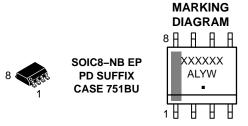
DDR 2-Amp Source / Sink V_{TT} Termination Regulator

The NCP/NCV51199 is a linear regulator designed to supply a regulated V_{TT} termination voltage for DDR–2 and DDR–3 memory applications. The regulator is capable of actively sourcing and sinking $\pm 2~A$ peak currents for DDR–2, and DDR–3 up to $\pm 1.5~A$ while regulating the V_{TT} output voltage to within $\pm 10~mV$. The output termination voltage is regulated to track V_{DDQ} / 2 by two external voltage divider resistors connected to the PV $_{CC}$, GND, and V_{REF} pins.

The NCP/NCV51199 incorporates a high–speed differential amplifier to provide ultra–fast response to line and load transients. Other features include source/sink current limiting, soft–start and on–chip thermal shutdown protection.

Features

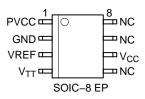
- Supports DDR-2 V_{TT} Termination to ± 2 A, DDR-3 to ± 1.5 A (peak)
- Stable with 10 μF Ceramic Capacitance on V_{TT} Output
- Integrated Power MOSFETs
- High Accuracy V_{TT} Output at Full-Load
- Fast Transient Response
- Built-in Soft-Start
- Shutdown for Standby or Suspend Mode
- Integrated Thermal and Current-Limit Protection
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant


Typical Applications

- SDRAM Termination Voltage for DDR-2 / DDR-3
- Motherboard, Notebook, and VGA Card Memory Termination
- Set Top Box, Digital TV, Printers

ON Semiconductor®

www.onsemi.com



XXXXXX = Specific Device Code

A = Assembly Location

L = Wafer Lot
Y = Year
WW = Work Week
= Pb-Free Package

PIN CONNECTION

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

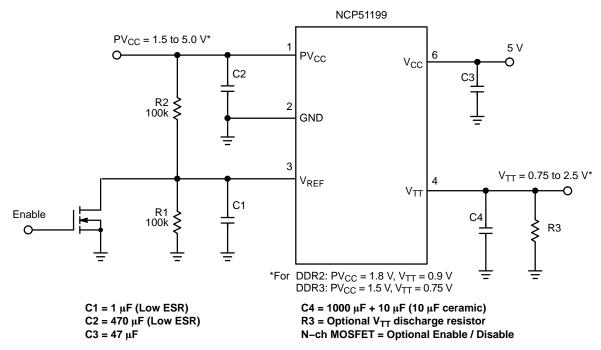


Figure 1. Application Diagram

PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Description
1	PV _{CC}	Input voltage which supplies current to the output pin. C_{IN} = 470 μF with low ESR.
2	GND	Common Ground
3	V_{REF}	Buffered reference voltage input equal to $\frac{1}{2}$ of V_{DDQ} and active low shutdown pin. An external resistor divider dividing down the PV_{CC} voltage creates the regulated output voltage. Pulling the pin to ground (0.15 V maximum) turns the device off.
4	V _{TT}	Regulator output voltage capable of sourcing and sinking current while regulating the output rail. C_{OUT} = 1000 μ F + 10 μ F ceramic with low ESR.
5	NC	True No Connect
6	V _{cc}	The V_{CC} pin is a 5 V input pin that provides internal bias to the controller. PV_{CC} should always be kept lower or equal to V_{CC} .
7	NC	True No Connect
8	NC	True No Connect
EP	Thermal Pad	Pad for thermal connection. The exposed pad must be connected to the ground plane using multiple vias for maximum power dissipation performance.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Supply Voltage Range (V _{cc} ≥ PV _{CC}) (Note 1)	PV _{CC} , V _{CC}	–0.3 to 6	V
Output Voltage Range	V _{TT}	-0.3 to 6	V
Reference Input Range	V _{REF}	-0.3 to 6	V
Maximum Junction Temperature	T _{J(max)}	125	°C
Storage Temperature Range	TSTG	-65 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESDHBM	2	kV
ESD Capability, Machine Model (Note 2)	ESDMM	150	V
Lead Temperature Soldering Reflow (SMD Styles Only), Pb–Free Versions (Note 3)	T _{SLD}	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
 This device series incorporates ESD protection and is tested by the following methods:
- - ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114)
 - ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)
- Latchup Current Maximum Rating: ≤150 mA per JEDEC standard: JÉSD78
- 3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, SO8–EP (Note 4)			°C/W
Thermal Resistance, Junction–to–Air (Note 5)	$R_{ hetaJA}$	84	
Power Rating at 25°C Ambient = 1.19 W, derate 12 mW/°C			
Thermal Reference, Junction–to–Lead2 (Note 5)	R_{\PsiJL}	20	

- 4. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.
- 5. Values based on copper area of 645 mm² (or 1 in²) of 1 oz copper thickness and FR4 PCB substrate.

OPERATING RANGES (Note 6)

Rating	Symbol	Min	Max	Unit
Input Voltage	PV _{CC}	1.5	5.5	V
Bias Supply Voltage	V _{CC}	4.75	5.25	V
Ambient Temperature	T _A	-40	85	°C
Junction Temperature	TJ	-40	125	°C

6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

ELECTRICAL CHARACTERISTICS

 $PV_{CC} = 1.8 \text{ V} / 1.5 \text{ V}; V_{CC} = 5 \text{ V}; V_{REF} = 0.9 \text{ V} / 0.75 \text{ V}; C_{OUT} = 10 \text{ } \mu\text{F} \text{ (Ceramic)}; T_{A} = +25 ^{\circ}\text{C}, unless \text{ otherwise noted.}$

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
REGULATOR OUTPUT						
Output Offset Voltage	I _{out} = 0 A	Vos	-20	_	+20	mV
Load Regulation	$V_{REF} = 900 \text{ mV}, I_{out} = \pm 1.8 \text{ A}, PV_{CC} = 1.8 \text{ V}$ $V_{REF} = 750 \text{ mV}, I_{out} = \pm 1.4 \text{ A}, PV_{CC} = 1.5 \text{ V}$	Reg _{load}	-10	-	+10	mV
INPUT AND STANDBY CURREN	TS					
Bias Supply Current	I _{out} = 0 A	I _{BIAS}	_	0.8	2.5	mA
Standby Current	V_{REF} < 0.2 V (Shutdown), R_{LOAD} = 180 Ω	I _{STB}	_	1	90	μΑ
CURRENT LIMIT PROTECTION						
Commont Limit	PV _{CC} = 1.8 V, V _{REF} = 0.9 V	,	2.0	_	3.5	А
Current Limit	PV _{CC} = 1.5 V, V _{REF} = 0.75 V	I _{LIM}	1.5	-	3.5	
SHUTDOWN THRESHOLDS						
Shutdown Threshold Voltage	Enable	V_{IH}	0.6	_	_	\/
	Shutdown	V _{IL} – – C		0.15	V	
THERMAL SHUTDOWN						
Thermal Shutdown Temperature	V _{CC} = 5 V	T _{SD}	160	168	176	°C
Thermal Shutdown Hysteresis	resis V _{CC} = 5 V		35	35	40	°C

TYPICAL CHARACTERISTICS

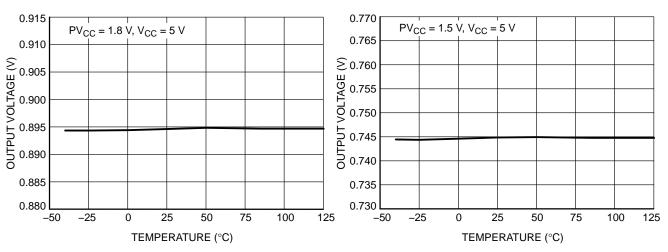


Figure 2. Output Voltage vs. Temperature

Figure 3. Output Voltage vs. Temperature

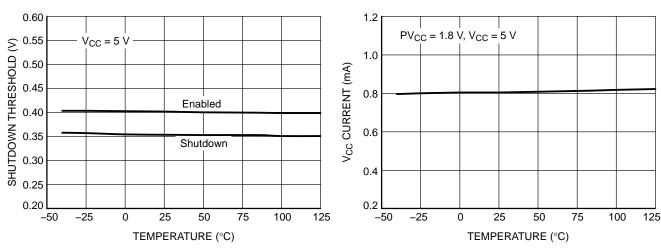


Figure 4. Shutdown Threshold vs. Temperature

Figure 5. V_{CC} Current vs. Temperature

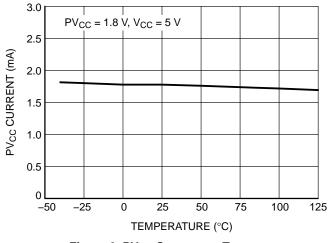


Figure 6. PV_{CC} Current vs. Temperature

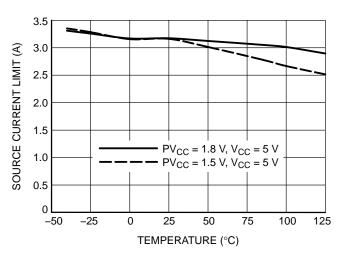


Figure 7. Source Current Limits vs.
Temperature

TYPICAL CHARACTERISTICS

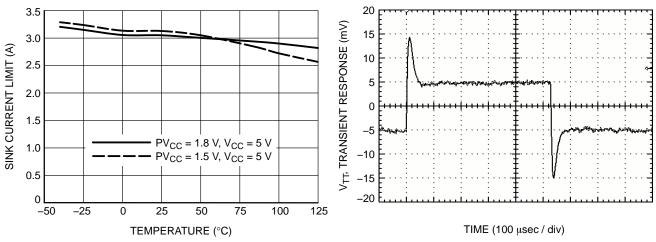


Figure 8. Sink Current Limits vs. Temperature

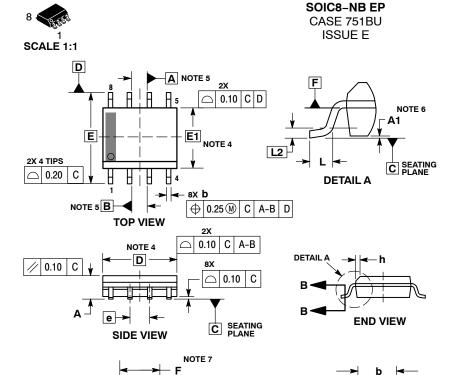

Figure 9. 1.25 V, ±1.6 A Transient Response

Table 1. ORDERING INFORMATION

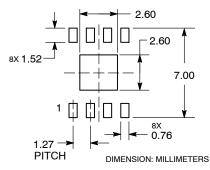
Device	Marking	Package	Shipping [†]
NCP51199PDR2G	51199	SOIC-8	2500 / Tape & Reel
NCV51199PDR2G*	V51199	(Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

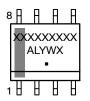
NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
 V14 5M 1994
- Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10mm IN EXCESS OF MAXIMUM MATERIAL CONDITION
- 4. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- DIMENSIONS A AND B ARE TO BE DETERMINED AT DATUM F.
- A1 DATUM F.


 6. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
- TAB CONTOUR MAY VARY MINIMALLY TO INCLUDE TOOLING FEATURES.

	MILLIMETERS			
DIM	MIN	MAX		
Α	1.35	1.75		
A1	0.00	0.10		
b	0.31	0.51		
b1	0.28	0.48		
С	0.17	0.25		
с1	0.17 0.23			
D	4.90 BSC			
E	6.00 BSC			
E1	3.90	BSC		
е	1.27	7 BSC		
F	1.55	2.39		
G	1.55	2.39		
h	0.25	0.50		
L	0.40 1.27			
L2	0.25 BSC			

BOTTOM VIEW RECOMMENDED SOLDERING FOOTPRINT*


ΗίΗ

G

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

DOCUMENT NUMBER:	98AON66222E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC8-NB EP		PAGE 1 OF 1	

С

SECTION B-B

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative