

STV8163

+3.3 V, +5 V and Adjustable Triple-Voltage Regulator with Disable and Reset Functions

FEATURES

- Input Voltage range between 5V and 18V, limited to V_{OUT} + 6.5V
- Maximum Available Output Currents greater than 0.8 A
- Fixed Precision Output 1 voltage of 3.3 V ± 2% (at 10 mA)
- Fixed Precision Output 2 voltage of 5 V ± 2% (at 10 mA)
- Programmable Output 3 voltage: 2.5 to 16 V ± 2%
- Output 1 with Reset facility
- Outputs 2 and 3 can be disabled by digital input
- Short Circuit Protection on each output
- Thermal Protection
- Low Dropout Voltages

DESCRIPTION

The STV8163 is a monolithic triple positive voltage regulator designed to provide fixed precision ou put voltages of 3.3 V, 5 V and an adjustable voltage for currents up to 0.6 A.

The adjustable value of the third output can be fixed from 2.5 V to 16 V.

An internal reset circuit generates a reset pulse when the voltage of Cutput 1 drops below the regulated voltage value. Outputs 2 and 3 can be disabled by a digital input.

Short-circuit and thermal protections are included in all versions.

TABLE OF CONTENTS

Chapter 1	GENERAL INFORMATION
Chapter 2	ELECTRICAL CHARACTERISTICS
2.1	Absolute Maximum Ratings4
2.2	Thermal Data4
2.3	Electrical Characteristics4
Chapter 3	CIRCUIT DESCRIPTION
3.1	Currents versus Maximum Power Limitation6
Chapter 4	APPLICATION DIAGRAM
Chapter 5	PACKAGE MECHANICAL DATA
Chapter 6	revision HISTORY

57

1 GENERAL INFORMATION

Figure 1: STV8163 Block Diagram

2 **ELECTRICAL CHARACTERISTICS**

2.1 **Absolute Maximum Ratings**

Symbol	Parameter	Value	Unit
V _{IN}	DC Input Voltage at pins INPUT1, INPUT2 and INPUT3	20	V
V _{DIS}	Disable Input Voltage at pin DISABLE	20	V
V _{RST}	Output Voltage at pin RESET	20	V
I _{OUTPUT}	Output Currents	Internally Limited	
Pt	Power Dissipation	Internally Limited	
T _{STG}	Storage Temperature	-65 to +150	°C
TJ	Junction Temperature	0 to +150	°C

Thermal Data 2.2

2.2 T	hermal Data	Jucilsi	
Symbol	Parameter	Value	Unit
R _{thJC}	Thermal Resistance (Junction-to-Case)	3	°C/W
R _{thJA}	Thermal Resistance (Junction-to-Ambient)	≥10 ¹	°C/W
ТJ	Maximum Recommended Junction Temperature	140	°C
T _{OPER}	Operating Free Air Temperature Range	0 to +70	°C

1. Depending on heat sink conditions.

Electrical Characteristics 2.3

 T_{AMB} = 25° C, V_{IN1} = 5.3 V, V_{IN2} = 7 V and V_{IN3} = 10 V, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{OUT1}	Output Voltage	I _{OUT1} = 10 mA	3.24	3.30	3.36	V
V _{OUT2}	Output Voltage	I _{OUT2} = 10 mA	4.90	5.00	5.10	V
V _{OUT3}	Output Voltage	I _{OUT3} = 10 mA	2.5		16	V
V _{OUT1}	Output Voltage	5.3 V < V _{IN1} < 10 V 5 mA < I _{OUT1} < 600 mA	3.18		3.42	V
V _{OUT2}	Output Voltage	7 V < V _{IN2} < 12 V 5 mA < I _{OUT2} < 600 mA	4.80		5.20	V
V _{IO1}	Dropout Voltage	I _{OUT1} = 0.6 A		1	1.4	V
V _{IO2}	Dropout Voltage	I _{OUT2} = 0.6 A		1	1.4	V
V _{IO3}	Dropout Voltage	I _{OUT3} = 0.6 A		1	1.4	V

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{OUT1LI}	Line Regulation	5.3 V < V _{IN1} < 10 V, I _{OUT1} = 200 mA			30	mV
V _{OUT2LI}	Line Regulation	7 V < V _{IN2} < 12 V, I _{OUT2} = 200 mA			50	mV
V _{OUT3LI}	Line Regulation	10 V < V _{IN3} < 15 V, I _{OUT3} = 200 mA, V _{OUT3} = 8 V			80	mV
V _{OUT1LO}	Load Regulation	5 mA < I _{OUT1} < 600 mA			100	mV
V _{OUT2LO}	Load Regulation	5 mA < I _{OUT2} < 600 mA			100	mV
V _{OUT3LO}	Load Regulation	5 mA < I _{OUT3} < 600 mA, V _{OUT3} = 8 V			160	mV
IQ	Quiescent Current	I _{OUT1} = 10 mA Outputs 2 and 3 disabled		2.2	3.0	mA
V _{O1RST}	Reset Threshold Voltage ¹	$K = V_{OUT1, I_{OUT1}} > 50 \text{ mA}$	K-0.4	K-0.25	K-0.10	V
V _{RTH}	Reset Threshold Hysteresis	See circuit description.	30	75	120	mV
t _{RD}	Reset Pulse Delay	C _E = 100 nF See circuit description.	0	25		ms
V _{RL}	Saturation Voltage in Reset Condition	I _{RESET} = 5 mA	61		0.4	V
I _{RH}	Leakage Current in Normal Condition, at RESET pin	V _{RESET} = 10 V			10	μΑ
K _{OUT1} K _{OUT2} K _{OUT3}	Output Voltage Thermal Drift	$T_{J} = 0 \text{ to } 125^{\circ}\text{C}$ $K_{OUT} = \frac{\Delta V_{OUT} \cdot 10^{6}}{\Delta T \cdot V_{OUT}}$		100		ppm/°C
I _{OUT1SC}	Short Circuit Output Current	V _{IN1} = 5.3 V	0.8	1.3	1.8	А
I _{OUT2SC}	Short Circuit Output Current	V _{IN2} = 7 V	0.8	1.3	1.8	А
I _{OUT3SC}	Short Circuit Output Current	$V_{IN3} = V_{OUT3} + 2V$	0.8	1.3	1.8	А
V _{PROG}	Input Voltage at PROGRAM pin			2		V
I _{PROG}	Input Current at PROGRAM pin				5	μΑ
V _{DISH}	Voltage High Level at DISABLE pin (C	Outputs 2 and 3 active)	2			V
V _{DISL}	Voltage Low Level at DISABLE pin (O	utputs 2 and 3 disabled)			0.8	V
I _{DIS}	Bias Current at DISABLE pin	0 V < V _{DISABLE} < 5.3 V	-100		2	μΑ
T _{JSD}	Junction Temperature for Thermal Shu	utdown		150		°C
T _{SDH}	Thermal Shutdown Temperature Hyst	eresis		15		°C

 This reset signal is activated by a decrease of V_{OUT1} voltage which can be due to an overload of pin OUT1 or by a lack of Input Voltage (VIN1).

47/

3 CIRCUIT DESCRIPTION

The STV8163 is a triple-voltage regulator with Reset and Disable functions.

The three regulation parts are supplied from a single voltage reference circuit trimmed by zener zapping during EWS testing. Since the supply voltage of this voltage reference is connected to pin INPUT1 (V_{IN1}), the second and third regulators will not work if pin INPUT1 is not supplied.

The output stages are designed using a Darlington configuration with a typical dropout voltage of 1.0 V.

The adjustable voltage of pin OUTPUT3 is defined by output bridge resistors (R1 and R2). The values of these resistors are calculated to obtain, with the targeted value for pin OUTPUT3, the VPROG voltage (2.0 V) on the median point connected to pin PROGRAM.

IMPORTANT: In all applications, all three inputs must be polarized. If Outputs 2 or 3 are not used, the corresponding inputs must be connected to Input 1.

The Disable circuit will switch off pins OUTPUT2 and OUTPUT3 if a voltage less than 0.8 V is applied to pin DISABLE.

The Reset circuit checks the voltage at pin OUTPUT1. If this voltage drops below V_{OUT1}-0.25 V (3.05 V Typ.), the "a" comparator (Figure 2) rapidly discharges the external capacitor (Ce) and the reset output immediately switches to low. When the voltage at pin OUTPUT1 exceeds V_{OUT1}-0.175 V (3.125 V Typ.), the V_{Ce} voltage increases linearly to the reference voltage (V_{REF} = 2.5 V) corresponding to a Reset Pulse Delay (t_{RD}) as shown in Figure 3.

$$t_{RD} = \frac{C_e \times 2.5V}{10\mu A}$$

Afterwards, the reset output returns to high. To avoid glitches in the reset output, the second comparator "b" has a large hysteresis (1.9 V).

3.1 Currents versus Maximum Power Limitation

The currents provided by the three outputs can reach 1.6 A. However, the power dissipation in the STV8163 must be established so as not to activate the automatic thermal shutdown ($T_J = 150^{\circ}$ C). It is recommended not to have all three currents at their maximum value simultaneously.

For example, if $T_{AMB(MAX.)} = 70^{\circ}$ C, the maximum power dissipation in the STV8163 will be (with $R_{thJA} = 12 \text{ °C/W}$):

$$\frac{140^{\circ}C - 70^{\circ}C}{12^{\circ}C/W} = 5.8W$$

This means that the following conditions apply to input voltages and currents:

 $(\mathsf{V_{IN1}}-3.3~\mathsf{V}) \ge \mathsf{I_{IO1}} + (\mathsf{V_{IN2}}-5~\mathsf{V}) \ge \mathsf{I_{IO2}} + (\mathsf{V_{IN3}}-\mathsf{V_{OUT3}}) \ge \mathsf{I_{IO3}} < 5.8~\mathsf{W}$

57

Figure 2: Reset Diagram

Figure 3: Internal Reset Voltage

57

4 APPLICATION DIAGRAM

Figure 4: STV8163 Typical Application

5 PACKAGE MECHANICAL DATA

Figure 5: 11-Pin Plastic Clipwatt Package

Dim.		mm	G	0,	Inches	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			3.20			0.126
В		IG	1.05			0.041
С		0.15			0.006	
D		1.50			0.059	
E	0.49	0.55		0.019	0.002	
F	0.80	0-	0.91	0.031		0.036
G	1.57	1.70	1.83	0.062	0.067	0.072
H1	40	12.00			0.480	
H2	6	18.60			0.732	
НЗ	19.85			0.781		
Q		17.90			0.700	
L1		14.45			0.569	
L2	10.70	11.00	11.20	0.421	0.433	0.441
L3		5.50			0.217	
м		2.54			0.100	
M1		2.54			0.100	
			Number	of Pins		
N			1	1		

57

6 **REVISION HISTORY**

4.0	Main Changes	Date
1.2	New Edition	June 2000
1.3	New edition. Pin name changed from DISABLE to DISABLE. Reset Threshold values updated. Update of Quiescent Current value in Chapter 2.3: Electrical Characteristics on page 4.	8 January 2002
1.4	Update of reset voltage characteristics. Update of I_Q , I_{DIS} and V_{O1RST} values in Chapter 2.3: Electrical Characteristics on page 4.	31 January 2002
1.5	Document level changes from Preliminary Data to Datasheet. Modification of Short Circuit Output Current values in Section 2.3: Electrical Characteristics.	21 May 2002
1.6	Output voltages and current further specified on Title page	12 June 2002
	obsolete Product(s) - Obsolete Prod	

10/11

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com