to extended D-bus)
Ver. 0.9 2009-11-24	56	Clock Supervisor, CSVCR register	Added note that bit SCKS must not be changed during CPU runs in Sub clock.
Ver. 1.0 2009-12-15	all	Header	Changed from "Preliminary Short Specification" into "Preliminary Datasheet"
	3	Features	Removed the note about PHILIPS I2C license
	page 13	Pin Description: Power supply/Ground pins	Added pin 208 to the list of VDD35 pins
	page 69	Shutdown Mode: Standby RAM	StandBy RAM 1 wait state for read and write
	page 109	I/O Мар	Added note about external bus PFR initial values
	page 119	I/O Мар	StandBy RAM 1 wait state for read and write
	page 120	Interrupt Vector Table	Re-arranged the table to set correct page breaks
	page 178	Package Dimension	Link to package database corrected

Ver- sion/Date	Page	Section	Change Results
Ver. 1.1 2010-01-21	page 67	USART LIN/FIFO (Extension): FIFO status register for End of Transmission interrupt control	Bits [12:8] of FSR register named NVFD[5:0] (Number of valid FIFO data), name is needed for Softune header file.
	page 69	Shutdown Mode: Standby RAM	Added notes that, if CLKP is slower then CLKB, there must be a wait time between setting RAMEN and Standby RAM
	page 69	Shutdown Mode: SHDE Register	access.
	page 68	Shutdown Mode: Overview	Added notes that reset by external pin INITX=0 will kill the Shutdown state and restart the device like at power-on.
	page 77	Shutdown Mode: Recovery	
	page 79	Shutdown Mode: Registers which are not initialized by Shutdown Recovery	
Ver 1.11 2010-06-02	page 4	Product Lineup	Changed max. CLKB frequency to 100 MHz
	page 124	Recommended Settings PLL and Clockgear settings	Enabled / allowed the settings which reach CLKB up to 100 MHz
	page 124	Recommended Settings Clock modulator settings	
	page 136	Electrical Characteristics DC Characteristics	Changed Icc max for CLKB:P:T:CAN = 100:50:50:50 MHz; Updated all current consumption characteristics
	page 143	Electrical Characteristics AC Characteristics	Chapter AC Characteristics added

	DS705-00002-1v2-E	2010-08-15
Page	Section	Changes
1	■ DESCRIPTION	Fujitsu Microelectronics> Fujitsu Semiconductor
21	■ HANDLING DEVICES 5.3 Power Supply Pins	Changed "MB91460D series"> "MB91460 series"
49	 CLOCK SUPERVISOR 10.2.1 Clock Supervisor Control Register (CSVCR) 	Description of SCKS bit: On single clock devices always 0
50	■ CLOCK SUPERVISOR 10.3 Block Diagram Clock Supervisor	Changed input EXT_RST> EXT_RST_IN in the drawing
65	CLOCK SUPERVISOR 10.4.11 Check if reset was asserted by the Clock Super- visor	Changed the cross reference text "RSRR: Reset Cause Register" so that the hardware manual is mentioned.
136	 ELECTRICAL CHARACTERISTICS 20.3 DC Characteristics Sum input leakage current 	Changed from max. 40μA to max. 30μA
136	 ELECTRICAL CHARACTERISTICS 20.3 DC Characteristics Power supply current CY91 F467EA 	Updated all IccH values according to evaluation results
138	 ELECTRICAL CHARACTERISTICS 20.4 A/D Converter Characteristics Compare time 	Changed T_{comp} max from 16,500 μ s to "t.b.d." because this parameter is under re-evaluation.

	DS705-00002-1v2-E	2010-08-15
Page	Section	Changes
	■ ELECTRICAL CHARACTERISTICS 20.7 AC Characteristics 20.7.7 External Bus AC Timings at VDD35 = 4.5 to 5.5 V 20.7.8 External Bus AC Timings at VDD35 = 3.0 to 4.5 V	
150	■ ELECTRICAL CHARACTERISTICS 20.7 AC Characteristics 20.7.7 External Bus AC Timings at VDD35 = 4.5 to 5.5 V	Updated all timing information according to the evaluation results
163	■ ELECTRICAL CHARACTERISTICS 20.7 AC Characteristics 20.7.8 External Bus AC Timings at VDD35 = 3.0 to 4.5 V	Updated all timing information according to the evaluation results
177	ORDERING INFORMATION	Removed the remark that the "device is under development"

23.2 Major Changes

	DS705-00002-1v3-E	2010-10-01
Page	Section	Changes
	■ ELECTRICAL CHARACTERISTICS 7. AC characteristics 20.7.7 External Bus AC Timings at VDD35 = 4.5 to 5.5 V 20.7.8 External Bus AC Timings at VDD35 = 3.0 to 4.5 V	
160 173	 ELECTRICAL CHARACTERISTICS 7. AC characteristics Bus Hold Timing Bus Hold Timing 	Added note about condition for t_{AXBGL} and t_{BGHAV} : -VOL = 0.2 × V_{DD} 35 -VOH = 0.8 × V_{DD} 35
177	■ ORDERING INFORMATION	Corrected the product number from MB91F467EAPFVS-GSE2 into MB91F467EAPMC-GSE2

NOTE: Please see "Document History" about later revised information.

Page	Section	Changes					
Rev *A	ev *A						
-	Updated to Cypress template						
-	Marketing Part Numbers changed from an MB prefix to a CY prefix.						
177	2. PIN ASSIGNMENT 21. Ordering Information 22. Package Dimension	Package description modified to JEDEC description. (Before) FPT-208P-M06 (After) LQR208					
177	21. Ordering Information	Revised the following parts number. (Before) MB91F467EAPMC-GSE2 (After) CY91F467EAPMC-GS-UJE2					

Document History

Document Title: CY91F467EA, 32-bit FR60 Family CY91460E Series Microcontroller Document Number: 002-09308					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	-	GSHI	03/24/2014	Initial release. Migrated Fujitsu datasheet "DS705-00002-1v3-E" into Cypress Template. Revised the following items:	
*A	6331966	GSHI	10/04/2018	Marketing Part Numbers changed from an MB prefix to a CY prefix. 2. PIN ASSIGNMENT 21.Ordering Information 22.Package Dimension For details, please see 23.2.Major Changes	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2010-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress parant syou a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errate which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.