

M81709FP

Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

HVIC High Voltage Half-Bridge Driver 600 Volts/±2A

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
А	0.31±0.01	7.8±0.3
В	0.41±0.004	10.1±0.1
С	0.21±0.004	5.3±0.1
D	0.12	2.10
E	0.05	1.27
F	0.02±0.002	0.4±0.05
G	0.004	0.1
Н	0.07	1.8
J	0.01±0.004	0.1±0.1
К	0.05	1.25

Dimensions	Inches	Millimeters		
L	0.024±0.008	0.6±0.2		
М	0.1±0.002	0.2±0.05		
Ν	8 °	8 °		
Р	0.03	0.755		
Q	0.023	0.605		
R	0.05 Min.	1.27 Min.		
S	0.30	7.62		
Т	0.029	0.76		
U	0.098 Dia.	0.25 Dia.		

Description:

M81709FP is a high voltage Power MOSFET and IGBT module driver for half-bridge applications.

Features:

- □ Shoot Through Interlock
- □ Output Current ±2A
- □ Half-Bridge Driver
- □ SOP-16 Package

Applications:

- HID Ballast
- □ PDP
- □ MOSFET Driver
- □ IGBT Driver
- □ Inverter Module Control

Ordering Information:

M81709FP is a ±2A, 600 Volt HVIC, High Voltage Half-Bridge Driver

Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

M81709FP

HVIC, High Voltage Half-Bridge Driver 600 Volts/±2A

Absolute Maximum Ratings, $T_a = 25^{\circ}C$ unless otherwise specified

Characteristics	Symbol	M81709FP	Units
High Side Floating Supply Absolute Voltage	VB	-0.5 ~ 624	Volts
High Side Floating Supply Offset Voltage	V _S	V _B -24 ~ V _B +0.5	Volts
High Side Floating Supply Voltage ($V_{BS} = V_B - V_S$)	V _{BS}	-0.5 ~ 24	Volts
High Side Output Voltage	V _{HO}	V_{S} -0.5 ~ V_{B} +0.5	Volts
Low Side Fixed Supply Voltage	V _{CC}	-0.5 ~ 24	Volts
Low Side Output Voltage	V _{LO}	-0.5 ~ V _{CC} +0.5	Volts
Logic Input Voltage (H _{IN} , L _{IN})	V _{IN}	-0.5 ~ V _{CC} +0.5	Volts
Allowable Offset Voltage Transient	dVs/dt	±50	V/ns
Package Power Dissipation ($T_a = 25^{\circ}C$, On Board)	Pd	0.9	Watts
Linear Derating Factor (T _a > 25°C, On Board)	Kθ	9.0	mW/°C
Junction to Case Thermal Resistance	R _{th(j-c)}	50	°C/W
Junction Temperature	Тj	-20 ~ 125	۵°
Operation Temperature	T _{opr}	-20 ~ 100	°C
Storage Temperature	T _{stg}	-40 ~ 125	°C

Recommended Operating Conditions

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
High Side Floating Supply Absolute Voltage	VB		V _S +10	_	V _S +20	Volts
High Side Floating Supply Offset Voltage	VS	V _B > 10V	-5	_	500	Volts
High Side Floating Supply Voltage	V _{BS}	$V_B = V_B - V_S$	10	_	20	Volts
High Side Output Voltage	V _{HO}		VS	_	VB	Volts
Low Side Fixed Supply Voltage	V _{CC}		10	_	20	Volts
Logic Supply Voltage	V _{LO}		0	_	V _{CC}	Volts
Logic Input Voltage	V _{IN}	H _{IN} , L _{IN}	0	_	V _{CC}	Volts

Electrical Characteristics

$T_a = 25^{\circ}C$, $V_{CC} = V_{BS}$ (= $V_B - V_S$) = 15V unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Floating Supply Leakage Current	I _{FS}	$V_{B} = V_{S} = 600V$	_	_	1.0	μA
V _{BS} Standby Current	I _{BS}	$H_{IN} = L_{IN} = 0V$	_	0.2	0.5	mA
V _{CC} Standby Current	ICC	$H_{IN} = L_{IN} = 0V$	0.2	0.5	1.0	mA
High Level Output Voltage	V _{OH}	$I_O = 0A, L_O, H_O$	13.8	14.4	_	Volts
Low Level Output Voltage	V _{OL}	I _O = 0A, L _O , H _O	_	_	0.1	Volts
High Level Input Threshold Voltage	V _{IH}	H _{IN} , L _{IN}	2.1	3.0	4.0	Volts
Low Level Input Threshold Voltage	V _{IL}	H _{IN} , L _{IN}	0.6	1.5	2.0	Volts
High Level Input Bias Current	Ін	V _{IN} = 5V	_	25	75	μA
Low Level Input Bias Current	IIL	$V_{IN} = 0V$	_	_	1.0	μA
V _{BS} Supply UV Reset Voltage	V _{BSuvr}		8.0	8.9	9.8	Volts
V _{BS} Supply UV Hysteresis Voltage	V _{BSuvh}		0.3	0.7	—	Volts
V _{BS} Supply UV Filter Time	tV _{BSuv}		_	7.5	_	μs
V _{CC} Supply UV Reset Voltage	V _{CCuvr}		8.0	8.9	9.8	Volts

Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

M81709FP

HVIC, High Voltage Half-Bridge Driver 600 Volts/±2A

Electrical Characteristics

 $T_a = 25^{\circ}C$, $V_{CC} = V_{BS}$ (= $V_B - V_S$) = 15V unless otherwise specified

Characteristics	Symbol Test Conditions		Min.	Тур.	Max.	Units
V _{CC} Supply UV Hysteresis Voltage	V _{CCuvh}		0.3	0.7	—	Volts
V _{CC} Supply UV Filter Time	tV _{CCuv}		—	7.5		μs
Output High Level Short Circuit Pulsed Current	ЮН	$V_{O} = 0V, V_{IN} = 5V, P_{W} < 10 \mu s$	_	2.5	_	А
Output Low Level Short Circuit Pulsed Current	I _{OL}	$V_{O} = 15V, V_{IN} = 0V, P_{W} < 10\mu s$	_	2.5	_	А
Output High Level ON Resistance	R _{OH}	$I_{O} = -200 \text{mA}, R_{OH} = (V_{OH} - V_{O})/I_{O}$	_	10	13	Ω
Output Low Level ON Resistance	R _{OL}	$I_{O} = 200 \text{mA}, R_{OL} = V_{O} / I_{O}$	_	2.5	3.0	Ω
High Side Turn-On Propagation Delay	t _{dLH(HO)}	$C_L = 1000 pF$ between HO – V_S	100	135	170	ns
High Side Turn-Off Propagation Delay	t _{dHL(HO)}	$C_L = 1000 pF$ between HO – V_S	100	135	170	ns
High Side Turn-On Rise Time	trH	$C_L = 1000 pF$ between HO – V_S	_	20	35	ns
High Side Turn-Off Fall Time	t _{fH}	$C_L = 1000 pF$ between HO – V_S	_	15	25	ns
LowSide Turn-On Propagation Delay	t _{dLH(LO)}	C _L = 1000pF between LO – GND	100	135	170	ns
Low Side Turn-Off Propagation Delay	tdHL(LO)	C _L = 1000pF between LO – GND	100	135	170	ns
Low Side Turn-On Rise Time	t _{rL}	C _L = 1000pF between LO – GND	_	20	35	ns
Low Side Turn-Off Fall Time	t _{fL}	C _L = 1000pF between LO – GND	_	15	25	ns
Delay Matching, High Side and Low Side Turn-On	Δt_{dLH}	^t dLH(HO) ^{– t} dLH(LO)	_	_	30	ns
Delay Matching, High Side and Low Side Turn-Off	∆t _{dHL}	^t dHL(HO) ⁻ tdHL(LO)		_	30	ns

FUNCTION TABLE (X : HORL)

		· · · · · · · · · · · · · · · · · · ·	,			
HIN	LIN	V _{BS} U _V	V _{CC} U _V	HO	LO	Behavorial State
L	L	Н	Н	L	L	LO = HO = Low
L	Н	Н	Н	L	Н	LO = High
Н	L	Н	Н	Н	L	HO = High
Н	Н	Н	Н	L	L	LO = HO = Low
Х	L	L	Н	L	L	HO = Low, V _{BS} U _V Tripped
Х	Н	L	Н	L	Н	LO = High, V _{BS} U _V Tripped
L	Х	Н	L	L	L	LO = Low, VCC UV Tripped
Н	Х	Н	L	L	L	HO = LO = Low, V _{CC} U _V Tripped

NOTE: "L" state of V_{BS} U_V, V_{CC} U_V means that U_V trip voltage. In the case of both input signals (H_{IN} and L_{IN}) are "H", output signals (HO and LO) become "L".

Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

M81709FP

HVIC, High Voltage Half-Bridge Driver 600 Volts/±2A

TIMING DIAGRAM

1. Input/Output Timing Diagram

HIGH ACTIVE – When input signal (H_{IN} or L_{IN}) is "H", then output signal (HO or LO) is "H". In the case of both input signals (H_{IN} and L_{IN}) are "H", then output signals (HO and LO) become "L".

2. VCC(VBS) Supply Under Voltage Lockout Timing Diagram

When V_{CC} supply voltage keeps lower UV trip voltage (V_{CCuvt} = V_{CCuvr} – V_{CCuvh}) for V_{CC} supply UV filter time, output signal becomes "L". And then, when V_{CC} supply voltage is higher than UV reset voltage, output signal LO becomes "H".

When V_{CC} supply voltage keeps lower U_V trip voltage ($V_{CCuvt} = V_{CCuvr} - V_{CCuvh}$) for V_{CC} supply U_V filter time, output signal becomes "L". And then, when V_{CC} supply voltage is higher than U_V reset voltage, input signal (L_{IN}) is "L"; output signal HO becomes "H".

3. Allowable Supply Voltage Transient

It is recommended supplying V_{CC} first and supplying V_{BS} second. In the case of shutting off supply voltage, shut off V_{BS} firstly and shut off V_{CC} second. At the time of starting V_{CC} and V_{BS}, power supply should be increased slowly. If it is increased rapidly, output signal (HO or LO) may be "H".