maxim
integrated..

MAX1726x Software Implementation Guide
UG6595; Rev 2: 6/18

Abstract

The MAX1726x Software Implementation Guide describes the startup sequence to configure and use
the MAX1726x fuel-gauge functions for EZ config and custom models.

Maxim Integrated Page 10f 15

Table of Contents

INEFOAUCTION ... 4
REZISTEI LSBS fOr MAXTTZ 260Xeveiieceeeeeee ettt ettt ettt bbbttt sttt sttt se b s seas 4
2-WIFE/12C FUNCHONS w..vvveeveevessieecssiesssesssisessssssssssss s 5
WV EIEEREEISTOY bbb bbb bbb bbb bbb b bbb bbbt bbbttt bttt e s n e 5
REAAREGISTEY ..ttt ettt s et en sttt en sttt ee sttt ettt s et et s st s aseneeee 5
MW ANAV EF Y REZISTEN oottt ettt a et s bt ee bt 5
Initialize Registers to Recommended Configuration ... 6
SEEP O: CHECK FOr POR ..ottt ettt ettt ettt sttt en sttt s st s s st et s neeeas 6
Step 1. Delay until FSTAT.DNR Dit == O..ecvoiiicceeceeee ettt 6
Step 2: Initialize CoNfiGUIAtiON ...ttt s a et 7
Updating REQUIrEd REZISTEIS ..ottt ettt ena bbb 9
Step 31 INitialiZation CoOMPIELE .ottt sttt st s e, 9
SEEP 3.1 IAENEITY BAtLEIY coviiecece ettt 9
IMONIEOE TNE BATLEIY o ettt sttt en ettt e et s s a et sttt en st et s s st sas s 10
Step 3.2: Check for MAXI7 26X RESEL ...ttt ettt enasae s sen s 10
Read the FUEI-GAUEZE RESUIES ...ttt ettt sttt ettt a bbb 10
Step 3.3: Read the RepCap and REPSOC REZISTEISo.vcviveeceecececeeeeete et 10
Step 3.4: Read the Remaining TTE REZISTEY ...ttt 10
Step 3.5: Save Learned ParameELers ...ttt n
Step 3.6: Restoring Learned ParameEters ...ttt 1
Quick Start and Production Test VerifiCation. ...ttt sttt ettt be s 12
Step T1: Set the QUICK-Start Bitscciiiiieicccece ettt bbb 12
Step T2: Wait for QUIck Start t0 COMPIETE ...ttt 12
Step T3: Read and VErify OULPULS ..ottt ettt es sttt sen s 12
MAXT726X INTFIlE FOIMAT ...t 13
OPtioN 2: SN0 FOIMAL c..oviiccecccecee ettt et ettt ettt sttt sttt es st s et b s e e 13
OPtion 3: LONE FOrMAt .ottt ettt a e s s bbb bbb bbbt bans 13
TrAAEMIAIKS ... 14
REVISION HISTOMY ..ottt bbbt bbb bbb bbb bbb bbb bbb bbbttt bbb bbb bbb es s s s s e 15

Maxim Integrated Page 2 of 15

List of Figures
Figure 1. MAX1726x fuel-gauge model 10ading SEQUENCE.c.cocieiiiecieiceeee et s 6

List of Tables
Table 1. REGIStEr LSBS fOr MAXTT7 26X ..o eteteas ettt sss sttt es sttt nssas et en st ses s et 4

Maxim Integrated Page 3 of 15

Introduction

This document describes the startup sequence to configure and use the MAX1726x fuel-gauge
functions. The MAX1726x should be initialized and loaded with a customized model and parameters at
power-up. Then the reported state of charge (SOC) and other useful information can be easily read by
the host system over the 2-wire bus system and displayed to the user. Figure 1is a flowchart of the

power-up sequence that a host controller should implement with the MAX1726x.

Register LSBs for MAX1726x

Similar register types in the ModelGauge™ mb5 devices share similar formats, i.e., all the SOC registers
share the same format, all the capacity registers share the same format, etc.

Table 1. Register LSBs for MAX1726x

REGISTER LSBIT SIZE NOTES
Capacity 5.0uVh/Rsense | Or 0.5mAh with 10mQ
SocC 1/256% Or 1% at bit D8
Voltage 0.078125mV Or1.25mV at bit D4
Current 1.5625uV/Rsense | Or 156.25pA with 10mQ, signed two's complement number
Temperature 1/256°C Or 1°C at bit D8, signed two's complement number

Maxim Integrated

Page 4 of 15

2-Wire/12C Functions
The following 12C functions are needed in the load model process. They are described in pseudocode
below.

WriteRegister
int WriteRegister (u8 reg, ul6 value)
{
int ret = i2c_smbus_write word_data(client, reg, value);
if (ret < 0)
dev_err(&client->dev, "%s: err %d\n", _ func__, ret);
return ret;
}
ReadRegister
int ReadRegister (u8 reg)
{
int ret = i2c_smbus_read_word_data(client, reg);
if (ret < 0)
dev_err(&client->dev, "%s: err %d\n", _ func__, ret);
return ret;
}

WriteAndVerifyRegister

void WriteAndVerifyRegister (char RegisterAddress, int RegisterValueToWrite){
int Attempt=0;

do {
WriteRegister (RegisterAddress, RegisterValueToWrite);
wait(l); //1ms
RegisterValueRead = ReadRegister (RegisterAddress) ;
}

while (RegisterValueToWrite != RegisterValueRead && attempt++<3);

Maxim Integrated Page 5 of 15

Initialize Registers to Recommended Configuration

The MAX1726x should be initialized prior to being used. The registers described in this guide should
be written to the correct values for the MAX1726x to perform at its best. These values are written to
RAM, so they must be written to the device any time power is applied or restored to the device. Some
registers are updated internally, so it is necessary to verify that the register was written correctly to

prevent data collisions.
(POWER-UP)

-

HAS NOT
BEEN RESET

CHECK FOR FUEL-
GAUGE RESET

LOAD INITIAL CONFIGURATION

FUEL-GAUGE POLLING
MAIN LOOP

Figure 1. MAX1726x fuel-gauge model loading sequence.

Step O: Check for POR

The POR bit is bit 1 of the Status register.

StatusPOR = ReadRegister(0x00) & 0x0002;
if (StatusPOR=0){goto Step 3.2;} //then go to Step 3.2.

else { //then do Steps 1-2.}

Step 1. Delay until FSTAT.DNR bit ==
After power-up, wait for the MAX1726x to complete its startup operations.

while(ReadRegister(0x3D)&1) Wait(10);
//10ms Wait Loop. Do not continue until FSTAT.DNR==0

Maxim Integrated

Page 6 of 15

Step 2: Initialize Configuration

Any battery is supported by one of three types of configuration data. According to the configuration
data, only one of the following sections 2.1, 2.2, or 2.3 needs execution.

HibCFG=ReadRegister (0xBA) ; //Store original HibCFG value
WriteRegister (0x60 , 0x90) ; // Exit Hibernate Mode step 1
WriteRegister (OxBA , 0x0) ; // Exit Hibernate Mode step 2
WriteRegister (0x60 , 0x0) ; // Exit Hibernate Mode step 3

2.1 OPTION 1 EZ Config (No INI file is needed):
WriteRegister (0x18 , DesignCap) ; // Write DesignCap
WriteRegister (Ox1E , IchgTerm) ; // Write IchgTerm
WriteRegister (Ox3A , VEmpty) ; // Write VEmpty

if (ChargeVoltage>4.275)

WriteRegister (OxDB , 0x8400) ; // Write ModelCFG
else

WriteRegister (OxDB , 0x8000) ; // Write ModelCFG

//Poll ModelCFG.Refresh(highest bit),
//proceed to Step 3 when ModelCFG.Refresh=0.
while (ReadRegister(0xDB)&0x8000) Wait(10) ;
//do not continue until ModelCFG.Refresh==0

WriteRegister (OxBA , HiIbCFG) ; // Restore Original HibCFG value
Proceed to Step 3.

2.2 OPTION 2 Custom Short INI without OCV Table:

WriteRegister (0x18 , DesignCap) ; // Write DesignCap

WriteRegister (Ox1E , IchgTerm) ; // Write lIchgTerm

WriteRegister (Ox3A , VEmpty) ; // Write VEmpty
WriteAndVerifyRegister (0x28 , LearnCFG) ;// (Optional in the INI)
WriteAndVerifyRegister (0x13 , FullSOCTh) ; // (Optional in the INI)

WriteRegister (OxDB , ModelCfg) ; // Write ModelCFG

//Poll ModelCFG.Refresh(highest bit)
//until it becomes 0 to confirm IC completes model loading
while (ReadRegister(0xDB)&0x8000) Wait(10) ;

//do not continue until ModelCFG.Refresh==0

WriteRegister (0x38 , RCOMPO) ; // Write RCOMPO

WriteRegister (0x39 , TempCo) ; // Write TempCo

WriteRegister (0x12 , QRTable00) ; // Write QRTableOO

WriteRegister (0x22 , QRTablelO0) ; // Write QRTablelO

WriteRegister (0x32 , QRTable20) ; //(Optional in the INI) Write QRTable20
WriteRegister (0x42 , QRTable30) ; //(Optional in the INI) Write QRTable30
WriteRegister (OxBA , HibCFG) ; // Restore Original HibCFG value

Proceed to Step 3.

Maxim Integrated Page 7 of 15

OPTION 3 Custom Full INI with OCV Table:
1 Unlock Model Access
WriteRegister (0x62, 0x0059) ; //Unlock Model Access step 1
WriteRegister (0x63, 0x00C4) ; //Unlock Model Access step 2

2.3
2.3.

2.3.2 Write/Read/Verify the Custom Model
Once the model is unlocked, the host software must write the 32 word model to
the MAX1726X. The model is located between memory locations 0x80h and Ox9Fh.

//Actual bytes to transmit will be provided by Maxim after cell
characterization.

//See INI File at the end of this document for an example of the data to be
written.

Writel6Registers (0x80, Table [0]) ;

Writel6Registers (0x90, Table [1]) ;

The model can be read directly back from the MAX1726X. So simply read the 48
words of the model back from the device to verify if it was written
correctly. If any of the values do not match, return to step 2.3.1.
Readl6Registers (0x80) ;

Readl6Registers (0x90) ;

2.3.3 Lock Model Access
WriteRegister (0x62, 0x0000) ; //Lock Model Access
WriteRegister (0x63, 0x0000) ;

2.3.4. Verify that Model Access is locked

IT the model remains unlocked, the MAX1726X will not be able to monitor the

capacity of the battery. Therefore it is very critical that the Model Access
is locked. To verify it is locked, simply read back the model. However, this
time, all values should be read as 0x00h. If any values are non-zero, repeat
Step 2.3.3 to make sure the Model Access is locked.

2.3.5. Write Custom Parameters

WriteRegister (0x05 , 0x0000); // Write RepCap
WriteRegister (0x18 , DesignCap) ; // Write DesignCap
WriteRegister (0x10, FullCapRep); // Write FullCapRep
WriteRegister (0x45, DesignCap/2); // Write dQAcc
WriteRegister (0x46, 0x0C80) ; // Write dPAcc

WriteRegister (Ox1E , IchgTerm) ; // Write IchgTerm
WriteRegister (Ox3A , VEmpty) ; // Write VEmpty
WriteRegister (0x38 , RCOMPO) ; // Write RCOMPO
WriteRegister (0x39 , TempCo) ; // Write TempCo

WriteRegister (0x12 , QRTable00) ; // Write QRTableOO
WriteRegister (0x22 , QRTablelO0) ; // Write QRTablelO
WriteRegister (0x32 , QRTable20) ; // Write QRTable20 (optional)
WriteRegister (0x42 , QRTable30) ; // Write QRTable30 (optional)

Maxim Integrated Page 8 of 15

Updating Required Registers

Updating optional registers. Some or all of the registers listed below could be optional and may not be
included in the INI.

WriteAndVerifyRegister (0x28 , LearnCFG); // Write LearnCFG

WriteRegister (0x2A, RelaxCFG) ; //Write RelaxCFG

WriteRegister (0x1D, Config) ; //Write Config

WriteRegister (OxBB, Config2) ; //Write Config2

WriteRegister (0x13, FullSOCthr) ; //Write FullSOCthr

WriteRegister (0x2C, TGAIN) ; //Write TGAIN for the selected Thermistor
WriteRegister (0x2D, TOFF) ; //\Write TOFF for the selected Thermistor
WriteRegister (0xB9, Curve) ; //\Write Curve for the selected Thermistor
2.3.6 Initiate Model Loading

Config2value=ReadRegister (0xBB) ;

//read the Config2 register (0xBB)
WriteRegister(0xBB, ((Config2value) | (0x0020))) ; // Setting the Ldmdl bit
in the Config2 register

2.3.7
Poll the LdMdl bit in the Config2 register, proceed to step 2.3.8 when LdMdl
bit becomes 0.

//Poll Config2.LdMdI(0x0020)
//until it becomes 0 to confirm IC completes model loading
while (ReadRegister(0xBB)&0x0020) Wait(10) ;

//do not continue until Config2.LdMdl==

2.3.8 Update QRTable20 and QRTable30
WriteAndVerifyRegister (0x32 , QRTable20) ; // Write QRTable20
WriteAndVerifyRegister (0x42 , QRTable30) ; // Write QRTable30

2.3.9 Restore HibCFG
WriteRegister (OxBA ,HibCFG) ; // Restore Original HibCFG value

Proceed to Step 3.

Step 3: Initialization Complete

Clear the POR bit to indicate that the custom model and parameters were successfully loaded.

Status = ReadRegister(0x00) ; //Read Status
WriteAndVerifyRegister (0x00, Status AND OxXFFFD) ; //Nrite and Verify
Status with POR bit Cleared

Step 3.1: Identify Battery

If the host recognizes the battery pack as one with a saved history, go to Step 3.6 to restore all the
saved parameters; otherwise, continue to Step 3.2.

Maxim Integrated Page 9 of 15

Monitor the Battery

Once the MAX1726x is initialized and customized, the host can simply read the desired information
from the MAX1726x and display that information to the user.

Step 3.2: Check for MAX1726x Reset

Periodically the host should check if the fuel gauge has been reset and initialize if needed.

StatusPOR = ReadRegister(0x00) & 0x0002; //Read POR bit in Status Register
IT StatusPOR=0, then go to Step 3.3.
IT StatusPOR=1, then go to Step O.

Read the Fuel-Gauge Results

Step 3.3: Read the RepCap and RepSOC Registers

The MAX1726x automatically calculates and reports the cell’s state of charge in terms of a percentage
and the mAhrs remaining. The RepSOC (as a percent) is read from memory location Ox06 and the
RepCap (in mAHTrs) is read from memory location OxO5.

RepCap
RepSOC

ReadRegister(0x05)
ReadRegister(0x06)

//Read RepCap
//Read RepSOC

The RepSOC_HiByte has a unit of 1%, so the RepSOC_HiByte can be directly displayed to the user for
1% resolution.

Step 3.4: Read the Remaining TTE Register

The MAX1726x also calculates the Time-to-Empty register (TTE). TTE is in memory location Ox11h.
The LSB of the TTE register is 5.625 seconds.

TTE = ReadRegister(0x11) ; //Read TTE

Maxim Integrated Page 10 of 15

Step 3.5: Save Learned Parameters

It is recommended to save the learned capacity parameters every time bit 2 of the Cycles register
toggles (so that it is saved every 64% change in the battery) so that if power is lost the values can
easily be restored.

//Read RCOMPO
//Read TempCo
//Read FullCapRep
//Read Cycles
//Read FullCapNom

Saved_RCOMPO ReadRegister(0x38)
Saved_TempCo = ReadRegister(0x39)
Saved_FullCapRep = ReadRegister(0x10)
Saved_Cycles = ReadRegister(0x17)
Saved_FulICapNom = ReadRegister(0x23)

Step 3.6: Restoring Learned Parameters

If power is lost, then the learned information can be easily restored with the following procedure.

WriteAndVerifyRegister(0x38, Saved_RCOMPO) ; //\WriteAndVerify RCOMPO
WriteAndVerifyRegister(0x39, Saved_TempCo) ; //\WriteAndVerify TempCo
WriteAndVerifyRegister(0x10, Saved_FullCapRep) ; //VWriteAndVerify FullCapRep

//\Write dQacc to 200% of Capacity and dPacc to 200%
dQacc = (Saved_FullCapNon/ 2)

WriteAndVerifyRegister (0x46, 0x0C80) ; //\rite and Verify dPacc
WriteAndVerifyRegister (0x45, dQacc) ; //Write and Verify dQacc
WriteAndVerifyRegister(0x17, Saved_Cycles) ; //\WriteAndVerify Cycles

Maxim Integrated Page 11 of 15

Quick Start and Production Test Verification

If the IC is being production tested, use the following steps update the fuel-gauge outputs to a known
state to verify the IC's proper operation. The sequence for configuring the MAX1726x, as outlined in
the Initialize Registers to Recommended Configuration section, should be followed prior to sending the
quick-start command in order to verify that the device was set up correctly. Set the power supply to
the desired voltage and issue the quick-start command as described below.

Step T1: Set the Quick-Start Bits

Data= ReadRegister(0x2B ; //Read MiscCFG
Data |= 0x0400 ; //Set bits 10 and 12
WriteRegister (0x2B, Data) ;. //Write MiscCFG

Step T2: Wait for Quick Start to Complete

//Poll MiscCFG.QS(0x0400) and FSTAT.DNR until they becomes 0 to

confirm Quickstart is finished

While (ReadRegister(0xDB)&0x8000 and ReadRegister(0x3D)&1) Wait(10) ;
//do not continue quickstart is complete

Step T3: Read and Verify Outputs

The RepCap and RepSOC register locations should now contain accurate fuel-gauge results based on a
battery voltage of 3.900V. The RepSOC (as a percent) is read from memory location OxO6h and the
RepCap (in mAHTrs) is read from memory location OxO5h.

RepCap
RepSOC

ReadRegister(0x05) ; //Read RepCap
ReadRegister(0x06) ; //Read RepSOC

Fail the unit if RepCap and RepSOC do not report expected results to within £1% not including power-
supply tolerance. Note that any error in the voltage forced on Vgarr for testing creates a much larger
error in the output results from the fuel gauge.

Maxim Integrated Page 12 of 15

MAX1726x INI File Format

When high accuracy is needed and when Maxim generates a custom INI file, the INI is in one of the
below formats. The examples below can be used to structure your software to read the custom INI for
your battery. Option 1 (not shown) is the EZ mode, which does not have a custom INI.

Option 2: Short Format

Device=MAX1726X
Title=C:/xxxx/1234_ 1 111111.csv
ModelVersion=8745 //This keeps track of the version of the INI generator

DesignCap=0x1450
ichgterm=0x333
mode 1cfg=0x8000
QRTable00=0x1050
QRTablel0=0x2012
VEmpty=0xa561
RCOMP0O=0x004d
TempCo=0x223e

Option 3: Long Format

Device=MAX1726X
Title= C:/xxxx/1234 1 111111.csv
ModelVersion=8745

DesignCap=0x06ae
ful Isocthr=0x5f05
ichgterm=0x100
mode lcfg=0x8410
QRTable00=0x1050
QRTablel0=0x0014
QRTable20=0x1300
QRTable30=0x0c00
VEmpty=0x965a
RCOMP0O=0x0070
TempCo=0x223e

;;; Begin binary data

;:: This is formatted as 16-bit words, each on a new line.

;55 Numbers are formatted in hex, for example: 0x0000

; Ignore the first 16 words. These are used by EVKit software only
; 16 words. Data starts here for Address 0x80 for use in Step 2.3.2
; 16 words. Data starts here for Address 0x90 for use in Step 2.3.2
; Ignore the remaining 48 words.

Maxim Integrated Page 13 of 15

Trademarks

ModelGauge is a trademark of Maxim Integrated Products, Inc.

Maxim Integrated Page 14 of 15

Revision History

o | s
0] 3/18 Initial release -
. 418 Add'ed WriteRegister (0x10, FuIICapRep) and WriteRegister (0x45, 3
DesignCap/2) lines of code to 2.3.5 Write Custom Parameters
2 6/18 Updated 2.3.5 Write Custom Parameters 8

©2018 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices, applications, or
technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED PRODUCTS, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR
OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and
mechanical engineering or registered trademarks of Maxim Integrated Products, Inc. All other product or service names are the
property of their respective owners.

Maxim Integrated Page 15 of 15

