

COMPLEMENTARY PAIR ENHANCEMENT MODE MOSFET POWERDI

Product Summary

Device	BV _{DSS}	R _{DS(ON)} max	I _D max T _C = +25°C
Q1	25mΩ @ V _{GS} = 10V		15A
Qi	30V	$35m\Omega @ V_{GS} = 4.5V$	12.5A
02	-30V	$25m\Omega$ @ $V_{GS} = -10V$	-15A
Q2		$38m\Omega @ V_{GS} = -4.5V$	-12A

Description

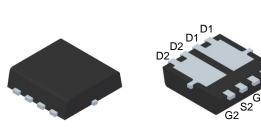
This new generation MOSFET is designed to minimize the on-state resistance (R_{DS(ON)}) and yet maintain superior switching performance, making it ideal for high efficiency power management applications.

Applications

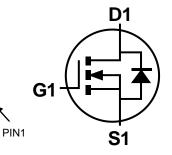
- Power Management Functions
- Analog Switch

Features

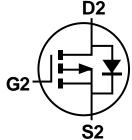
- Low On-Resistance
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- Complementary Pair MOSFET
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)


Mechanical Data

- Case: PowerDI3333-8 (Type UXC)
- Case Material: Molded Plastic, "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections Indicator: See Diagram
- Terminals: Finish Matte Tin Annealed over Copper Leadframe.
 Solderable per MIL-STD-202, Method 208 ³


Equivalent Circuit

• Weight: 0.072 grams (Approximate)


PowerDI3333-8 (Type UXC)

Top View Bottom View

N-Channel MOSFET

P-Channel MOSFET

Ordering Information (Note 4)

Part Number	Case	Packaging
DMC3025LDV-7	PowerDI3333-8 (Type UXC)	2000/Tape & Reel
DMC3025LDV-13	PowerDI3333-8 (Type UXC)	3000/Tape & Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

SD9 = Product Type Marking Code

YYWW = Date Code Marking

YY = Last Two Digits of Year (ex: 16 for 2016)

WW = Week Code (01 to 53)

Maximum Ratings Q1 N-CHANNEL (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Units		
Drain-Source Voltage	V_{DSS}	30	V		
Gate-Source Voltage			V_{GSS}	±20	V
Continuous Drain Current, $V_{GS} = 10V$ (Note 7) Steady State $T_C = +25^{\circ}C$ State $T_C = +70^{\circ}C$			I _D	15 12	А
Maximum Body Diode Forward Current (Note 6)	I _S	2	Α		
Pulsed Drain Current (380µs Pulse, Duty Cycle = 1%)			I _{DM}	55	Α
Avalanche Current (L = 0.1mH) (Note 8)			I _{AS}	14	Α
Avalanche Energy (L = 0.1mH) (Note 8)			E _{AS}	9.8	mJ

Maximum Ratings Q2 P-CHANNEL (@T_A = +25°C, unless otherwise specified.)

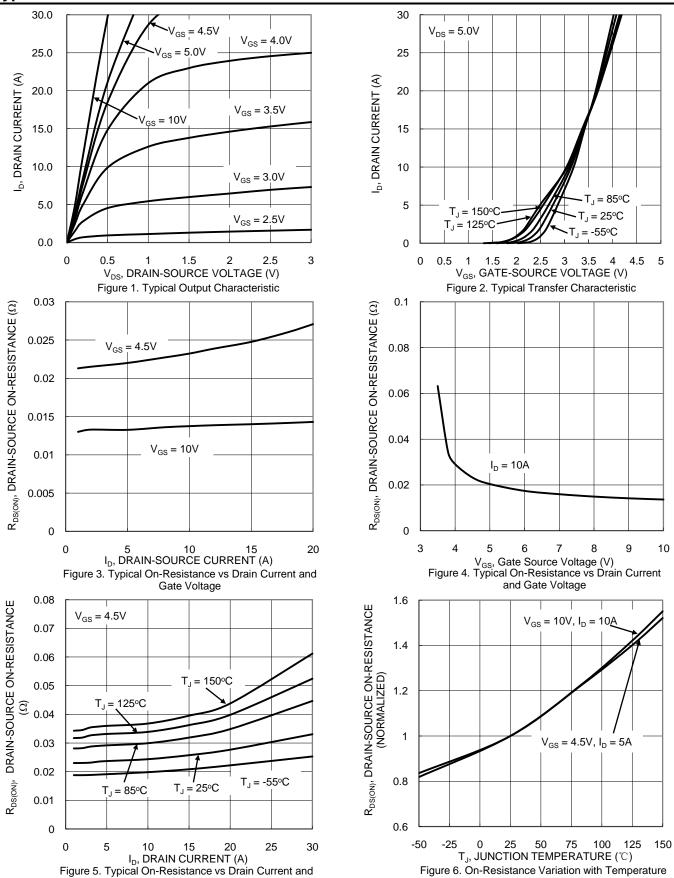
Characteristic	Symbol	Value	Units		
Drain-Source Voltage	V_{DSS}	-30	V		
Gate-Source Voltage	V_{GSS}	±20	V		
Continuous Drain Current, V _{GS} = -10V (Note 7)	I _D	-15 -12	А		
Maximum Body Diode Forward Current (Note 6)	I _S	-2	Α		
Pulsed Drain Current (380µs Pulse, Duty Cycle = 1%)	I _{DM}	-45	Α		
Avalanche Current (L = 0.1mH) (Note 8)			I _{AS}	-22	Α
Avalanche Energy (L = 0.1mH) (Note 8)			E _{AS}	24	mJ

Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic		Symbol	Value	Unit	
Total Power Dissipation (Note 5)		P_{D}	1.0	W	
Thermal Resistance, Junction to Ambient (Note 5)	Steady State	-	119	°C/W	
Thermal Resistance, Junction to Ambient (Note 5)	t<10s	$R_{\theta JA}$	72	C/VV	
Total Power Dissipation (Note 6)		P _D	1.9	W	
Thermal Resistance, Junction to Ambient (Note 6)		$R_{\theta JA}$	66	°C/W	
			38		
Thermal Resistance, Junction to Case (Note 7)		$R_{\theta JC}$	15		
Operating and Storage Temperature Range		T _{J,} T _{STG}	-55 to +150	°C	

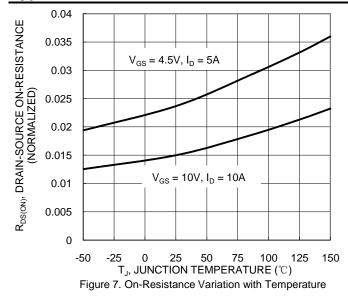
Electrical Characteristics N-CHANNEL - Q1 (@T_A = +25°C, unless otherwise specified.)

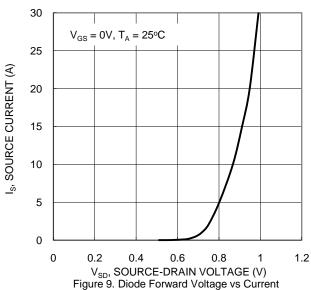
Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 9)						
Drain-Source Breakdown Voltage	BV _{DSS}	30	_	_	V	$V_{GS} = 0V, I_D = 250\mu A$
Zero Gate Voltage Drain Current T _J = +25°C	I _{DSS}	I	-	1	μΑ	$V_{DS} = 30V, V_{GS} = 0V$
Gate-Source Leakage	I_{GSS}	1	_	±100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
ON CHARACTERISTICS (Note 9)						
Gate Threshold Voltage	V _{GS(TH)}	1.0	_	2.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
Static Drain-Source On-Resistance			15	25	mΩ	$V_{GS} = 10V, I_D = 7A$
Static Dialii-Source Off-Resistance	R _{DS(ON)}	_	24	35	11122	$V_{GS} = 4.5V, I_D = 7A$
Diode Forward Voltage	V_{SD}	I	0.70	1.0	٧	$V_{GS} = 0V, I_{S} = 1A$
DYNAMIC CHARACTERISTICS (Note 10)						
Input Capacitance	C _{iss}	-	500	_		\\ 45\\\\\ 0\\
Output Capacitance	Coss	-	72	-	pF	$V_{DS} = 15V, V_{GS} = 0V,$ f = 1.0MHz
Reverse Transfer Capacitance	C_{rss}		57	_		I = 1.0IVIH2
Gate Resistance	R_{G}	_	1.9	_	Ω	$V_{DS} = 0V, V_{GS} = 0V, f = 1.0MHz$
Total Gate Charge (V _{GS} = 4.5V)	Qg	I	4.6	_		
Total Gate Charge (V _{GS} = 10V)	Qg	_	9.8	_	nC	V _{DS} = 15V. I _D = 10A
Gate-Source Charge	Q_{gs}	-	1.6	-	IIC	V _{DS} = 15V, I _D = 10A
Gate-Drain Charge	Q_{gd}	-	2.0	-		
Turn-On Delay Time	t _{D(ON)}	_	3.9	_		
Turn-On Rise Time	t _R	_	4.2	-	ns	$V_{DD} = 15V, V_{GS} = 10V,$
Turn-Off Delay Time	t _{D(OFF)}	I	16.6	_	ns	$R_G = 6\Omega$, $I_D = 1A$
Turn-Off Fall Time	t_F	I	5.8	_		
Reverse Recovery Time	t _{RR}		5.6	=	ns	I 124 di/dt - 5004/us
Reverse Recovery Charge	Q_{RR}	-	2.6	-	nC	I _F = 12A, di/dt = 500A/μs

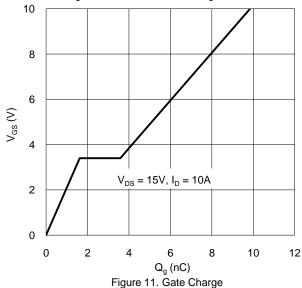

Electrical Characteristics P-CHANNEL - Q2 (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 9)			- 71	111027	•	
Drain-Source Breakdown Voltage	BV _{DSS}	-30	-	_	V	$V_{GS} = 0V, I_D = -250\mu A$
Zero Gate Voltage Drain Current T _J = +25°C	I _{DSS}	_	-	-1	μA	$V_{DS} = -30V, V_{GS} = 0V$
Gate-Source Leakage	I _{GSS}	_	-	±100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
ON CHARACTERISTICS (Note 9)						
Gate Threshold Voltage	V _{GS(TH)}	-1.2	-	-2.4	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
Static Drain-Source On-Resistance			21	25	mΩ	$V_{GS} = -10V, I_D = -7A$
Static Dialii-Source Off-Resistance	R _{DS(ON)}	1	31	38	11122	$V_{GS} = -4.5V$, $I_D = -6.2A$
Diode Forward Voltage	V_{SD}	_	-0.7	-1.2	V	$V_{GS} = 0V, I_{S} = -2.1A$
DYNAMIC CHARACTERISTICS (Note 10)	-					•
Input Capacitance	C _{iss}	-	1,188	_		45)/)/ 0)/
Output Capacitance	Coss	-	154	_	pF	$V_{DS} = -15V, V_{GS} = 0V,$ f = 1MHz
Reverse Transfer Capacitance	C _{rss}	_	116	_		I = IIVIHZ
Gate Resistance	Rg	_	9	_	Ω	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$
Total Gate Charge (V _{GS} = -4.5V)	Q_{g}	_	9.5	_		
Total Gate Charge (V _{GS} = -10V)	Q_{g}	_	19.7	_	nC	\/ 45\/ 1 70
Gate-Source Charge	Q_{gs}	-	3.1	_	IIC	$V_{DS} = -15V, I_{D} = -7A$
Gate-Drain Charge	Q _{qd}	-	3.2	_		
Turn-On Delay Time	t _{D(ON)}	_	3.7	_		
Turn-On Rise Time	t _R	-	2.6	_		$V_{GS} = -10V, V_{DS} = -15V,$
Turn-Off Delay Time	t _{D(OFF)}	_	36	_	ns	$R_G = 6\Omega$, $I_D = -7A$
Turn-Off Fall Time	t _F	_	22	_		
Reverse Recovery Time	t _{RR}	-	10.4	_	ns	1 70 4:/4+ 4000/
Reverse Recovery Charge	Q _{RR}	_	3.2	_	$\frac{1}{1}$ $\frac{1}$	

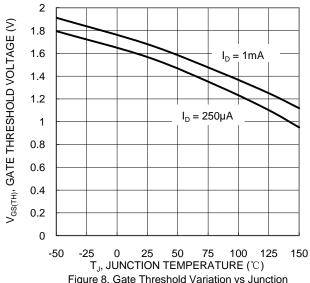
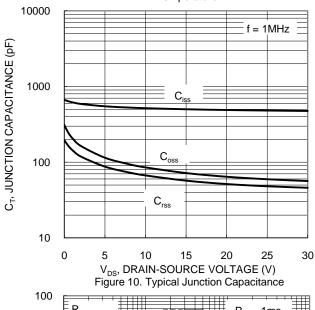
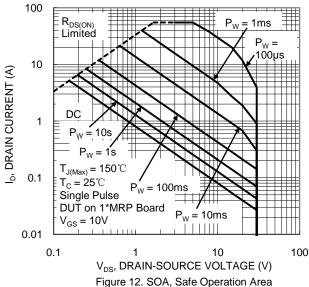
- 5. Device mounted on FR-4 PC board, with minimum recommended pad layout, single sided.
- 6. Device mounted on FR-4 substrate PC board, 2oz copper, with thermal bias to bottom layer 1inch square copper plate.
- 7. Thermal resistance from junction to soldering point (on the exposed drain pad). 8. I_{AS} and E_{AS} rating are based on low frequency and duty cycles to keep $T_J = +25^{\circ}C$.
- 9. Short duration pulse test used to minimize self-heating effect.
- 10. Guaranteed by design. Not subject to product testing.

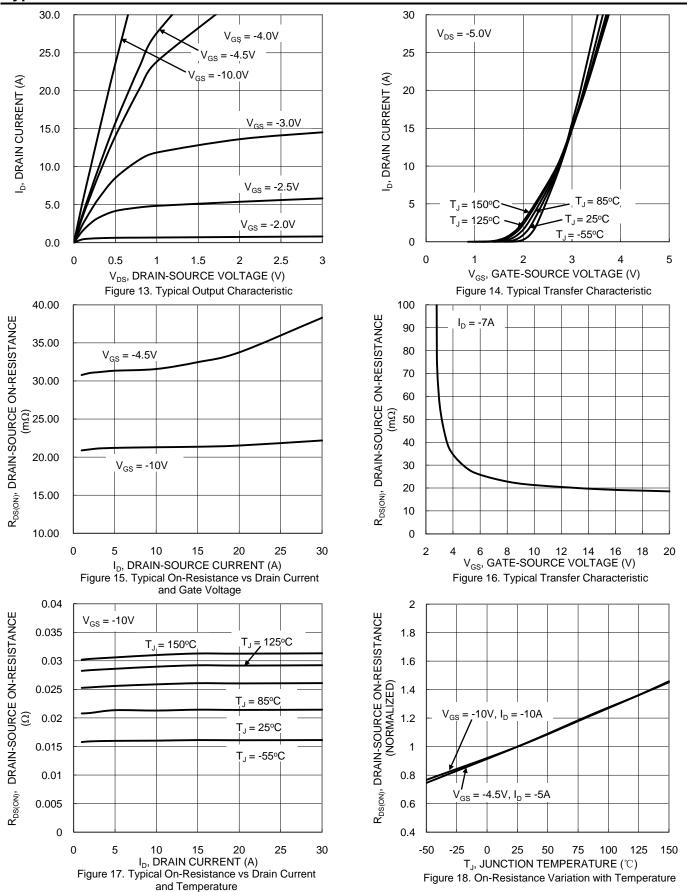

Typical Characteristics - N-CHANNEL

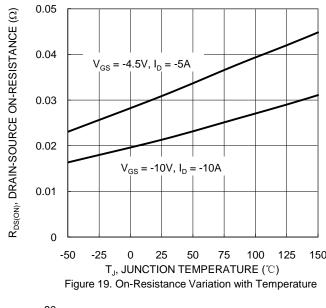


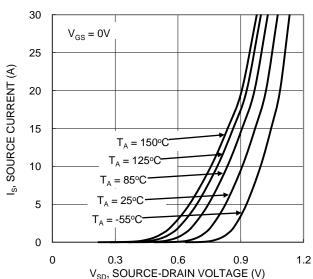

Temperature

Typical Characteristics - N-CHANNEL (Cont.)


Figure 8. Gate Threshold Variation vs Junction Temperature




Typical Characteristics - P-CHANNEL

Typical Characteristics - P-CHANNEL (Cont.)



Figure 23. Gate Charge

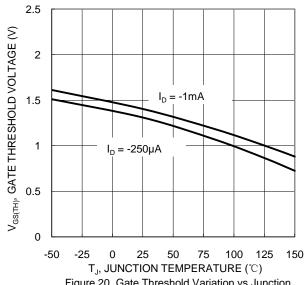
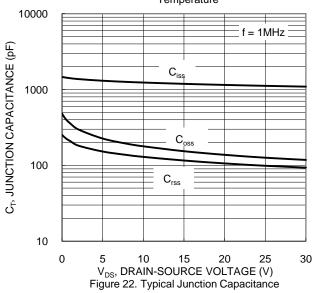



Figure 20. Gate Threshold Variation vs Junction Temperature

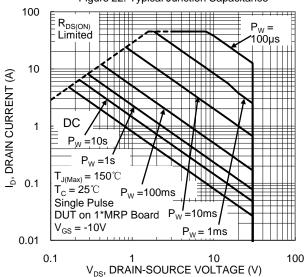
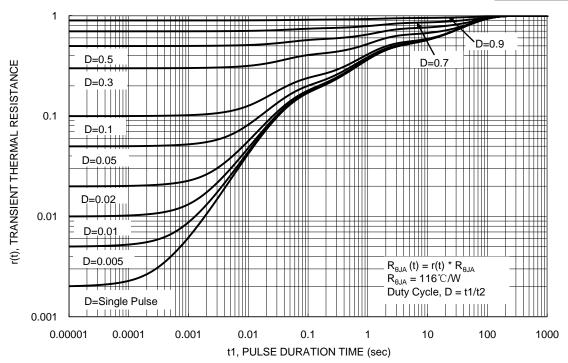
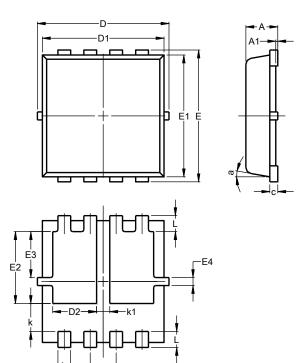


Figure 24. SOA, Safe Operation Area

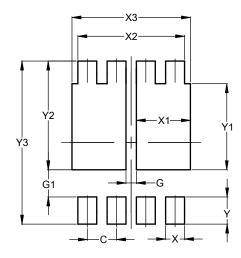



Figure 25. Transient Thermal Resistance

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

PowerDI3333-8 (Type UXC)



PowerDI3333-8						
(Type UXC)						
Dim	Min	Max	Тур			
Α	0.75	0.85	0.80			
A1	0.00	0.05				
b	0.25	0.40	0.32			
С	0.10	0.25	0.15			
D	3.20	3.40	3.30			
D1	2.95	3.15	3.05			
D2	0.90	1.30	1.10			
Е	3.20	3.40	3.30			
E1	2.95	3.15	3.05			
E2	1.60	2.00	1.80			
E3	0.95	1.35	1.15			
E4	0.10	0.30	0.20			
е		<u> </u>	0.65			
L	0.30	0.50	0.40			
k	0.50	0.90	0.70			
k1	0.13	0.53	0.33			
а	0°	12°	10°			
All Dimensions in mm						

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

PowerDI3333-8 (Type UXC)

Dimensions	Value (in mm)
C	0.650
G	0.230
G1	0.600
Х	0.420
X1	1.200
X2	2.370
Х3	2.630
Y	0.600
Y1	1.900
Y2	2.400
Y3	3.600

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com