Integrated Heart-Rate Sensor for In-Ear Applications

General Description

The MAX86160 is an integrated heart rate monitor sensor module designed for the demanding requirements of mobile, wearable, and hearable devices. It includes internal LEDs, photo-detector, and low-noise electronics with high-dynamic-range ambient light rejection. This integrated product is a complete system solution, and comes with plug-and-play software and robust algorithms to give meaningful outputs to the user with minimal additional design effort. The MAX86160 sensor module takes care of the most challenging parts of the design for fast time-to-market in mobile and wearable devices.

The MAX86160 operates on a 1.8V supply voltage, with a separate 3.3V/5.0V power supply for the internal LEDs. Communication to and from the module occurs entirely through a standard I²C-compatible interface. The module can be shut down through software with near zero standby current, allowing the power rails to remain powered at all times.

Benefits and Features

- Miniature 4.3mm x 2.8mm x 1.45mm 18-pin Optical Module
 - Optical-Grade, Robust Glass Eliminates Customer Cover Glass
- High In-Band 13Hz Signal-to-Noise Ratio (SNR) Reflective Heart Rate Monitor and Medical-Grade Pulse Oximeter
- Ultra Low-Power Operation for Mobile Device
 - Zero-Power Shutdown Current (0.7µA, typ)
- -40°C to +85°C Operating Temperature Range

Applications

- Wearable and Hearable Devices
- Smartphones/Tablets
- Disposable Patch Sensors
- Fitness Assistant Devices

Ordering Information appears at end of data sheet.

Simplified Block Diagram

Integrated Heart-Rate Sensor for In-Ear Applications

TABLE OF CONTENTS

General Description	1
Benefits and Features	1
Applications	1
Simplified Block Diagram	1
Absolute Maximum Ratings	6
Package Information	6
18-Lead OESIP	6
Electrical Characteristics	7
Typical Operating Characteristics	10
Pin Configurations	11
Pin Description	11
Functional Diagram	12
Detailed Description	13
HRM Subsystem	13
LED Driver	13
Proximity Function	13
Register Map	13
Interrupt Status 1 (0x00)	15
A_FULL: FIFO Almost Full Flag	15
PPG_RDY: New PPG FIFO Data Ready	15
ALC_OVF: Ambient Light Cancellation Overflow	15
PROX_INT: Proximity interrupt	15
PWR_RDY: Power Ready Flag.	15
Interrupt Status 2 (0x01)	16
VDD_OOR: VDD Out-of-Range flag	16
Interrupt Enable 1 (0x02)	16
A_FULL_EN: FIFO Almost Full Flag enable	16
PPG_RDY_EN: New PPG FIFO Data Ready Interrupt enable	16
ALC_OVF_EN: Ambient Light Cancellation (ALC) Overflow Interrupt enable	16
PROX_INT_EN: Proximity Interrupt enable	17
Interrupt Enable 2 (0x03)	17
VDD_OOR_EN: VDD Out-of-Range Indicator enable	17
FIFO Write Pointer (0x04)	17
FIFO_WR_PTR: FIFO Write Pointer	17
OVF_COUNTER: FIFO Overflow Counter	18
FIFO Read Pointer (0x06)	18
FIFO_RD_PTR: FIFO Read Pointer	18

Integrated Heart-Rate Sensor for In-Ear Applications

TABLE OF CONTENTS (CONTINUED)

FIFO Data Register (0x07)	. 18
FIFO_DATA: FIFO Data Register	. 18
FIFO Configuration (0x08)	. 18
A_FULL_CLR: FIFO Almost Full Interrupt Options	. 18
A_FULL_TYPE: FIFO Almost Full Flag Options	. 19
FIFO_ROLLS_ON_FULL: FIFO Rolls on Full Options	. 19
FIFO_A_FULL: FIFO Almost Full Value	. 19
FIFO Data Control Register 1 (0x09)	. 19
FD2: FIFO Data Time Slot 2	. 20
FD1: FIFO Data Time Slot 1	. 20
FD4: FIFO Data Time Slot 4	. 20
FD3: FIFO Data Time Slot 3	. 21
System Control (0x0D)	. 21
FIFO_EN: FIFO Enable	. 21
SHDN: Shutdown Control	. 21
RESET: Reset Control	. 22
PPG Configuration 1 (0x0E)	. 22
PPG_ADC_RGE: PPG ADC Range Control	. 22
PPG_SR: PPG Sample Rate Control	. 22
PPG Sample Rate Control	. 22
Maximum Sample rates Supported for all the Pulse Widths and Number of LEDs:	. 23
PPG_LED_PW: LED Pulse Width Control	. 23
PPG Configuration 2 (0x0F)	. 23
SMP_AVE: Sample Averaging Options	. 23
Prox Interrupt Threshold (0x10)	. 24
PROX_INT_THRESH: Proximity Mode Interrupt Threshold	. 24
LED1 PA (0x11)	. 24
LED1_PA: LED 1 (IR) Current Pulse Amplitude.	. 24
LED3 PA (0x13)	. 25
LED3_PA: LED 3 (Green) Current Pulse Amplitude	. 25
LED Range (0x14)	. 25
LED3_PA: LED 3 (Green) Current Pulse Amplitude.	. 25
LED1_RGE: LED 1 (IR) Current Control.	. 26
LED PILOT PA (0x15)	. 26
PILOT_PA: Proximity Mode LED Pulse Amplitude.	. 26
Part ID (0xFF)	. 26
PART_ID: Part Identifier	. 26

Integrated Heart-Rate Sensor for In-Ear Applications

TABLE OF CONTENTS (CONTINUED)

Applications Information.	
Power Sequencing and Requirements	
Power-Up Sequencing	
Power-Down Sequencing.	
I ² C Interface	
Bit Transfer	
START and STOP Conditions	
Early STOP Conditions	
Slave Address	
Write Data Format	
Read Data Format	
FIFO Description	
Overview	
FIFO Data Types	
FIFO Data Control Registers	
Write Pointer to the FIFO, FIFO_WR_PTR[4:0]:	
Read Pointer to the FIFO, FIFO_RD_PTR[4:0]:	
FIFO Data Read, FIFO_DATA[7:0]:	
Reading from the FIFO	
FIFO Flush	
FIFO Organization	
Typical Application Circuits	
Ordering Information	
Revision History	

LIST OF FIGURES

-igure 1. I ² C-Compatible Interface Timing Diagram	9
Figure 2: Power-Up Sequence of the Power Supply Rails	. 27
Figure 3. START, STOP, and REPEATED START Conditions	. 28
-igure 4. I ² C Acknowledge	. 29
Figure 5. Writing One Data Byte to MAX86160	. 29
Figure 6. Reading One Byte of Data from MAX86160	. 30
Figure 7. Reading Multiple Bytes of Data from the MAX86160	. 31
Figure 8. Example of FIFO Organization with Four Active Elements	. 38
Figure 9. Example of FIFO Organization with Two Active Elements	. 39

LIST OF TABLES

Table 1: MAX86160 I ² C Slave Address Control	28
Table 2. FIFO Data Control Registers	32
Table 3. FDx Format Configurations	32
Table 4. FIFO Data Format	33
Example 1: Configurations for 2 elements: PPG (LED1) + PPG (LED3)	33
Example 2: Configurations for 1 elements: PPG (LED1)	33
Table 5. Sample of FIFO Data Index	33
Table 6. FIFO Handling Registers	33
Table 7. FIFO Sample Elements Order with Four Active Elements Image: Comparison of the second s	34
Table 8. FIFO Sample Elements Order with Two Active Elements Image: Comparison of Compar	35

Integrated Heart-Rate Sensor for In-Ear Applications

Absolute Maximum Ratings

V _{DD} to GND	0.3V to +2.2V
PGND to GND	0.3V to +0.3V
LED_DRVx, VLED to PGND	0.3V to +6.0V
V _{REF} to GND	0.3V to +2.2V
Output Short-Circuit Duration	Continuous
Continuous Input Current Into Any Pin	
(Except LED_DRVx Pins)	±20mA

Continuous Power Dissipation	440mW
SDA, SCL, INTB, GPIO to GND	0.3V to +6.0V
OESIP (derate 5.5mW/°C above +70°C)	40°C to +85°C
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	40°C to +105°C
Soldering Temperature (Reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

18-Lead OESIP

Package Code	F182A4+1
Outline Number	<u>21-100099</u>
Land Pattern Number	90-100030
Thermal Resistance, Four Layer Board:	
Junction-to-Ambient (θ _{JA})	174°C/W (Note 1)
Junction-to-Case Thermal Resistance (θ_{JC})	150°C/W (Note 1)

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-</u> <u>tutorial</u>.

Electrical Characteristics

((V_{DD} = 1.8V, V_{LED} = 3.3V(IR), V_{LED} = 5.0V (GREEN), GND = PGND = 0V, T_A = +25°C, min/max are from T_A = -40°C to +85°C, unless otherwise noted.) (Note 2))

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
POWER SUPPLY						
Power Supply Voltage	V _{DD}		1.7	1.8	2.0	V
LED Supply Voltage for IR	V _{LED}		3.1	3.3	5.5	V
LED Supply Voltage for Green	V _{LED}		4.0	5.0	5.5	V
		Heart Rate Mode; PW = 50µs; SPS = 100; LED Driver = 0mA		400	750	
V _{DD} Supply Current	IDD	Heart Rate Mode; PW = 50µs; SPS = 10; LED Driver = 0mA		400	750	μA
V _{DD} Current in Shutdown		T _A = 25°C		0.5	12	μA
V _{LED} Current in Shutdown		T _A = 25°C		0	1	μA
Internal Voltage Reference (Note 3)	V _{REF}	Bypass to GND with 1µF	1.192	1.204	1.215	V
PULSE OXIMETRY/HEART	RATE SENSO	R CHARACTERISTICS				
ADC Resolution				19		bits
IR ADC Count	IR_C	Proprietary ATE Setup. IR_PA = 0x13, PW = 50µS, SPS = 1000, T _A = +25°C	121,072	131,072	141,072	Counts
Green ADC Count	GREEN_C	Proprietary ATE Setup. GREEN_PA = 0x80, PW = 50μ S, SPS = 1000, T _A = +25°C	111,072	131,072	151,072	Counts
Dark Current Counts	DC_C	ALC = ON, IR_PA = 0x00, PW = 50μS, SPS = 1000, PPG_ADC_RGE<1:0> = 8μA, T _A = +25°C		0.0001	0.02	% of FS
IR/GREEN ADC Count - PSRR (VDD)	PSRR_VDD	Propriety ATE setup, 1.7V < V _{DD} < 2.0V, IR_PA = 0x12, GREEN_PA = 0x80, PW = 50μS, SPS = 1000		0.5	1	% of FS
IR/GREEN ADC Count - PSRR (LED Driver Outputs)	PSRR_LED	Propriety ATE setup, $3.1V < V_{LED} < 5V(IR)$, 4V < V _{LED} < 5.5V (GREEN), IR_PA = 0x12, GREEN_PA = 0x80, PW = 50µS, SPS = 1000		0.05	0.5	% of FS
ADC Clock Frequency	CLK		9.649	9.846	10.043	MHz
IR LED CHARACTERISTIC	S (Note 5)					
LED Peak Wavelength	λ _P	I _{LED} = 20mA, T _A = +25°C	870	880	900	nm
GREEN LED CHARACTER	STICS (Note 5)				
LED Peak Wavelength	λ _P	I _{LED} = 20mA, T _A = +25°C	520	527	540	nm

Electrical Characteristics (continued)

((V_{DD} = 1.8V, V_{LED} = 3.3V(IR), V_{LED} = 5.0V (GREEN), GND = PGND = 0V, T_A = +25°C, min/max are from T_A = -40°C to +85°C, unless otherwise noted.) (Note 2))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LED DRIVERS						
LED Current Resolution				8		bits
		V_{LED} = 5.0V (for GREEN), V_{LED} = 3.3V (for IR ONLY), LEDx_PA = 0xFF, LEDx_RGE[1:0] = 00		50		
LED Drive Current Range		V _{LED} = 5.0V (for GREEN), V _{LED} = 3.3V (for IR ONLY), LEDx_PA = 0xFF, LEDx_RGE[1:0] = 01		100		
(Note 4)	ILED	V_{LED} = 5.0V (for GREEN), V_{LED} = 3.3V (for IR ONLY), LEDx_PA = 0xFF, LEDx_RGE[1:0] = 10		150		mA
		VLED = 5.0V (for GREEN), V _{LED} = 3.3V (for IR ONLY), LEDx_PA = 0xFF, LEDx_RGE[1:0] = 11		200		
DIGITAL CHARACTERISTIC	S (SDA, SCL,	INT)				
Output Low Voltage SDA, INTB	V _{OL}	I _{SINK} = 6mA			0.4	V
I ² C Input Voltage Low	V _{IL_I2C}	SDA, SCL			0.4	V
I ² C Input Voltage High	V _{IH_I2C}	SDA, SCL	1.4			V
Input Hysteresis (Note 5)	V _{HYS}	SDA, SCL		200		mV
Input Capacitance (Note 5)	C _{IN}	SDA, SCL		10		pF
Input Leakage Current	l	V _{IN} = 0V, T _A = +25°C (SDA, SCL)		0.01	1	
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $T_A = +25^{\circ}C$ (SDA, SCL)		0.01	1	- μΑ
I ² C TIMING CHARACTERIS	TICS (SDA, S	CL) (Note 5, Figure 1)				
I ² C Write Address				BC		Hex
I ² C Read Address				BD		Hex
Serial Clock Frequency	f _{SCL}		0		400	kHz
Bus Free Time Between STOP and START Conditions	^t BUF		1.3			μs
Hold Time (Repeated) START Condition	^t HD,STA		0.6			μs
SCL Pulse-Width Low	^t LOW		1.3			μs
SCL Pulse-Width High	tHIGH		0.6			μs
Setup Time for a Repeated START Condition	^t SU,STA		0.6			μs
Data Hold Time	t _{HD,DAT}		0		900	ns

Integrated Heart-Rate Sensor for In-Ear Applications

Electrical Characteristics (continued)

((V_{DD} = 1.8V, V_{LED} = 3.3V(IR), V_{LED} = 5.0V (GREEN), GND = PGND = 0V, T_A = +25°C, min/max are from T_A = -40°C to +85°C, unless otherwise noted.) (Note 2))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Setup Time	t _{SU,DAT}		100			ns
Setup Time for STOP Condition	t _{SU,STO}		0.6			μs
Pulse Width of Suppressed Spike	t _{SP}		0		50	ns
Bus Capacitance	CB				400	pF
SDA and SCL Receiving Rise Time	t _R		20 + 0.1C _B		300	ns
SDA and SCL Receiving Fall Time	t _F		20 + 0.1C _B		300	ns
SDA Transmitting Fall Time	t _F		20 + 0.1C _B		300	ns

Note 2: All devices are 100% production tested at $T_A = +25$ °C. Specifications over temperature limits are guaranteed by Maxim Integrated's bench or proprietary automated test equipment (ATE) characterization.

Note 3: Internal Reference Voltage only.

Note 4: Whenever Green LED is used, V_{LED} must be 4.0V or above. For LED Current range more than 100mA (LEDx_RGE = 2'b1X), V_{LED} must be 4.5V or above.

Note 5: For design guidance only. Not production tested.

Figure 1. I²C-Compatible Interface Timing Diagram

Integrated Heart-Rate Sensor for In-Ear Applications

Typical Operating Characteristics

 $(V_{DD} = 1.8V, V_{LED} = 3.3V(IR), V_{LED} = 5.0V$ (GREEN), GND = PGND = 0V, T_A = +25°C, unless otherwise noted.)(T_A = +25°C, unless otherwise noted.)

510

-50

0

50

TEMPERATURE (°C)

100

150

-50

0

50

TEMPERATURE (°C)

100

150

Integrated Heart-Rate Sensor for In-Ear Applications

Pin Configurations

Pin Description

PIN	NAME	FUNCTION		
POWER				
11	V _{DD}	Analog Supply. Connect to externally-regulated supply. Bypass to GND		
12	V _{LED}	LED Power Supply Input. Connect to external battery supply. Bypass to PGND.		
13	PGND	LED Power Return. Connect to GND.		
14	GND	Analog Power Return. Connect to GND.		
CONTROL IN	TERFACE			
5	INTB	Open-Drain Interrupt		
6	SDA	I ² C Data		
7	SCL	I ² C Clock		
REFERENCE				
15	VREF	Internal Reference Decoupling Point. Bypass to GND.		
N.C.				
1	N.C.	No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins.		
2	N.C.	No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins.		

Integrated Heart-Rate Sensor for In-Ear Applications

PIN	NAME	EUNICTION				
MAX86160	NAME	FUNCTION				
3	N.C.	No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins.				
4	N.C.	No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins.				
8	N.C.	No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins.				
9	N.C.	No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins.				
10	N.C.	No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins.				
16	N.C.	No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins.				
17	N.C.	No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins.				
18	N.C.	No Connection. Connect to unconnected PCB pad for mechanical stability. N.C. pins should not be connected to any signal, power, or ground pins.				

Functional Diagram

Detailed Description

The MAX86160 is a heart rate sensor system solution module designed for the demanding requirements of mobile and wearable devices. The MAX86160 maintains a very small total solution size without sacrificing optical or electrical performance. Minimal external hardware components are necessary for integration into a mobile device. The device is fully adjustable through software registers, and the digital output data is stored in a 32-deep FIFO within the device. The FIFO allows the device to be connected to a micro-controller or processor on a shared bus, where the data is not being read continuously from the MAX86160's registers.

HRM Subsystem

The HRM subsystem in the MAX86160 is composed of ambient light cancellation (ALC), a continuous-time sigma delta ADC, and proprietary discrete time filter. The ALC has an internal DAC to cancel ambient light and increase the effective dynamic range. The internal ADC is a continuous time oversampling sigma delta converter with 19-bit resolution. The ADC output data rate can be programmed from10sps (samples per second) to 3200sps. The MAX86160 includes a proprietary discrete time filter to reject 50Hz/60Hz interference and slow moving residual ambient noise.

LED Driver

The MAX86160 integrates green and infrared LED drivers to modulate LED pulses for HR measurements. The LED current can be programmed from 0mA to 200mA with proper V_{LED} supply voltage. The LED pulse width can be programmed from 50 μ s to 400 μ s to allow the algorithm to optimize HR accuracy and power consumption based on use cases.

Proximity Function

The MAX86160 includes a proximity function to save power and reduce visible light emission when the user's finger is not on the sensor. Proximity function is enabled by setting PROX_INT_EN to 1. When the HR function is initiated, the IR LED is turned on in proximity mode with a drive current set by the PILOT_PA register. When an object is detected by exceeding the IR ADC count threshold (set in the PROX_INT_ THRESH register), PROX_INT interrupt is asserted and the part transitions automatically to the normal HR Mode. To reenter PROX mode, a new HR reading must be initiated (even if the value is the same). The proximity function can be disabled by resetting PROX_INT_EN to 0. In that case, when the HR function is initiated in the FIFO Data Control registers, the HR mode begins immediately.

Register Map

ADDRESS	NAME	MSB							LSB		
STATUS REG	STATUS REGISTERS										
0x00	Interrupt Status 1[7:0]	A_FULL_	PPG_ RDY_	ALC_ OVF_	PROX_ INT_	-	-	-	PWR_ RDY_		
0x01	Interrupt Status 2[7:0]	VDD_ OOR_	-	-	-	-	-	-	-		
0x02	Interrupt Enable 1[7:0]	A_FULL_ EN_	PPG_ RDY_ EN_	ALC_ OVF_ EN_	PROX_ INT_EN_	-	_	-	-		
0x03	3 Interrupt Enable 2[7:0]		_	-	-	-	_	-	-		

Integrated Heart-Rate Sensor for In-Ear Applications

Register Map (continued)

ADDRESS	NAME	MSB							LSB	
FIFO REGIST	TERS		I			I	I	I	1	
0x04	FIFO Write Pointer[7:0]	_	-	_	FIFO_WR_PTR_[4:0]					
0x05	Overflow Counter[7:0]	_	-	_		OVF_	COUNTER	_[4:0]		
0x06	FIFO Read Pointer[7:0]	_	-	_		FIFC		[4:0]		
0x07	FIFO Data Register[7:0]				FIFO_DAT	[A_[7:0]				
0x08	FIFO Configuration[7:0]	-	A_FULL_ CLR_	A_FULL_ TYPE_	FIFO_ ROLLS_ FIFO_A_FULL ON_ FULL			FULL_[3:0]		
FIFO DATA C	ONTROL		1							
0x09	FIFO Data Control Register 1[7:0]		FD2	[3:0]			FD1	_[3:0]		
0x0A	FIFO Data Control Register 2[7:0]		FD4	-[3:0]			FD3	[3:0]		
SYSTEM CO	NTROL			_						
0x0D	System Control [7:0]	-	-	-	_	_	FIFO_ EN_	SHDN_	RESET_	
PPG Configu	uration									
0x0E	PPG Configuration 1 [7:0]		C_RGE_ :0]	PPG_SF		R_[3:0]		PPG_LED_PW_[1:0]		
0x0F	PPG Configuration 2 [7:0]	-	_	-	_	_	SI	MP_AVE_[2	:0]	
0x10	Prox Interrupt Threshold [7:0]			Pf	ROX_INT_TH	IRESH_[7	:0]			
LED Pulse A	mplitude									
0x11	LED1 PA[7:0]	LED1_PA_[7:0]								
				_						
0x13	LED3 PA[7:0]	LED3_PA_[7:0]								
0x14	LED Range[7:0]	LED3_RGE_[1:0] LED1_RGE					GE_[1:0]			
0x15	LED PILOT PA[7:0]	LED PILOT PA[7:0] PILOT_PA_[7:0]								
				-						
Part ID	· · · · · · · · · · · · · · · · · · ·									
0xFF	Part ID[7:0]		PART_ID_[7:0]							

Integrated Heart-Rate Sensor for In-Ear Applications

Interrupt Status 1 (0x00)

BIT	7	6	5	4	3	2	1	0
Field	A_FULL	PPG_RDY	ALC_OVF	PROX_INT	-	-	-	PWR_RDY
Reset	0x0	0x0	0x0	0x0	-	-	-	0x0
Access Type	Read Only	Read Only	Read Only	Read Only	_	_	_	Read Only

A_FULL: FIFO Almost Full Flag

VALUE	ENUMERATION	DECODE
0	OFF	Normal Operation
1	ON	Indicates that the FIFO buffer will overflow the threshold set by FIFO_A_FULL<3:0> on the next sample. This bit is cleared when the Interrupt Status 1 Register is read. It is also cleared when FIFO_DATA register is read, if A_FULL_CLR = 1

PPG_RDY: New PPG FIFO Data Ready

VALUE	ENUMERATION	DECODE
0	OFF	Normal Operation
1	ON	In HR modes, this interrupt triggers when there is a new sample in the data FIFO. The inter- rupt is cleared by reading the Interrupt Status 1 register (0x00), or by reading the FIFO_DATA register.

ALC_OVF: Ambient Light Cancellation Overflow

VALUE	ENUMERATION	DECODE
0	OFF	Normal Operation
1	ON	This interrupt triggers when the ambient light cancellation function of the HR photodiode has reached its maximum limit due to overflow, and therefore, ambient light is affecting the output of the ADC. The interrupt is cleared by reading the Interrupt Status 1 register (0x00).

PROX_INT: Proximity interrupt

If PROX_INT is masked then the prox mode is disabled and the select PPG begins immediately. This bit is cleared when the Interrupt Status 1 Register is read.

VALUE	ENUMERATION	DECODE
0	OFF	Normal Operation
1	ON	Indicates that the proximity threshold has been crossed when in proximity mode.

PWR_RDY: Power Ready Flag

VALUE	ENUMERATION	DECODE
0	OFF	Normal Operation
1	ON	Indicates that VBATT went below the UVLO threshold. This bit is not triggered by a soft reset. This bit is cleared when Interrupt Status 1 Register is read.

Integrated Heart-Rate Sensor for In-Ear Applications

Interrupt Status 2 (0x01)

BIT	7	6	5	4	3	2	1	0
Field	VDD_OOR	-	-	-	-	-	-	-
Reset	0x0	-	-	-	-	-	-	-
Access Type	Read Only	_	_	_	_	_	_	_

VDD_OOR: VDD Out-of-Range flag

This flag checks if the VDD_ANA supply voltage is outside supported range.

VALUE	ENUMERATION	DECODE
0	OFF	VDD_ANA between range.
1	ON	Indicated that VDD_ANA is greater than 2.05V or less than 1.65V. This bit is automatically cleared when the Interrupt Status 2 register is read. The detection circuitry has a 10ms delay time, and will continue to trigger as long as the VDD_ANA is out of range.

Interrupt Enable 1 (0x02)

BIT	7	6	5	4	3	2	1	0
Field	A_FULL_EN	PPG_RDY_ EN	ALC_OVF_ EN	PROX_INT_ EN	-	-	-	-
Reset	0x0	0x0	0x0	0x0	-	-	-	-
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	_	-	-	-

A_FULL_EN: FIFO Almost Full Flag enable

VALUE	ENUMERATION	DECODE
0	OFF	A_FULL interrupt is disabled
1	ON	A_FULL interrupt is enabled

PPG_RDY_EN: New PPG FIFO Data Ready Interrupt enable

VALUE	ENUMERATION	DECODE			
0	OFF	PG_RDY interrupt is disabled			
1	ON	PPG_RDY interrupt is enabled.			

ALC_OVF_EN: Ambient Light Cancellation (ALC) Overflow Interrupt enable

The ALC_OVF flag will be triggered when the HRM photodiode has reached it's maximum limit due to overflow. At this point, the ADC output will be affected by the ambient light.

VALUE	ENUMERATION	DECODE			
0	OFF	ALC_OVF interrupt is disabled			
1	ON	ALC_OVF interrupt is enabled			

Integrated Heart-Rate Sensor for In-Ear Applications

PROX_INT_EN: Proximity Interrupt enable

When the HR function is initiated, the IR LED is turned on in proximity mode with a drive current set by the PILOT_PA register. When an object is detected by exceeding the IR ADC count threshold (set in the PROX_INT_THRESH register), PROX_INT interrupt is asserted and the part transitions automatically to the normal HR mode.

`	VALUE	ENUMERATION	DECODE				
	0	OFF	ROX_INT interrupt is disabled				
	1	ON	PROX_INT interrupt is enabled				

Interrupt Enable 2 (0x03)

BIT	7	6	5	4	3	2	1	0
Field	VDD_OOR_ EN	-	-	-	-	-	-	-
Reset	0x0	-	-	-	-	-	-	-
Access Type	Write, Read	_	_	-	-	_	_	-

VDD_OOR_EN: VDD Out-of-Range Indicator enable

VALUE	ENUMERATION	DECODE				
0	OFF	Disables the VDD_OVR interrupt				
1	ON	Enables the VDD_OVR interrupt				

FIFO Write Pointer (0x04)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	FIFO_WR_PTR[4:0]				
Reset	-	-	-	0x00				
Access Type	-	-	-			Write, Read		

FIFO_WR_PTR: FIFO Write Pointer

This points to the location where the next sample will be written. This pointer advances for each sample pushed on to the FIFO.

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	OVF_COUNTER[4:0]				
Reset	_	_	_	0x00				
Access Type	_	-	-	Read Only				

OVF_COUNTER: FIFO Overflow Counter

When FIFO is full any new samples will result in new or old samples getting lost depending on FIFO_ROLLS_ON_FULL. OVF_COUNTER counts the number of samples lost. It saturates at 0x1F.

FIFO Read Pointer (0x06)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	FIFO_RD_PTR[4:0]				
Reset	-	-	-		0x00			
Access Type	-	-	_			Write, Read		

FIFO_RD_PTR: FIFO Read Pointer

The FIFO Read Pointer points to the location from where the processor gets the next sample from the FIFO through the I²C interface. This advances each time a sample is popped from the FIFO. The processor may also write to this pointer after reading the samples. This allows rereading (or retrying) samples from the FIFO.

FIFO Data Register (0x07)

BIT	7	6	5	4	3	2	1	0
Field		FIFO_DATA[7:0]						
Reset				0x	00			
Access Type				Write,	Read			

FIFO_DATA: FIFO Data Register

This is a read-only register and is used to get data from the FIFO. See FIFO Description for more details.

FIFO Configuration (0x08)

BIT	7	6	5	4	3	2	1	0
Field	-	A_FULL_ CLR	A_FULL_ TYPE	FIFO_ ROLLS_ ON_FULL		FIFO_A_	FULL[3:0]	
Reset	-	0x0	0x0	0x0		0)	٢F	
Access Type	-	Write, Read	Write, Read	Write, Read		Write,	Read	

A_FULL_CLR: FIFO Almost Full Interrupt Options

This defines whether the A-FULL interrupt should get cleared by FIFO_DATA register read.

VALUE	ENUMERATION	DECODE
0	RD_DATA_NOCLR	A_FULL interrupt does not get cleared by FIFO_DATA register read. It gets cleared by status register read.
1	RD_DATA_CLR	A_FULL interrupt gets cleared by FIFO_DATA register read or status register read.

Integrated Heart-Rate Sensor for In-Ear Applications

A_FULL_TYPE: FIFO Almost Full Flag Options

This defines the behavior of the A_FULL interrupt.

VALUE	ENUMERATION DECODE				
0	AFULL_RPT	A_FULL interrupt gets asserted when the a_full condition is detected. It is cleared by status register read, but re-asserts for every sample if the a_full condition persists.			
1	AFULL_ONCE	A_FULL interrupt gets asserted only when the a_full condition is detected. The interrupt gets cleared on status register read, and does not re-assert for every sample until a new a-full condition is detected.			

FIFO_ROLLS_ON_FULL: FIFO Rolls on Full Options

This bit controls the behavior of the FIFO when the FIFO becomes completely filled with data.

- · When the device is in PROX mode, the FIFO always rolls on full.
- Push to FIFO is enabled when FIFO is full if FIFO_ROLLS_ON_FULL = 1 and old samples are lost. Both FIFO_ WR_PTR and FIFO_RD_PTR increment for each sample after the FIFO is full.
- Push to FIFO is disabled when FIFO is full if FIFO_ROLLS_ON_FULL = 0 and new samples are lost. FIFO_WR_ PTR does not increment for each sample after the FIFO is full.

VALUE	ENUMERATION	DECODE			
0	OFF	The FIFO stops on full.			
1	ON	The FIFO automatically rolls over on full.			

FIFO_A_FULL: FIFO Almost Full Value

These bits indicate how many new samples can be written to the FIFO before the interrupt is asserted. For example, if set to 0xF, the interrupt triggers when there is 17 empty space left (15 data samples), and so on.

FIFO_A_FULL<3:0>	FREE SPACE BEFORE INTERRUPT	# OF SAMPLES IN FIFO
0000	0	32
0001	1	31
0010	2	30
0011	3	29
1110	14	18
1111	15	17

FIFO Data Control Register 1 (0x09)

BIT	7	6	5	4	3	2	1	0	
Field		FD2	[3:0]		FD1[3:0]				
Reset		0>	(0		0x0				
Access Type	Write, Read					Write,	Read		

FD2: FIFO Data Time Slot 2

These bits set the data type for element 2 of the FIFO.

The FIFO can hold up to 32 samples. Each sample can hold up to four elements and each element is 3 bytes wide. The data type that gets stored in the 3 bytes is configured by FD1, FD2, FD3 and FD4 according to the table below. For restriction on data type sequences please see the FLEX FIFO document.

FD2<3:0>	DATA TYPE	FD2<3:0>	DATA TYPE	FD2<3:0>	DATA TYPE	FD2<3:0>	DATA TYPE
0000	Reserved	0100	Reserved	1000	Reserved	1100	Reserved
0001	PPG_LED1	0101	Pilot LED1	1001	Reserved	1101	Reserved
0010	Reserved	0110	Reserved	1010	Reserved	1110	Reserved
0011	PPG_LED3	0111	Pilot LED3	1011	Reserved	1111	Reserved

FD1: FIFO Data Time Slot 1

These bits set the data type for element 1 of the FIFO.

The FIFO can hold up to 32 samples. Each sample can hold up to four elements and each element is 3 bytes wide. The data type that gets stored in the 3 bytes is configured by FD1, FD2, FD3, and FD4 according to the table below. For restriction on data type sequences please refer to the *FIFO Description* section.

FD1<3:0>	DATA TYPE	FD1<3:0>	DATA TYPE	FD1<3:0>	DATA TYPE	FD1<3:0>	DATA TYPE
0000	Reserved	0100	Reserved	1000	Reserved	1100	Reserved
0001	PPG_LED1	0101	Pilot LED 1	1001	Reserved	1101	Reserved
0010	Reserved	0110	Reserved	1010	Reserved	1110	Reserved
0011	PPG_LED3	0111	Pilot LED3	1011	Reserved	1111	Reserved

FIFO Data Control Register 2 (0x0A)

BIT	7	6	5	4	3	2	1	0	
Field		FD4	[3:0]		FD3[3:0]				
Reset		0>	(0		0x0				
Access Type		Write,	Read			Write,	Read		

FD4: FIFO Data Time Slot 4

These bits set the data type for element 4 of the FIFO.

The FIFO can hold up to 32 samples. Each sample can hold up to four elements and each element is 3 bytes wide. The data type that gets stored in the 3 bytes is configured by FD1, FD2, FD3, and FD4 according to the table below. For restriction on data type sequences please see the FLEX FIFO document.

FD4<3:0>	DATA TYPE	FD4<3:0>	DATA TYPE	FD4<3:0>	DATA TYPE	FD4<3:0>	DATA TYPE
0000	Reserved	0100	Reserved	1000	Reserved	1100	Reserved
0001	PPG_LED1	0101	Pilot LED1	1001	Reserved	1101	Reserved
0010	Reserved	0110	Reserved	1010	Reserved	1110	Reserved
0011	PPG_LED3	0111	Pilot LED3	1011	Reserved	1111	Reserved

Integrated Heart-Rate Sensor for In-Ear Applications

FD3: FIFO Data Time Slot 3

These bits set the data type for element 3 of the FIFO.

The FIFO can hold up to 32 samples. Each sample can hold up to four elements and each element is 3 bytes wide. The data type that gets stored in the 3 bytes is configured by FD1, FD2, FD3, and FD4 according to the table below. For restriction on data type sequences please refer to the *FIFO Description* section.

FD3<3:0>	DATA TYPE	FD3<3:0>	DATA TYPE	FD3<3:0>	DATA TYPE	FD3<3:0>	DATA TYPE
0000	Reserved	0100	Reserved	1000	Reserved	1100	Reserved
0001	PPG_LED1	0101	Pilot LED1	1001	Reserved	1101	Reserved
0010	Reserved	0110	Reserved	1010	Reserved	1110	Reserved
0011	PPG_LED3	0111	Pilot LED3	1011	Reserved	1111	Reserved

System Control (0x0D)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	-	-	FIFO_EN	SHDN	RESET
Reset	-	-	-	-	-	0x0	0x0	0x0
Access Type	-	-	-	-	-	Write, Read	Write, Read	Write, Read

FIFO_EN: FIFO Enable

VALUE	UE ENUMERATION DECODE				
0	OFF	Push to FIFO is disabled, but the read and write pointers and the data in the FIFO are all held at their values before FIFO_EN is set to 0.			
1	ON	The FIFO is enabled. When this bit is set the FIFO is flushed of all old data and the new samples start loading from pointer zero.			

SHDN: Shutdown Control

The part can be put into a power-save mode by setting this bit to one. While in power-save mode, all registers retain their values, and write/read operations function as normal. All interrupts are cleared to zero in this mode.

VALUE	ENUMERATION	DECODE
0	OFF	The part is in normal operation. No action taken.
1	ON	The part can be put into a power-save mode by writing a '1' to this bit. While in this mode all registers remain accessible and retain their data. ADC conversion data contained in the registers are previous values. Writeable registers also remain accessible in shutdown. All interrupts are cleared. In this mode the oscillator is shutdown and the part draws minimum current. If this bit is asserted during a active conversion then the conversion completes before the part shuts down.

Integrated Heart-Rate Sensor for In-Ear Applications

RESET: Reset Control

When this bit is set, the part initiates a forced power-on-reset sequence. All configuration, threshold and data registers including distributed registers are reset to their power-on-state. This bit then automatically becomes '0' after the reset sequence is completed.

VALUE	ENUMERATION	DECODE
0	OFF	The part is in normal operation. No action taken.
1	ON	The part initiates a forced power-on-reset sequence. All configuration, threshold and data registers including distributed registers are reset to their power-on-state. This bit then automatically becomes '0' after the reset sequence is completed.

PPG Configuration 1 (0x0E)

BIT	7	6	5	4	3	2	1	0	
Field	PPG_ADC	_RGE[1:0]	PPG_SR[3:0]			1:0] PPG_SR[3:0] PPG_LED_PW[D_PW[1:0]
Reset	0>	k0	0x0			0>	(0		
Access Type	Write,	Read	Write, Read		Write,	Read			

PPG_ADC_RGE: PPG ADC Range Control

These bits set the ADC range of the PPG sensor as shown in the table below.

PPG_ADC_RGE<1:0>	LSB [PA]	FULL SCALE [NA]
00	7.8125	4096
01	15.625	8192
10	31.25	16384
11	62.5	32768

PPG_SR: PPG Sample Rate Control

PPG Sample Rate Control

These bits set the effective sampling rate of the PPG sensor as shown in the table below.

Note: If a sample rate is set can not be supported by the selected pulse width and LED mode then the highest available sample rate will be automatically set. The user can read back this register to confirm the sample rate.

PPG_SR<3:0>	SAMPLES PER SECOND	PULSES PER SAMPLE, N
0000	10	1
0001	20	1
0010	50	1
0011	84	1
0100	100	1
0101	200	1
0110	400	1
0111	800	1

PPG_SR<3:0>	SAMPLES PER SECOND	PULSES PER SAMPLE, N
1000	1000	1
1001	1600	1
1010	3200	1
1011	10	2
1100	20	2
1101	50	2
1110	84	2
1111	100	2

Integrated Heart-Rate Sensor for In-Ear Applications

NUMBER OF ADC CONVER- SIONS PER SAMPLE	PPG_LED_PW = 0 (50US)	PPG_LED_PW = 1 (100US)	PPG_LED_PW = 2 (200US)	PPG_LED_PW = 3 (400US)
1 LED, N = 1	3200	1600	1000	1000
2 LED, N = 1	1600	800	800	400
1 LED, N = 2	100	100	100	100
2 LED, N = 2	100	100	100	84

Maximum Sample Rates Supported for all the Pulse Widths and Number of LEDs:

PPG_LED_PW: LED Pulse Width Control

These bits set the pulse width of the LED drivers and the integration time of PPG ADC as shown in the table below.

PPG_LED_PW<1:0>	PULSE WIDTH [US]	INTEGRATION TIME [US]	RES BITS
00	50	50	19
01	100	100	19
10	200	200	19
11	400	400	19

PPG Configuration 2 (0x0F)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	-	-	SMP_AVE[2:0]		
Reset	-	-	-	-	-	0x0		
Access Type	-	-	-	-	-	Write, Read		

SMP_AVE: Sample Averaging Options

To reduce the amount of data throughput, adjacent samples (in each individual channel) can be averaged and decimated on the chip by setting this register.

These bits set the number of samples that are averaged on chip before being written to the FIFO.

SMP_AVE[2:0]	SAMPLE AVERAGE
000	1 (No Averaging)
001	2
010	4
011	8
100	16
101	32
110	32
111	32

Integrated Heart-Rate Sensor for In-Ear Applications

Prox Interrupt Threshold (0x10)

BIT	7	6	5	4	3	2	1	0
Field		PROX_INT_THRESH[7:0]						
Reset		0x00						
Access Type		Write, Read						

PROX_INT_THRESH: Proximity Mode Interrupt Threshold

This register sets the IR ADC count that will trigger the beginning of HR mode. The threshold is defined as the 8 MSB bits of the ADC count. For example, if PROX_INT_THRESH[7:0] = 0x01, then an ADC value of 1023 (decimal) or higher triggers the PROX interrupt. If PROX_INT_THRESH[7:0] = 0xFF, then only a saturated ADC triggers the interrupt.

LED1 PA (0x11)

BIT	7	6	5	4	3	2	1	0
Field		LED1_PA[7:0]						
Reset		0x00						
Access Type		Write, Read						

LED1_PA: LED 1 (IR) Current Pulse Amplitude.

These bits set the nominal current pulse amplitude of LED 1, as shown in the table below.

LED1_RGE<1:0>	00 (50MA)	01 (100MA)	10 (150MA)	11 (200MA)
LED1_PA<7:0>	LED Current[mA]	LED Current[mA]	LED Current[mA]	LED Current[mA]
0000000	0	0	0	0
0000001	0.2	0.4	0.6	0.8
00000010	0.4	0.8	1.2	1.6
00000011	0.6	1.2	1.8	2.4
1111100	50.4	100.8	151.2	201.6
1111101	50.6	101.2	151.8	202.4
1111110	50.8	101.6	152.4	203.2
1111111	51	102	153	204
LSB	0.2	0.4	0.6	0.8

Note: For LED Current more than 100mA, VLED must be 4.5V or above.

Integrated Heart-Rate Sensor for In-Ear Applications

LED3 PA (0x13)

BIT	7	7 6		4	3	2	1	0							
Field		LED3_PA[7:0]													
Reset				0x	00										
Access Type				Write,	Read										

LED3_PA: LED 3 (Green) Current Pulse Amplitude

These bits set the nominal current pulse amplitude of LED 3, as shown in the table below.

LED3_RGE<1:0>	00 (50MA)	01 (100MA)	10 (150MA)	11 (200MA)
LED3_PA<7:0>	LED Current[mA]	LED Current[mA]	LED Current[mA]	LED Current[mA]
0000000	0	0	0	0
0000001	0.2	0.4	0.6	0.8
00000010	0.4	0.8	1.2	1.6
00000011	0.6	1.2	1.8	2.4
1111100	50.4	100.8	151.2	201.6
1111101	50.6	101.2	151.8	202.4
1111110	50.8	101.6	152.4	203.2
1111111	51	102	153	204
LSB	0.2	0.4	0.6	0.8

Note: For LED Current more than 100mA, VLED must be 4.5V or above.

LED Range (0x14)

BIT	7	6	5	4	3	2	1	0		
Field	-	-	LED3_F	RGE[1:0]	-	-	LED1_RGE[1:0]			
Reset	-	-	0x	.00	-	-	0x00			
Access Type	-	-	Write,	Read	-	-	Write,	Read		

LED3_PA: LED 3 (Green) Current Pulse Amplitude

These bits set the nominal current pulse amplitude of LED 3, as shown in the table below.

LED3_RGE<1:0>	LED CURRENT[MA]
00	50
01	100
10	150
11	200

Integrated Heart-Rate Sensor for In-Ear Applications

LED1_RGE: LED 1 (IR) Current Control

Range selection of the LED current. Please refer to LED1_PA[7:0] for more details. For LED Current more than 100mA, VLED must be 4.5V or above.

LED1_RGE<1:0>	LED CURRENT[MA]
00	50
01	100
10	150
11	200

LED PILOT PA (0x15)

BIT	7	6	5	4	2	1	0							
Field		PILOT_PA[7:0]												
Reset				0x	00									
Access Type		Write, Read												

PILOT_PA: Proximity Mode LED Pulse Amplitude.

The purpose of PILOT_PA<7:0> is to set the LED power during the PROX mode, as well as in Multi-LED mode. These bits set the current pulse amplitude for the pilot mode as shown in the table below.

When LED x is used, the respective LEDx_RGE<1:0> is used to control the range of the LED driver in conjunction with PILOT_PA<7:0>. For instance, if LED1 is used in the PILOT mode, then, LED1_RGE<1:0> together with PILOT_PA<7:0> will be used to set the LED1 current.

LEDX_RGE<1:0>	00 (50MA)	01 (100MA)	10 (150MA)	11 (200MA)
PILOT_PA<7:0>	LED Current[mA]	LED Current[mA]	LED Current[mA]	LED Current[mA]
0000000	0	0	0	0
0000001	0.2	0.4	0.6	0.8
0000010	0.4	0.8	1.2	1.6
00000011	0.6	1.2	1.8	2.4
1111100	50.4	100.8	151.2	201.6
1111101	50.6	101.2	151.8	202.4
1111110	50.8	101.6	152.4	203.2
1111111	51	102	153	204
LSB	0.2	0.4	0.6	0.8

Note: For LED Current more than 100mA, VLED must be 4.5V or above.

Part ID (0xFF)

BIT	7	6	5	4	3	2	1	0						
Field		PART_ID[7:0]												
Reset				0x	1E									
Access Type				Read	Only									

PART_ID: Part Identifier

This register stores the Part identifier for the chip.

Integrated Heart-Rate Sensor for In-Ear Applications

Applications Information

Power Sequencing and Requirements

Power-Up Sequencing

It is recommended to power the VDD_ANA supply first, then VDD_DIG before the LED power supplies (V_{LED}). VDD_ANA and VDD_DIG can be powered on at the same time. The interrupt and I²C pins can be pulled up to an external voltage even when the power supplies are not powered up.

After the power is established, an interrupt occurs to alert the system that the sensor is ready for operation. Reading the $I^{2}C$ interrupt register clears the interrupt, as shown in Figure 2.

Power-Down Sequencing

The sensor is designed to be tolerant of any power supply sequencing on power-down.

I²C Interface

The MAX86160 features an I²C/SMBus-compatible, 2-wire serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA and SCL facilitate communication between the MAX86160 and the master at clock rates up to 400kHz. The master generates SCL and initiates data transfer on the bus. The master device writes data to the MAX86160 by transmitting the proper slave address followed by data. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted to the MAX86160 is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the MAX86160 transmits the proper slave address followed by a series of nine SCL pulses.

The MAX86160 transmits data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START (S) or REPEATED START (Sr) condition, a not acknowledge, and a STOP (P) condition. SDA operates as both an input and an open-drain output. A pullup resistor, typically greater than 1000 Ω , is required on SDA. SCL operates only as an input. A pullup resistor, typically greater than 1000 Ω , is required on SDA. SCL operates on the bus, or if the single master has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs of the MAX86160 from high voltage spikes on the bus lines and minimize crosstalk and undershoot of the bus signals.

Bit Transfer

One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals. See the START and STOP Conditions section.

Figure 2: Power-Up Sequence of the Power Supply Rails

Integrated Heart-Rate Sensor for In-Ear Applications

START and STOP Conditions

SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high . A START condition from the master signals the beginning of a transmission to the MAX86160. The master terminates transmission, and frees the bus, by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition.

Early STOP Conditions

The MAX86160 recognizes a STOP condition at any point during data transmission, except when the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition.

Slave Address

A bus master initiates communication with a slave device by issuing a START condition followed by the 7-bit slave ID. When idle, the MAX86160 waits for a START condition followed by its slave ID. The serial interface compares each salve ID bit by bit, allowing the interface to power down and disconnect from SCL immediately if an incorrect slave ID is detected. After recognizing a START condition followed by the correct slave ID, the MAX86160 is programmed to accept or send data. The LSB of the slave ID word is the read/write (R/W) bit. R/W indicates whether the master is writing to or reading data from the MAX86160 (R/W = 0 selects a write condition, R/W = 1 selects a read condition). After receiving the proper slave ID, the MAX86160 issues an ACK by pulling SDA low for one clock cycle.

The MAX86160 slave ID consists of seven fixed bits, B7–B1 (set to 0b1011110). The most significant slave ID bit (B7) is transmitted first, followed by the remaining bits.

Figure 3. START, STOP, and REPEATED START Conditions

Table 1: MAX86160 I²C Slave Address

B7	В6	В5	B4	В3	В2	B1	В0	WRITE ADDRESS	READ ADDRESS	
1	0	1	1	1	1	0	R/W	0xBC	0xBD	

Integrated Heart-Rate Sensor for In-Ear Applications

Acknowledge

The acknowledge bit (ACK) is a clocked 9th bit that the MAX86160 uses to handshake receipt each byte of data when in write mode. The MAX86160 pulls down SDA during the entire master-generated 9th clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master retries communication. The master pulls down SDA during the 9th clock cycle to acknowledge receipt of data when the MAX86160 is in read mode. An acknowledge is sent by

the master after each read byte to allow data transfer to continue. A not-acknowledge is sent when the master reads the final byte of data from the MAX86160, followed by a STOP condition.

Write Data Format

For the write operation, send the slave ID as the first byte followed by the register address byte and then one or more data bytes. The register address pointer increments automatically after each byte of data received, so for example the entire register bank can be written by at one time. Terminate the data transfer with a STOP condition. The write operation is shown in the following figure.

Figure 4. I²C Acknowledge

Figure 5. Writing One Data Byte to MAX86160

Integrated Heart-Rate Sensor for In-Ear Applications

Read Data Format

For the read operation, two I²C operations must be performed. First, the slave ID byte is sent followed by the I²C register that you wish to read. Then a REPEAT START (Sr) condition is sent, followed by the read slave ID. The MAX86160 then begins sending data beginning with the register selected in the first operation. The read pointer increments automatically, so the MAX86160 continues sending data from additional registers in sequential order until a STOP (P) condition is received. The exception to this is the FIFO_DATA register, at which the read pointer no longer increments when reading additional bytes. To read the next register after FIFO_DATA, an I^2C write command is necessary to change the location of the read pointer.

Figure below show the process of reading one byte or multiple bytes of data.

An initial write operation is required to send the read register address.

Data is sent from registers in sequential order, starting from the register selected in the initial I²C write operation. If the FIFO_DATA register is read, the read pointer will not automatically increment, and subsequent bytes of data contain the contents of the FIFO.

Figure 6. Reading One Byte of Data from MAX86160

Integrated Heart-Rate Sensor for In-Ear Applications

Figure 7. Reading Multiple Bytes of Data from the MAX86160

FIFO Description

Overview

The FLEX FIFO is designed to support configurable number of elements. So the number of elements in each sample is configurable. All elements are of same width, but may be interpreted differently, depending on how the FIFO data is configured. MS bits of any element that is smaller than this width is padded with zeroes. Reading FIFO through the I²C returns only the active FIFO Data corresponding to the current configuration.

The design is also scalable, to support any

- Element width, in number of bits
- Sample length, in number of elements
- FIFO depth, in number of samples.

Each sample is comprised of up to four elements. The actual number of elements in a sample depends on:

- FIFO Data Control Registers 1
- FIFO Data Control Registers 2

FIFO Data Types

FIFO Data Control Registers

Table 2 shows FIFO data control registers which are used for enabling any of the PPG mode.

Table 2. FIFO Data Control Registers

ADDRESS	REGISTER NAME	HARDWIRED VALUE	B7	B6	B5	B4	В3	B2	B1	В0
0x09	FIFO Data Configuration Register 1	00	FD2<3:0> FD1<3:0>							
0x0A	FIFO Data Configuration Register 2	00		FD4•	<3:0>	FDS3	<3:0>			

FD1, FD2, FD3, and FD4 (FDx<3:0> are configured as shown in <u>Table 3</u> to hold data as programmed. It also shows the format of the data in the FIFO.

Table 3. FDx Format Configurations

FDX<3:0>	DATA TYPE	FIFO CONTENT OR DATA DESCRIPTION	NOTE
0000	Reserved	Reserved	
0001	PPG	PPG_DATA[18:0] for LED1 (IR)	MS bits should be masked
0010	Reserved	Reserved	
0011	PPG	PPG_DATA[18:0] for LED3 (Green)	MS bits should be masked
0100	Reserved	Reserved	
0101	Reserved	PPG_DATA[18:0] for Pilot LED1 (IR)	MS bits should be masked
0110	Reserved	Reserved	
0111	PPG	PPG_DATA[18:0] for Pilot LED3 (Green)	MS bits should be masked
1000	Reserved	Reserved	
1001	Reserved	Reserved	
1010	Reserved	Reserved	
1011	Reserved	Reserved	
1100	Reserved	Reserved	
1101	Reserved	Reserved	
1110	Reserved	Reserved	
1111	Reserved	Reserved	

- If a configuration uses only one element, FD2, FD3 and FD4 are programmed as zeroes, and FD1 is programmed to the required data type.
- If a configuration uses only two elements, FD3 and FD4 are programmed as zeroes, and FD1 and FD2 are programmed to the required data types.
- If a configuration uses only three elements, FD4 is programmed as zeroes, and FD1, FD2 and FD3 are programmed to the required data types.
- If a configuration uses all four elements, FD1, FD2, FD3 and FD4 are programmed to the required Data Types.

Integrated Heart-Rate Sensor for In-Ear Applications

PPG Data is left justified as shown in the <u>Table 4</u>. In other words, the MSB bit is always in the bit 18 position regardless of ADC resolution setting. FIFO_DATA[23:19] are "don't care" and should be masked.

Table 4. FIFO Data Format

											FIFC	D_DA	TA[2	3:0]										
		BYTE 1							BYTE 2						BYTE 3									
ADC Resolution	[23]	[22]	[21]	[20]	[19]	[18]	[17]	[16]	[15]	[14]	[13]	[12]	[11]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
PPG(19-bit)	х	х	х	х	х																			

Example 1: Configurations for 2 elements: PPG (LED1) + PPG (LED3)

FD1<3:0>	FD2<3:0>	FD3<3:0>	FD4<3:0>
0001 (PPG)	0011 (PPG)	0000 (None)	0000 (None)

Example 2: Configurations for 1 elements: PPG (LED1)

FD1<3:0>	FD2<3:0>	FD3<3:0>	FD4<3:0>
0001 (PPG)	0000 (None)	0000 (None)	0000 (None)

A sample in the FIFO is shown in Table 5.

Table 5. Sample of FIFO Data Index

INDEX WITHIN A SAMPLE	FIFO_DATA[23:0]
0	FD1 data, if enabled
1	FD2 data, if enabled
2	FD3 data, if enabled
3	FD4 data, if enabled

FIFO Handling

Only the elements corresponding to the active FIFO data are pushed onto the FIFO, and only these are read through the I^2C interface. The unused FIFO data are not read through the I^2C , so they are "don't care" and not padded with zeroes. The FIFO handling registers are shown in Table 6.

Table 6. FIFO Handling Registers

ADDRESS	REGISTER NAME	HARDWIRED VALUE	B7	B6	B5	B4	В3	B2	B1	В0
0x04	FIFO Write Pointer	00				FIFO_WR_PTR<4:0>				
0x05	Overflow Counter	00				OVF_COUNTER<4:0>				
0x06	FIFO Read Pointer	00	FIFO_RD_PTR<4:0>							
0x07	FIFO Data Register	00	FIFO_DATA<7:0>							
0x08	FIFO Configuration	00				FIFO_ROLLS_ON_ FULL	FI	FO_A_F	ULL<3:)>

Write Pointer to the FIFO, FIFO_WR_PTR[4:0]:

This points to the location where the next sample will be written. This pointer advances for each sample pushed on to the FIFO.

Read Pointer to the FIFO, FIFO_RD_PTR[4:0]:

This points to the location from where the AP gets the next sample from the FIFO through the $I^{2}C$ interface. This advances each time a sample is popped from the FIFO. The AP may also write to this pointer after reading the samples. This allows rereading (or retrying) samples from the FIFO.

FIFO Data Read, FIFO_DATA[7:0]:

This is a read-only register and is used to get data from the FIFO. Reading FIFO_DATA register does not automatically increment the register address. So burst reading this register reads the same address over and over. The length of a sample is determined by the number of active elements in the sample. Each element is three bytes long, so, to read one complete sample, the FIFO_DATA register has to be read N times, where

Reading from the FIFO

Normally, reading registers from the I^2C interface autoincrements the register address pointer, so that all the registers can be read in a burst read without an I^2C restart event. In this case, this holds true for all registers except for the FIFO_DATA register (register 0x07).

Reading the FIFO_DATA register does not automatically increment the register address. Burst reading this register reads data from the same address over and over. Each sample comprises multiple bytes of data, so multiple bytes should be read from this register (in the same transaction) to get one full sample.

FIFO_RD_PTR advances only after burst reading the entire sample.

Each sample is read from the FIFO in the following order, when all **four** elements are active.

N = (Number of Active E	Elements) x	(Number of Bytes, 3)
-------------------------	-------------	----------------------

Table 7. FIFO Sample Elements Order with Four Active Elements

			FIFO_RD_PTR[4:0]
	1st read	Element 1[23:16]	n
	2nd read	Element 1[15:8]	n
	3rd read	Element 1[7:0]	n
	4th read	Element 2[23:16]	n
	5th read	Element 2[15:8]	n
n Comploi	6th read	Element 2[7:0]	n
n Sample:	7th read	Element 3[23:16]	n
	8th read	Element 3[15:8]	n
	9th read	Element 3[7:0]	n
	10th read	Element 4[23:16]	n
	11th read	Element 4[15:8]	n
	12th read	Element 4[7:0]	n

Integrated Heart-Rate Sensor for In-Ear Applications

			FIFO_RD_PTR[4:0]
	13th read	Element 1[23:16]	n+1
	14th read	Element 1[15:8]	n+1
	15th read	Element 1[7:0]	n+1
	16th read	Element 2[23:16]	n+1
	17th read	Element 2[15:8]	n+1
n I 1 Complex	18th read	Element 2[7:0]	n+1
n+1 Sample:	19th read	Element 3[23:16]	n+1
	20th read	Element 3[15:8]	n+1
	21st read	Element 3[7:0]	n+1
	22nd read	Element 4[23:16]	n+1
	23rd read	Element 4[15:8]	n+1
	24th read	Element 4[7:0]	n+1
-			
		· ·	

Table 7. FIFO Sample Elements Order with Four Active Elements (continued)

Each sample is read from the FIFO in the following order, when any two elements are active.

Table 8. FIFO Sample Elements Order with Two Active Elements

			FIFO_RD_PTR[4:0]
	1st read	Element 1[23:16]	n
	2nd read	Element 1[15:8]	n
n Sampla	3rd read	Element 1[7:0]	n
n Sample:	4th read	Element 2[23:16]	n
	5th read	Element 2[15:8]	n
	6th read	Element 2[7:0]	n
n+1 Sample:	7th read	Element 1[23:16]	n+1
	8th read	Element 1[15:8]	n+1
	9th read	Element 1[7:0]	n+1
	10th read	Element 2[23:16]	n+1
	11th read	Element 2[15:8]	n+1
	12th read	Element 2[7:0]	n+1

Integrated Heart-Rate Sensor for In-Ear Applications

Enable Push on FIFO FULL, FIFO_ROLLS_ON_FULL: This bit determines whether samples get pushed on to the FIFO when it is full. If push is enabled when FIFO is full, old samples are lost. Otherwise, new samples are lost.

Overflow counter, OVF_COUNTER[4:0]: When the FIFO is full, samples are lost. OVF_COUNTER counts the number of samples lost. It saturates at 0x1F. When a complete sample is popped from the FIFO (when the read pointer advances), and OVF_COUNTER is reset to zero.

FIFO Almost Full Counter, FIFO_AFULL_COUNT[3:0]: This determines the amount of space available in the FIFO, to declare that it is Almost Full.

FIFO Almost Full status, and Interrupt Enable, A_FULL and MSK_A_FULL: When the FIFO is almost full, Almost Full interrupt is asserted if it is enabled by the MSK_A_FULL bit. This prompts the AP to read some samples before the FIFO gets full. A_FULL bit is cleared when the status register is read.

The AP reads the FIFO_WR_PTR and FIFO_RD_PTR to calculate the number of samples available in the FIFO, and read as many samples as it needs up to a maximum of available samples. The AP may then choose to write the new read pointer to the FIFO_RD_PTR register. If necessary to retry, the AP updates the FIF_RD_PTR register with appropriate value.

Example: Following is an example of the pseudo code:

First transaction: Get the FIFO_WR_PTR and FIFO_RD_PTR:

START; Send device address + write mode Send address of FIFO_WR_PTR; REPEATED_START; Send device address + read mode Read FIFO_WR_PTR; Read OVF_COUNTER; Read FIFO_RD_PTR; STOP;

AP evaluates the number of samples to be read from the FIFO:

If OVF_COUNTER is zero,

NUM_AVAILABLE_SAMPLES = FIFO_WR_PTR - FIFO_RD_PTR (**Note:** pointer wrap around should be taken into account)

If OVF_COUNTER is non-zero some samples are lost, and NUM_AVAILABLE_SAMPLES = 32

NUM_SAMPLES_TO_READ = < less than or equal to NUM_AVAILABLE_SAMPLES >

Next transaction: Read NUM_SAMPLES_TO_READ samples from the FIFO:

START; Send device address + write mode Send address of FIFO_DATA; REPEATED_START; Send device address + read mode for (i = 0; i < NUM_SAMPLES_TO_READ; i++) { Read FIFO_DATA; Save Data_Item1[23:16]; Read FIFO_DATA; Save Data_Item1[15:8]; Read FIFO_DATA; Save Data_Item1[7:0];

Integrated Heart-Rate Sensor for In-Ear Applications

Read FIFO_DATA; Save Data_Item2[23:16]; Read FIFO_DATA; Save Data_Item2[15:8]; Read FIFO_DATA; Save Data_Item2[7:0]; Read FIFO_DATA; Save Data_Item3[23:16]; Read FIFO_DATA; Save Data_Item3[15:8]; Read FIFO_DATA; Save Data_Item3[7:0]; }

STOP;

Next transaction: Write to FIFO_RD_PTR register. If the pervious transaction was successful, FIFO_RD_PTR points to the next sample in the FIFO, and this transaction is not necessary. Otherwise, the AP will update the FIFO_RD_PTR appropriately to New_FIFO_RD_PTR, so that the samples will be re-read.

START; Send device address + write mode Send address of FIFO_RD_PTR; Write New_FIFO_RD_PTR; STOP;

FIFO Flush

The FIFO gets flushed if FIFO_EN = 1, and if any of the following conditions are met:

- I²C write to any of the PPG configuration registers
- I²C write to any of the FIFO data control registers
- At the rising-edge of FIFO_EN
- Enter and exit PROX mode

When the FIFO gets flushed, FIFO_WR_PTR and FIFO_RD_PTR are reset to zero, and the contents of the FIFO are lost.

If FIFO contents should not be lost, set FIFO_EN = 0, before writing to any of the registers listed above.

Note: FIFO_EN bit is in the System Control Register. Data will be pushed to the FIFO, when FIFO_EN = 1. When FIFO_EN = 0, push to FIFO is disabled, but it holds the status of the FIFO (FIFO pointers and the actual data).

Integrated Heart-Rate Sensor for In-Ear Applications

FIFO Organization

Figure 8 shows how the samples are organized in the FIFO, when all four elements in a sample are active.

	I2C Byte 1 I2C Byte 2 I2C Byte 3	
FIFO Pointers[4:0]	23 16, 15 8, 7 0	RAM Physical Address[6:0]
	ELEMENT 1, SAMPLE N	0x00
0x00	ELEMENT 2, SAMPLE N	0x01
	ELEMENT 3, SAMPLE N	0x02
	ELEMENT 4, SAMPLE N	0x03
	ELEMENT 1, SAMPLE N+1	0x04
0x01	ELEMENT 2, SAMPLE N+1	0x05
	ELEMENT 3, SAMPLE N+1	0x06
	ELEMENT 4, SAMPLE N+	0x07
	ELEMENT 1, SAMPLE N+2	0x08
0x02	ELEMENT 2, SAMPLE N+2	0x09
	ELEMENT 3, SAMPLE N+2	0x0A
	ELEMENT 4, SAMPLE N+2	0x0B
	ELEMENT 1, SAMPLE N+31	0x7C
0.45	ELEMENT 2, SAMPLE N+31	0x7D
0x1F	ELEMENT 3, SAMPLE N+31	0x7E
	ELEMENT 4, SAMPLE N+31	0x7F

Figure 8. Example of FIFO Organization with Four Active Elements

Integrated Heart-Rate Sensor for In-Ear Applications

	I2C Byte 1	I2C Byte 2	I2C Byte 3	
FIFO Pointers[4:0]	23 16, 15		0	RAM Physical Address[6:0]
	ELEN	MENT 1, SAMPLE N		0x00
0x00	ELEN	IENT 2, SAMPLE N		0x01
		Not used		0x02
		Not used		0x03
	ELEM	ENT 1, SAMPLE N+1		0x04
0x01	ELEME	ENT 2, SAMPLE N+1		0x05
		Not used		0x06
		Not used		0x07
	ELEM	ENT 1, SAMPLE N+2		0x08
0x02	ELEME	ENT 2, SAMPLE N+2		0x09
		Not used		0x0A
		Not used		0x0B
	ELEME	NT 1, SAMPLE N+3		0x7C
0x1F	ELEME	NT 2, SAMPLE N+3		0x7D
		Not used		0x7E
		Not used		0x7F

Figure 9 shows how the samples are organized in the FIFO, when only two elements in a sample are active.

Figure 9. Example of FIFO Organization with Two Active Elements

Integrated Heart-Rate Sensor for In-Ear Applications

Typical Application Circuits

Ordering Information

PART	TEMP	PIN-	[TOP
NUMBER	RANGE	PACKAGE	MARKING]
MAX86160EFN+T	-40°C to +85°C	18 PIN LGA	

+ Denotes a lead(Pb)-free/RoHS-compliant package.

T Denotes tape-and-reel.

Integrated Heart-Rate Sensor for In-Ear Applications

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	9/16	Initial release	—

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.