ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

8-Bit Shift Register with Output Storage Register (3-State)

The MC74VHC595 is an advanced high speed 8-bit shift register with an output storage register fabricated with silicon gate CMOS technology.

It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The MC74VHC595 contains an 8-bit static shift register which feeds an 8-bit storage register.

Shift operation is accomplished on the positive going transition of the Shift Clock input (SCK). The output register is loaded with the contents of the shift register on the positive going transition of the Register Clock input (RCK). Since the RCK and SCK signals are independent, parallel outputs can be held stable during the shift operation. And, since the parallel outputs are 3–state, the VHC595 can be directly connected to an 8–bit bus. This register can be used in serial–to–parallel conversion, data receivers, etc.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems.

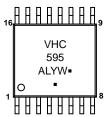
Features

- High Speed: $f_{max} = 185 \text{ MHz}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: V_{OLP} = 1.0 V (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS



SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

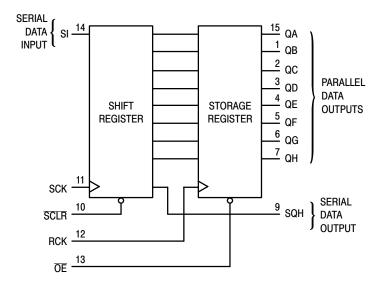
A = Assembly Location

WL = Wafer Lot Y = Year W, WW = Work Week

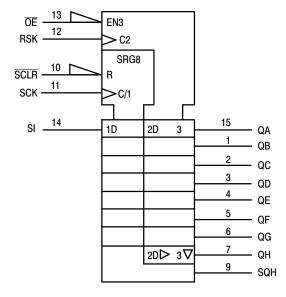
G or ■ = Pb–Free Package

(Note: Microdot may be in either location)

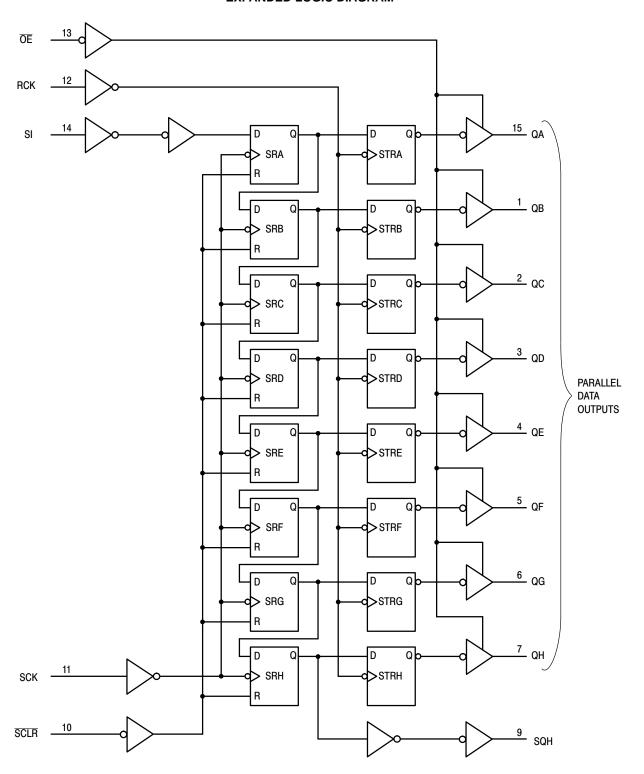
PIN ASSIGNMENT


QB [1 ●	16] vcc
QC [2	15] QA
QD [3	14] sı
QE [4	13] OE
QF [5	12] RCK
QG [6	11] sck
QH [7	10	SCLR
GND [8	9] SQH
			•

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74VHC595DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74VHC595DTR2G, NLV74VHC595DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


LOGIC DIAGRAM

IEC LOGIC SYMBOL

EXPANDED LOGIC DIAGRAM

FUNCTION TABLE

			Inputs			Resulting Function			
Operation	Reset (SCLR)	Serial Input (SI)	Shift Clock (SCK)	Reg Clock (RCK)	Output Enable (OE)	Shift Register Contents	Storage Register Contents	Serial Output (SQH)	Parallel Outputs (QA – QH)
Clear shift register	L	Х	Х	L, H, ↓	L	L	U	L	U
Shift data into shift register	Н	D	1	L, H, ↓	L	$D\rightarrow SR_A;$ $SR_N\rightarrow SR_{N+1}$	U	SR _G →SR _H	U
Registers remains unchanged	Н	Х	L, H, ↓	Х	L	U	**	U	**
Transfer shift register contents to storage register	Н	Х	L, H, ↓	1	L	U	SR _N →STR _N	*	SR _N
Storage register remains unchanged	Х	Х	Х	L, H, ↓	L	*	U	*	U
Enable parallel outputs	Х	Х	Х	Х	L	*	**	*	Enabled
Force outputs into high impedance state	Х	Х	Х	Х	Н	*	**	*	Z

SR = shift register contents

D = data (L, H) logic level

↓ = High-to-Low ↑ = Low-to-High * = depends on Reset and Shift Clock inputs

** = depends on Register Clock input

MAXIMUM RATINGS*

Symbol	Parameter	Parameter			
V _{CC}	DC Supply Voltage	- 0.5 to + 7.0	V		
V _{in}	DC Input Voltage	C Input Voltage			
V _{out}	DC Output Voltage	Voltage			
I _{IK}	Input Diode Current	out Diode Current			
lok	Output Diode Current	± 20	mA		
I _{out}	DC Output Current, per Pin		± 25	mA	
I _{CC}	DC Supply Current, V _{CC} and GND F	Pins	± 50	mA	
P _D	•	SOIC Packages† SSOP Package†	500 450	mW	
T _{stg}	Storage Temperature		- 65 to + 150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating — SOIC Packages: – 7 mW/°C from 65° to 125°C

STR = storage register contents U = remains unchanged

TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	DC Supply Voltage	2.0	5.5	V	
V _{in}	DC Input Voltage	0	5.5	V	
V _{out}	DC Output Voltage	DC Output Voltage			
T _A	Operating Temperature, All Package	Operating Temperature, All Package Types			°C
t _r , t _f	Input Rise and Fall Time	$V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 5.0V \pm 0.5V$	0 0	100 20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

The θ_{JA} of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

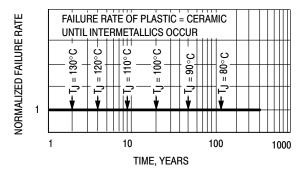


Figure 1. Failure Rate vs. Time Junction Temperature

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	T _A = 25°C		T _A = ≤	≤ 85°C	T _A = ≤	125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
V _{IL}	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.59 0.9 1.35 1.65		0.59 0.9 1.35 1.65		0.59 0.9 1.35 1.65	V
V _{OH}	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu\text{A}$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH}$ or V_{IL} $I_{OH} = -4$ mA $I_{OH} = -8$ mA	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		
V _{OL}	Maximum Low–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu\text{A}$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5 \text{ V or GND}$	0 to 5.5			± 0.1		± 1.0		± 1.0	μА
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			4.0		40.0		40.0	μА
I _{OZ}	Three–State Output Off–State Current	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or }$ GND	5.5			± 0.25		± 2.5		± 2.5	μА

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$)

					T _A = 25°C	;	T _A = ≤	≤ 85°C	T _A = ≤	125°C	
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
f _{max}	Maximum Clock Frequency (50%	$V_{CC} = 3.3 \pm 0.3 \text{ V}$		80	150		70		70		MHz
	Duty Cycle)	$V_{CC} = 5.0 \pm 0.5 \text{ V}$		135	185		115		115		
t _{PLH} , t _{PHL}	Propagation Delay, SCK to	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15pF$ $C_L = 50pF$		8.8 11.3	13.0 16.5	1.0 1.0	15.0 18.5	1.0 1.0	15.0 18.5	ns
	SQH	$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15pF$ $C_L = 50pF$		6.2 7.7	8.2 10.2	1.0 1.0	9.4 11.4	1.0 1.0	9.4 11.4	
t _{PHL}	Propagation Delay,	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15pF$ $C_L = 50pF$		8.4 10.9	12.8 16.3	1.0 1.0	13.7 17.2	1.0 1.0	13.7 17.2	ns
	CPLR to SQH	$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15pF$ $C_L = 50pF$		5.9 7.4	8.0 10.0	1.0 1.0	9.1 11.1	1.0 1.0	9.1 11.1	
t _{PLH} , t _{PHL}	Propagation Delay, RCK to QA-QH	$V_{CC} = 3.3 \pm 0.3 \text{ V}$	$C_L = 15pF$ $C_L = 50pF$		7.7 10.2	11.9 15.4	1.0 1.0	13.5 17.0	1.0 1.0	13.5 17.0	ns
		$V_{CC} = 5.0 \pm 0.5 \text{ V}$	$C_L = 15pF$ $C_L = 50pF$		5.4 6.9	74 9.4	1.0 1.0	8.5 10.5	1.0 1.0	8.5 10.5	
t _{PZL} , t _{PZH}	Output Enable Time,	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $R_L = 1 \text{ k}\Omega$	$C_L = 15pF$ $C_L = 50pF$		7.5 9.0	11.5 15.0	1.0 1.0	13.5 17.0	1.0 1.0	13.5 17.0	ns
	OE to QA-QH	$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $R_L = 1 \text{ k}\Omega$	$C_L = 15pF$ $C_L = 50pF$		4.8 8.3	8.6 10.6	1.0 1.0	10.0 12.0	1.0 1.0	10.0 12.0	
t _{PLZ} , t _{PHZ}	Output Disable Time,	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $R_L = 1 \text{ k}\Omega$	C _L = 50pF		12.1	15.7	1.0	16.2	1.0	16.2	ns
OE to QA-QH	OE to QA-QH	$V_{CC} = 5.0 \pm 0.5 \text{ V}$ $R_L = 1 \text{ k}\Omega$	C _L = 50pF		7.6	10.3	1.0	11.0	1.0	11.0	
C _{IN}	Input Capacitance				4	10		10		10	pF
C _{OUT}	Three–State Output Capacitance (Output in High–Impedance State), QA–QH				6			10		10	pF

		Typical @ 25°C, V _{CC} = 5.0V	
C_{PD}	Power Dissipation Capacitance (Note 1)	87	pF

^{1.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

NOISE CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 5.0$ V)

		T _A = 25°C		
Symbol	Characteristic	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.8	1.0	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	- 0.8	- 1.0	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		3.5	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage		1.5	V

TIMING REQUIREMENTS (Input $t_r = t_f = 3.0 \text{ns}$)

		V _{CC}	T _A =	: 25°C	T _A = − 40 to 85°C	T _A = - 55 to 125°C	
Symbol	Parameter	V	Тур	Limit	Limit	Limit	Unit
t _{su}	Setup Time, SI to SCK	3.3 5.0		3.5 3.0	3.5 3.0	3.5 3.0	ns
t _{su(H)}	Setup Time, SCK to RCK	3.3 5.0		8.0 5.0	8.5 5.0	8.5 5.0	ns
t _{su(L)}	Setup Time, SCLR to RCK	3.3 5.0		8.0 5.0	9.0 5.0	9.0 5.0	ns
t _h	Hold Time, SI to SCK	3.3 5.0		1.5 2.0	1.5 2.0	1.5 2.0	ns
t _{h(L)}	Hold Time, SCLR to RCK	3.3 5.0		0	0	1.0 1.0	ns
t _{rec}	Recovery Time, SCLR to SCK	3.3 5.0		3.0 2.5	3.0 2.5	3.0 2.5	ns
t _w	Pulse Width, SCK or RCK	3.3 5.0		5.0 5.0	5.0 5.0	5.0 5.0	ns
$t_{W(L)}$	Pulse Width, SCLR	3.3 5.0		5.0 5.0	5.0 5.0	5.0 5.0	ns

SWITCHING WAVEFORMS

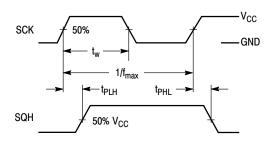


Figure 2.

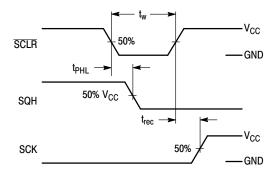


Figure 3.

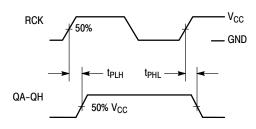


Figure 4.

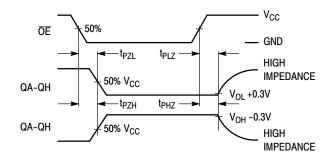


Figure 5.

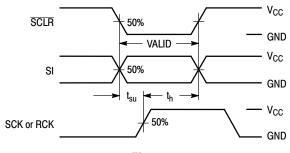
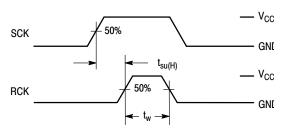
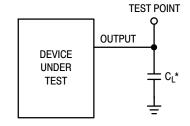
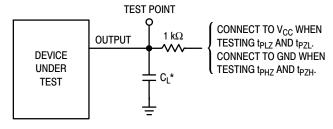


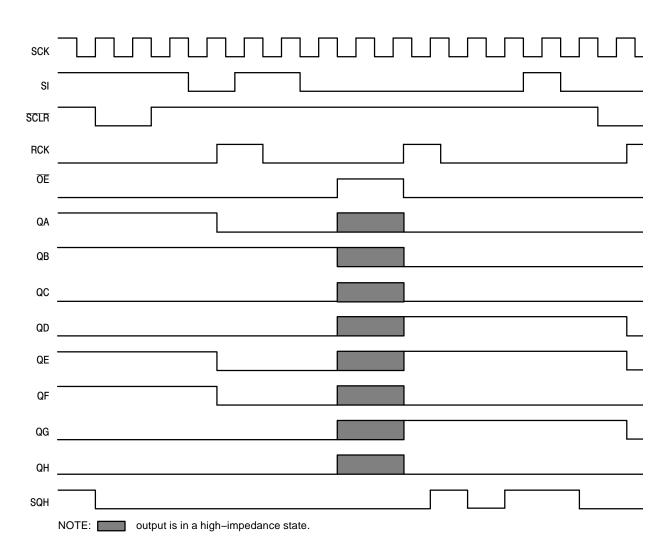
Figure 6.


Figure 7.

TEST CIRCUITS

*Includes all probe and jig capacitance


Figure 8.

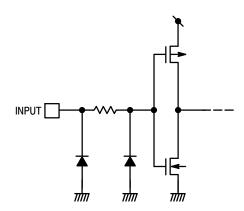
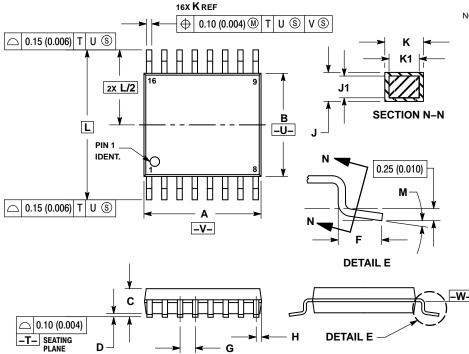

*Includes all probe and jig capacitance

Figure 9.

TIMING DIAGRAM



INPUT EQUIVALENT CIRCUIT

PACKAGE DIMENSIONS

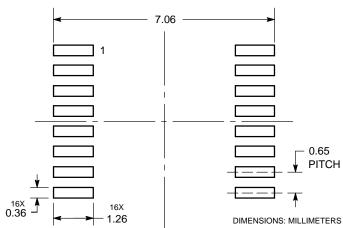
TSSOP-16 CASE 948F **ISSUE B**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

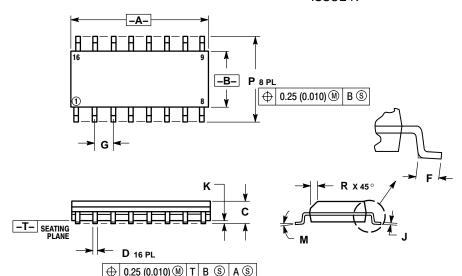
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS.


 - FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT
 EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
 NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE
 DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08
 (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL
 CONDITION. CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR

 - REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE —W—.

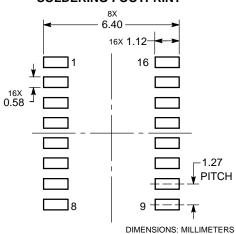
	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.19 0.25		0.010	
L	6.40 BSC		0.252	BSC	
М	0° 8°		0 °	8°	


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOIC-16 CASE 751B-05 ISSUE K



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD 3. PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050 BSC	
7	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor Po. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative