OSRAM SFH 300 FA **Datasheet**

Radial T1 3/4

SFH 300 FA

Silicon NPN Phototransistor

Applications

- Access Control & Security

- Appliances & Tools

Features

- Package: black epoxy
- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)
- Spectral range of sensitivity: (typ) 730 ... 1120 nm
- High linearity
- Available in groups

Ordering Information

Туре	Photocurrent 1)	Photocurrent ²⁾ typ.	Ordering Code
	$V_{CE} = 5 \text{ V}; \lambda = 950 \text{ nm};$ $E_{e} = 0.5 \text{ mW/cm}^{2}$	$V_{CE} = 5 \text{ V}; \lambda = 950 \text{ nm}; E_{e} = 0.5 \text{ mW/cr}$	m²
	I _{PCE}	I _{PCE}	
SFH 300 FA	710 2800 µA	1,900 μΑ	Q62702P1193
SFH 300 FA-3/4	1120 2800 μA	1,900 μΑ	Q62702P3585

Only one bin within one packing unit.

Maximum Ratings

T_A = 25 °C

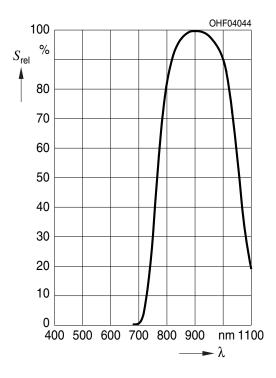
Parameter	Symbol		Values
Operating temperature	T _{op}	min.	-40 °C
	٠,	max.	100 °C
Storage temperature	T_{stg}	min.	-40 °C
		max.	100 °C
Collector-emitter voltage	V_{CE}	max.	35 V
Collector current	I _c	max.	50 mA
Collector surge current	I _{cs}	max.	100 mA
τ ≤ 10 μs			
Emitter-collector voltage	V _{EC}	max.	7 V
Total power dissipation	P _{tot}	max.	200 mW
ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)	V_{ESD}	max.	2 kV

Characteristics

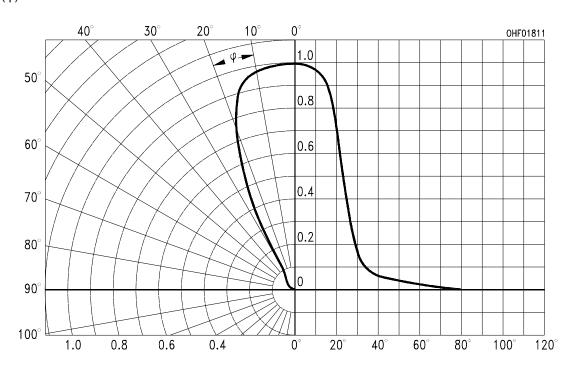
T_A = 25 °C

Parameter	Symbol		Values
Wavelength of max sensitivity	$\lambda_{S\;max}$	typ.	880 nm
Spectral range of sensitivity	λ _{10%}	typ.	730 1120 nm
Dimensions of chip area	LxW	typ.	0.55 x 0.55 mm x mm
Radiant sensitive area	Α	typ.	0.11 mm²
Half angle	φ	typ.	25 °
Dark current V _{CE} = 20 V; E = 0	I _{CE0}	typ. max.	1 nA 50 nA
Rise time $I_c = 1 \text{ mA}$; $\lambda = 950 \text{ nm}$; $V_{cc} = 5 \text{ V}$; $R_L = 1 \text{ k}\Omega$	t _r	typ.	10 µs
Fall time $I_c = 1 \text{ mA}$; $\lambda = 950 \text{ nm}$; $V_{cc} = 5 \text{ V}$; $R_L = 1 \text{ k}\Omega$	t _f	typ.	10 µs
Collector-emitter saturation voltage $^{3)}$ I _C = I _{PCE,min} X 0.3; λ = 950 nm; E _e = 0.5 mW/cm ²	V_{CEsat}	typ.	140 mV
Capacitance $V_{CE} = 0 \text{ V}; f = 1 \text{ MHz}; E = 0$	C_{CE}	typ.	7.5 pF

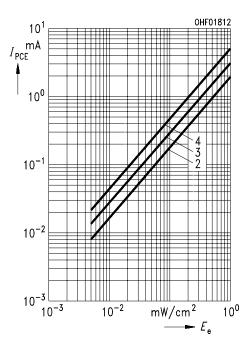
Photocurrent Groups


T_A = 25 °C

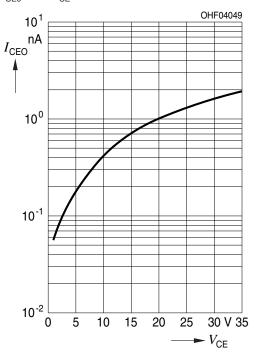
Group	Photocurrent ¹⁾ $V_{CE} = 5 \text{ V}; \lambda = 950 \text{ nm}; E_e = 0.5 \text{ mW/cm}^2 \text{ min.}$ I_{PCE}	Photocurrent ¹⁾ $V_{CE} = 5 \text{ V}; \lambda = 950 \text{ nm}; E_e = 0.5 \text{ mW/cm}^2 \text{ max.}$ I_{PCE}
2	710 µA	1120 µA
3	1120 µA	1800 μΑ
4	1800 μΑ	2800 μΑ


Relative Spectral Sensitivity 4), 5)

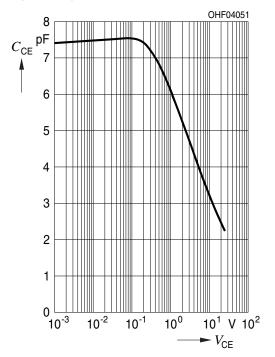
$$S_{rel} = f(\lambda)$$


Directional Characteristics 4), 5)

$$S_{rel} = f(\phi)$$

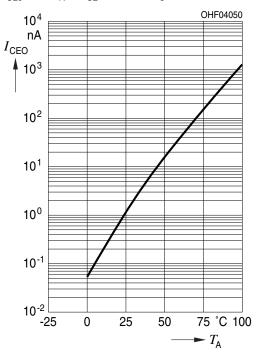

Photocurrent 4), 5)

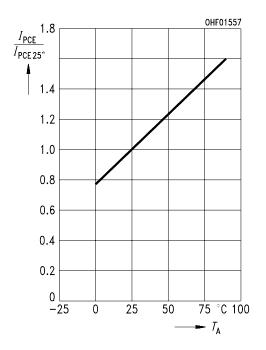
$$I_{PCE} = f(E_e)$$
; $V_{CE} = 5 V$


Dark Current 4), 5)

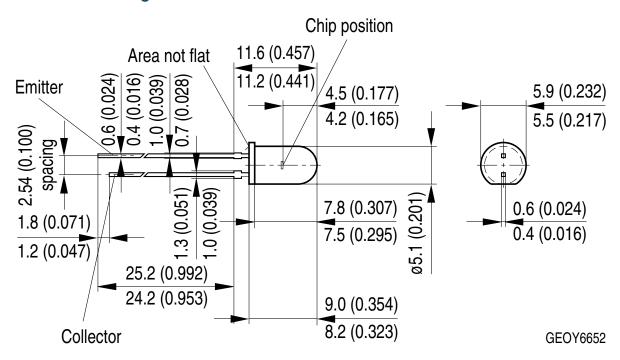
$$I_{CE0} = f(V_{CE}); E = 0$$

Collector-Emitter Capacitance 4), 5)


$$C_{CE} = f(V_{CE}); f = 1 \text{ MHz}; E = 0$$

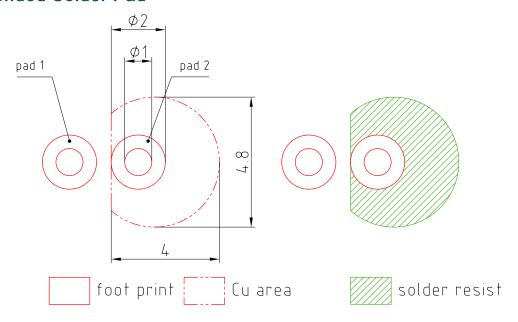

Dark Current 4)

$$I_{_{\mathrm{CE0}}}$$
 = f ($T_{_{\mathrm{A}}}$); $V_{_{\mathrm{CE}}}$ = 20 V; $E_{_{\mathrm{e}}}$ = 0 mW/cm 2


Photocurrent 4)

$$I_{_{PCE,rel}}$$
 = f ($T_{_A}$); $V_{_{CE}}$ = 5 V; λ = 950 nm; $E_{_{e}}$ = 0.5 mW/cm²

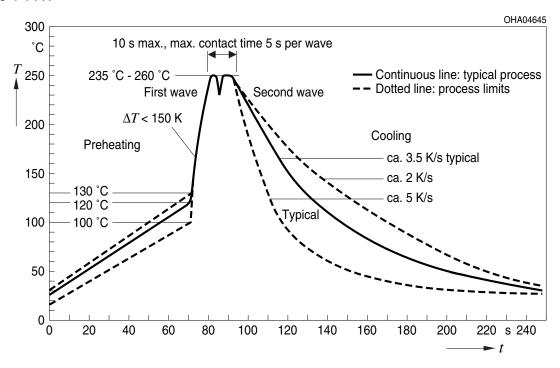
Dimensional Drawing 6)


Further Information:

Approximate Weight: 303.0 mg

Package marking: Collector

Recommended Solder Pad 6)



E062.3010.188-01

TTW Soldering

IEC-61760-1 TTW

Notes

Subcomponents of this device contain, in addition to other substances, metal filled materials including silver. Metal filled materials can be affected by environments that contain traces of aggressive substances. Therefore, we recommend that customers minimize device exposure to aggressive substances during storage, production, and use. Devices that showed visible discoloration when tested using the described tests above did show no performance deviations within failure limits during the stated test duration. Respective failure limits are described in the IEC60810.

Packing information is available on the internet (online product catalog).

For further application related information please visit www.osram-os.com/appnotes

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version on our website.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

Our components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

Our products are not qualified at module and system level for such application.

In case buyer – or customer supplied by buyer – considers using our components in product safety devices/ applications or medical devices/applications, buyer and/or customer has to inform our local sales partner immediately and we and buyer and /or customer will analyze and coordinate the customer-specific request between us and buyer and/or customer.

Glossary

- Photocurrent: The photocurrent values are measured (by irradiating the devices with a homogenous light source and applying a voltage to the device) with a tolerance of ±11 %.
- 2) Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.
- 3) **IPCEmin:** IPCEmin is the min. photocurrent of the specified group.
- Typical Values: Due to the special conditions of the manufacturing processes of semiconductor devices, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- 5) **Testing temperature:** TA = 25°C (unless otherwise specified)
- 6) Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.

SFH 300 FA DATASHEET

Revision History Version Date Change 1.4 **Applications** 2022-08-12 New Layout

EU RoHS and China RoHS compliant product 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准, 不含有毒有害物质或元素。

Published by ams-OSRAM AG

Tobelbader Strasse 30, 8141 Premstaetten, Austria Phone +43 3136 500-0 ams-osram.com © All rights reserved

