intersil

Data Sheet

September 15, 2015

FN3121.9

Dual/Quad SPST, CMOS Analog Switches

HI-200/HI-201 (dual/quad) are monolithic devices comprising independently selectable SPST switches which feature fast switching speeds (HI-200 240ns, and HI-201 185ns) combined with low power dissipation (15mW at 25^oC). Each switch provides low "ON" resistance operation for input signal voltage up to the supply rails and for signal current up to 80mA. Rugged DI construction eliminates latch-up and substrate SCR failure modes.

All devices provide break-before-make switching and are TTL and CMOS compatible for maximum application versatility. HI-200/HI-201 are ideal components for use in high frequency analog switching. Typical applications include signal path switching, sample and hold circuit, digital filters, and operational amplifier gain switching networks.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. DWG. #
HI3-0200-5Z (Note) (No longer available or supported)	0 to 75	14 Ld PDIP* (Pb-free)	E14.3
HI1-0201-2	-55 to 125	16 Ld CERDIP	F16.3
HI3-0201-5Z (Note)	0 to 75	16 Ld PDIP* (Pb-free)	E16.3
HI4P0201-5Z (Note) (No longer available or supported)	0 to 75	20 Ld PLCC (Pb-free)	N20.35
HI9P0201-5Z (Note)	0 to 75	16 Ld SOIC (Pb-free)	M16.15
HI9P0201-9Z (Note)	-40 to 85	16 Ld SOIC (Pb-free)	M16.15

*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

Features

- Pb-Free Available (RoHS Compliant)

- TTL/CMOS Compatible

Applications

- High Frequency Analog Switching
- Sample and Hold Circuits
- Digital Filters
- Operational Amplifier Gain Switching Networks

Functional Diagram

TRUTH TABLE

LOGIC	HI-200	HI-201
0	ON	ON
1	OFF	OFF

Pinouts (Switches Shown For Logic "1" Input)

Schematic Diagrams

TTL/CMOS REFERENCE CIRCUIT V_{REF} CELL HI-200

TTL/CMOS REFERENCE CIRCUIT V_{REF} CELL HI-201

Schematic Diagrams (Continued)

SWITCH CELL

Absolute Maximum Ratings

Supply Voltage (V+ to V-)	44V (±22)
V _{REF} to Ground	20V, -5V
Digital Input Voltage (V+)	+4V to (V-) -4V
Analog Input Voltage (One Switch) (V+)	+2V to (V-) -2V

Operating Conditions

Temperature Ranges

HI-201-2	-55°C to 125°C
HI-201-4	25°C to 85°C
HI-200-5, HI-201-5	
HI-201-9	40 ^o C to 85 ^o C

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (°C/W)	θ_{JC} (°C/W)
CERDIP Package	75	20
PLCC Package	80	N/A
PDIP Package*	95	N/A
SOIC Package	110	N/A
Maximum Storage Temperature		5 ⁰ C to 150 ⁰ C
Maximum Junction Temperature (Hermetic	Packages).	175 ⁰ C
Maximum Junction Temperature (Plastic P	ackages)	150 ⁰ C
Maximum Lead Temperature (Soldering, 1	0s)	300 ⁰ C
(PLCC and SOIC - Lead Tips Only)		

*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in reflow solder processing applications.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

	TEST CONDITIONS	TEMP (^o C)	-2		-4, -5, -9				
PARAMETER			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS									
Switch ON Time, t _{ON}									
HI-200		25	-	240	500	-	240	-	ns
HI-201		25	-	185	500	-	185	-	ns
		Full	-	1000	-	-	1000	-	ns
Switch OFF Time, t _{OFF}									
HI-200		25	-	330	500	-	500	-	ns
HI-201		25	-	220	500	-	220	-	ns
		Full	-	1000	-	-	1000	-	ns
Off Isolation	(Note 4)								
HI-200		25	-	70	-	-	70	-	dB
HI-201		25	-	80	-	-	80	-	dB
Input Switch Capacitance, CS(OFF)		25	-	5.5	-	-	5.5	-	pF
Output Switch Capacitance, C _{D(OFF)}		25	-	5.5	-	-	5.5	-	pF
Output Switch Capacitance, C _{D(ON)}		25	-	11	-	-	11	-	pF
Digital Input Capacitance, C _A		25	-	5	-	-	5	-	pF
Drain-to-Source Capacitance, C _{DS(OFF)}		25	-	0.5	-	-	0.5	-	pF
DIGITAL INPUT CHARACTERISTICS	l				1	1		1	L.
Input Low Threshold, VAL		Full	-	-	0.8	-	-	0.8	V
Input High Threshold, VAH		Full	2.4	-	-	2.4	-	-	V
Input Leakage Current (High or Low), IA	(Note 3)	Full	-	-	1.0	-	-	1.0	μA
ANALOG SWITCH CHARACTERISTICS	j								
Analog Signal Range, V _S		Full	-15	-	+15	-15	-	+15	V
ON Resistance, r _{ON}	(Note 2)	25	-	55	70	-	55	80	Ω
		Full	-	80	100	-	72	100	Ω

	TEST CONDITIONS	TEMP (^o C)	-2			-4, -5, -9			
PARAMETER			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OFF Input Leakage Current, IS(OFF)	(Note 6)	25	-	1	5	-	1	50	nA
HI-200		Full	-	100	500	-	10	500	nA
HI-201		25	-	2	5	-	2	50	nA
		Full	-	-	500	I	-	250	nA
OFF Output Leakage Current, I _{D(OFF)}	(Note 6)	25	-	1	5	-	1	50	nA
HI-200		Full	-	100	500	-	10	500	nA
HI-201		25	-	2	5	-	2	50	nA
		Full	-	35	500	-	35	250	nA
ON Leakage Current, I _{D(ON)}	(Note 6)	25	-	1	5	-	1	50	nA
HI-200		Full	-	100	500	-	10	500	nA
HI-201	-	25	-	2	5	-	2	50	nA
		Full	-	-	500	-	-	250	nA
POWER SUPPLY CHARACTERISTICS	(Note 5)								
Power Dissipation, PD		25	-	15	-	-	15	-	mW
		Full	-	-	60	-	-	60	mW
Current, I+		25	-	0.5	-	-	0.5	-	mA
		Full	-	-	2.0	-	-	2.0	mA
Current, I-		25	-	0.5	-	-	0.5	-	mA
		Full	-	-	2.0	-	-	2.0	mA

Electrical Specifications Supplies = +15V, -15V; V_{REF} = Open; V_{AH} (Logic Level High) = 2.4V, VAL (Logic Level Low) = 0.8V (Continued)

NOTES:

2. V_{OUT} = ±10V, I_{OUT} = 1mA.

3. Digital Inputs are MOS gates: typical leakage is < 1nA.

4. V_A = 5V, R_L = 1k Ω , C_L = 10pF, V_S = 3V_{RMS}, f = 100kHz.

5. V_A = +3V or V_A = 0V for Both Switches.

6. Refer to Leakage Current Measurements (Figure 2).

Test Circuits and Waveforms T_A = 25°C, V_{SUPPLY} = $\pm\pm$ 15V, V_{AH} = 2.4V, V_{AL} = 0.8V and V_{REF} = Open

FIGURE 1A. ON RESISTANCE TEST CIRCUIT

FIGURE 3A. SWITCH CURRENT vs VOLTAGE

FIGURE 3. SWITCH CURRENT

For more information see Application Notes AN520, AN521, AN531, AN532 and AN557.

7

FN3121.9 September 15, 2015

Application Information

Single Supply Operation

The switch operation of the HI-200/201 is dependent upon an internally generated switching threshold voltage optimized for ± 15 V power supplies. The HI-200/201 does not provide the necessary internal switching threshold in a single supply system. Therefore, if single supply operation is required, the HI-300 series of switches is recommended. The HI-300 series will remain operational to a minimum +5V single supply.

Switch performance will degrade as power supply voltage is reduced from optimum levels (\pm 15V). So it is recommended that a single supply design be thoroughly evaluated to ensure that the switch will meet the requirements of the application.

For further information see Application Notes AN520, AN557, AN1033 and AN1034.

Die Characteristics

METALLIZATION:

Type: CuAl Thickness: 16kÅ ±2kÅ

PASSIVATION:

Type: Nitride over Silox Nitride Thickness: 3.5kÅ ±1kÅ Silox Thickness: 12kÅ ±2kÅ

WORST CASE CURRENT DENSITY:

2 x 10⁵ A/cm² at 25mA

Metallization Mask Layout

Die Characteristics

METALLIZATION:

Type: CuAl Thickness: 16kÅ ±2kÅ

PASSIVATION:

Type: Nitride over Silox Nitride Thickness: 3.5kű1kÅ Silox Thickness: 12kű2kÅ

WORST CASE CURRENT DENSITY:

 $2 \times 10^5 \text{ A/cm}^2$ at 25 mA

Metallization Mask Layout

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9001 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
September 15, 2015	FN3121.9	 Updated Ordering Information Table on page 1. Added Revision History. Added About Intersil Verbiage.

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.

For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at <u>www.intersil.com</u>.

You may report errors or suggestions for improving this datasheet by visiting <u>www.intersil.com/ask</u>.

Reliability reports are also available from our website at www.intersil.com/support.