2SK596S

ON Semiconductor®

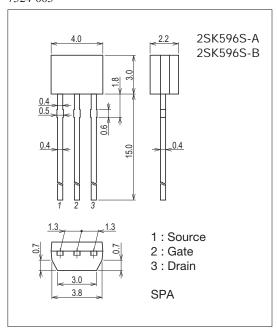
http://onsemi.com

N-Channel JFET 20V, 140 to 350μA, 1.0mS, SPA

Features

- · Low output noise voltage: VNO=-110dB max (VCC=4.5V, RL=1kΩ, Cin=15pF, VIN=0V, A curve)
- · Especially suited for use in condenser microphone for audio equipments and telephones
- · Excellent transient characteristic
- · Adoption of FBET process

Specifications

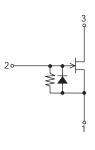

Absolute Maximum Ratings at Ta=25°C

Parameter	Symbol	Conditions	Ratings	Unit
Gate-to-Drain Voltage	V _{GDO}		-20	V
Gate Current	IG		10	mA
Drain Current	ID		1	mA
Allowable Power Dissipation	PD		100	mW
Junction Temperature	Tj		150	°C
Storage Temperature	Tstg		-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Package Dimensions

unit : mm (typ) 7524-005


Product & Package Information

Package : SPA
JEITA, JEDEC : SC-72
Minimum Packing Quantity : 500 pcs./bag

Marking

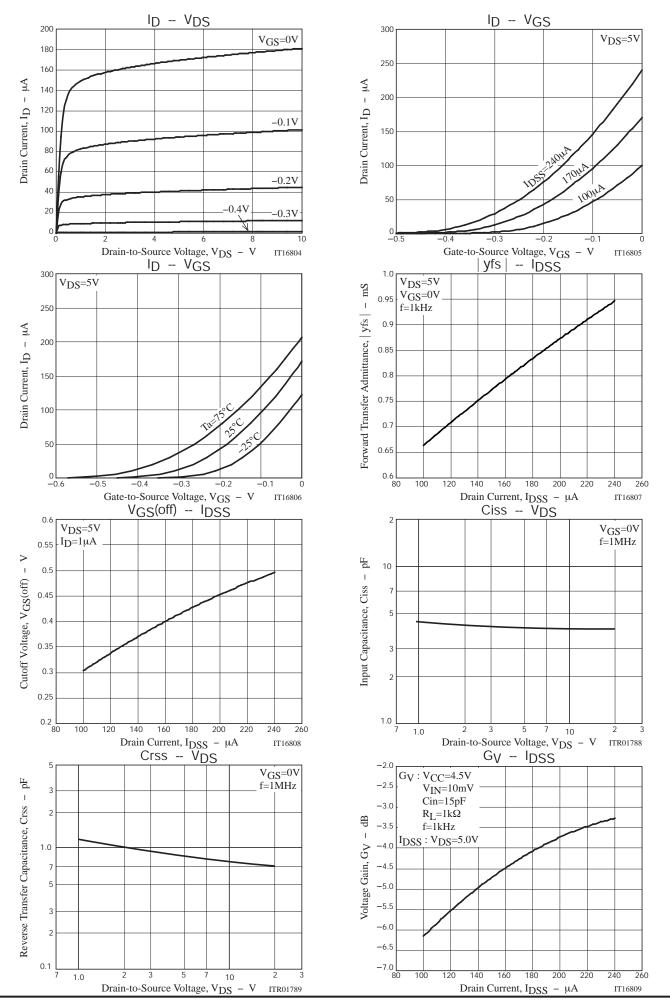
Electrical Connection

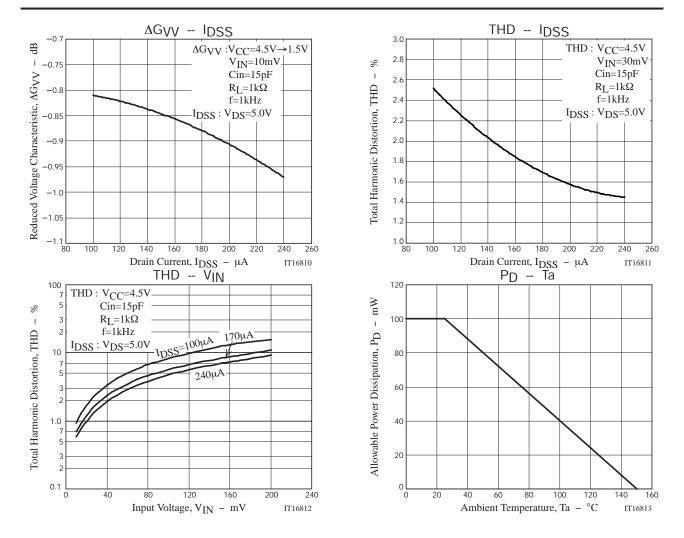
Electrical Characteristics at Ta=25°C


Parameter	Cymphol	Conditions Ratings			Unit			
Parameter	Symbol	Conditions	Rank	min	typ	max	Unit	
Gate-to-Drain Breakdown Voltage	V(BR)GDO	IG=-100μA		-20			V	
Cutoff Voltage	V _{GS} (off)	V _{DS} =5V, I _D =1μA			-0.4	-1.5	V	
Drain Current	lpoo*	V FV V OV	Α	100		170	μΑ	
Dialii Cuiteiti	IDSS*	V _{DS} =5V, V _{GS} =0V	В	150		240		
Forward Transfer Admittance	yfs	V _{DS} =5V, V _{GS} =0V, f=1kHz		0.4	0.8		mS	
Input Capacitance	Ciss	V _{DS} =5V, V _{GS} =0V, f=1MHz			4.1		pF	
Reverse Transfer Capacitance	Crss	V _{DS} =5V, V _{GS} =0V, f=1MHz			0.88		pF	
[Ta=25°C, V _{CC} =4.5V, R _L =1k Ω , Cin=15 μ	F, See specified Te	est Circuit.]						
Voltage Gain	CV	Vis. 10mV f 1kHz	А		-5.0		4D	
	GV	V _{IN} =10mV, f=1kHz	В		-3.8		dB	
Reduced Voltage Characteristic	A.C. m.	V. 10mV f 1kHz V. 4 EV 1 EV	10mV f 1kHz Va a 4 EV 1 EV A -0.84	-1.8	- dB			
	ΔG _{VV}	$V_{IN}=10$ mV, f=1kHz, $V_{CC}=4.5$ V $\rightarrow 1.5$ V	В		-0.90	-2.0	ub ub	
Frequency Characteristic	∆Gvf	f=1kHz → 110Hz				-1.0	dB	
Total Harmonic Distortion	TUD	V. 20mV f 1kHz	А		2.0		%	
	THD	V _{IN} =30mV, f=1kHz	В		1.6		70	
Output Noise Voltage	V _{NO}	V _{IN} =0V, A curve				-110	dB	

* : The 2SK596S is classified by IDSS as follows : (unit : $\mu A)$

Rank	A	В		
IDSS	100 to 170	150 to 240		

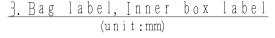

Test Circuit

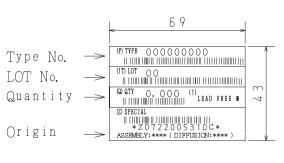

Voltage Gain Frequency Characteristic Harmonic Distortion Reduced Voltage Characteristic

Ordering Information

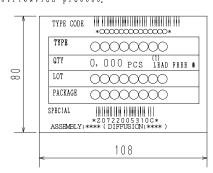
Device	Package	Shipping	memo	
2SK596S-A	SPA	500pcs./bag	Pb Free	
2SK596S-B	SPA	500pcs./bag	Pb Fiee	

Bag Packing Specification 2SK596S-A, 2SK596S-B


1. Packing Format

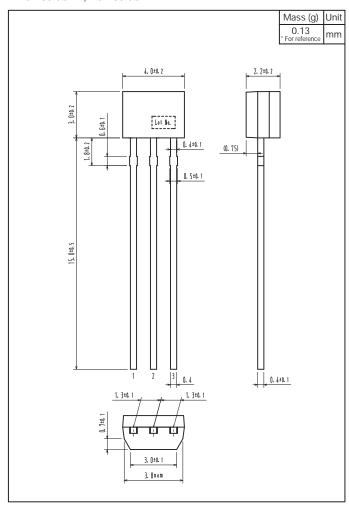

Package Name	Maximum Number of devices contained (pcs)					
	Bag	Inner	ВОХ	Outer BOX		
G 7. 1		B-1	B-1/2	A-1	A-2	
SPA	500	20,000	10,000	100,000	60,000	
	Packing format (Dimensions:mm (external))					
		Inner	ВОХ	Outer BOX		
		B-1	B-1/2	A-1	A-2	
		445×225×55	445×225×55	470×250×300	470×250×190	

2. Bag dimensions (unit:mm)


110

4. Outer box label (unit:mm)

It is a label at the time of factory shipments. The form of a label may change in physical distribution process.


NOTE (1)

The LEAD FREE * description shows that the surface treatment of the terminal is lead free.

Label		JEITA Phase
LEAD FREE	3	JEITA Phase 3A
LEAD FREE	₹ 4	JEITA Phase 3

Outline Drawing

2SK596S-A, 2SK596S-B

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa