

STW21N150K5

N-channel 1500 V, 0.7 Ω typ.,14 A MDmesh[™] K5 Power MOSFET in a TO-247 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V_{DS}	R _{DS(on)} max.	ID	Ρτοτ
STW21N150K5	1500 V	0.9 Ω	14 A	446 W

- Industry's lowest R_{DS(on)} * area
- Industry's best figure of merit (FoM)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STW21N150K5	21N150K5	TO-247	Tube

DocID026818 Rev 3

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-247 package information	9
5	Revisio	n history	11

1 Electrical ratings

 Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 30	V
ID	Drain current at T _C = 25 °C	14	А
lD	Drain current at T _c = 100 °C	8.7	А
Idм ⁽¹⁾	Drain current (pulsed)	56	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	446	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
Tj	Operating junction temperature	- 55 to 150	°C
T _{stg}	Storage temperature	- 55 10 150	C

Notes:

 $^{(1)}Pulse width limited by safe operating area <math display="inline">^{(2)}I_{SD} \leq$ 14 A, di/dt \leq 100 A/µs, V_{Peak} \leq V_{(BR)DSS} $^{(3)}V_{DS} \leq$ 1200 V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj} -case	Thermal resistance junction-case	0.28	°C/W
R _{thj-amb}	Thermal resistance junction-amb	50	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Max current during repetitive or single pulse avalanche	5	A
E _{AS} ⁽²⁾	Single pulse avalanche energy	1100	mJ

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by $T_{\mbox{Jmax}}$

 $^{(2)}Starting~T_J$ = 25 °C, I_D = $I_{AS},~V_{DD}$ = 50 V

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5: Static						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	1500			V
	I _{DSS} Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 1500 V$			1	μA
IDSS		V _{GS} = 0 V, V _{DS} = 1500 V, Tc = 125 °C			50	μA
I _{GSS}	Gate body leakage current	$V_{DS} = 0, V_{GS} = \pm 20 V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 7 \text{ A}$		0.7	0.9	Ω

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	3145	-	pF
Coss	Output capacitance	$V_{GS} = 0 V, V_{DS} = 100 V,$	-	172	-	pF
Crss	Reverse transfer capacitance	f = 1 MHz		1	-	pF
Co(tr) ⁽¹⁾	Equivalent capacitance time related		-	161	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{DS} = 0 V$ to 1200 V, $V_{GS} = 0 V$	-	65	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	2.4	-	Ω
Qg	Total gate charge	$V_{DD} = 1200 \text{ V}, I_D = 7 \text{ A}$	-	89	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	16	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	59	-	nC

Table 6: Dynamic

Notes:

 $^{(1)}$ Time related is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

 $^{(2)}\mathsf{Energy}$ related is defined as a constant equivalent capacitance giving the same stored energy as Coss when VDS increases from 0 to 80% VDSS

Table 7. Switching times						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 750 V, I _D = 3.5 A,	-	34	-	ns
tr	Rise time	$R_G = 4.7 \Omega V_{GS} = 10 V$	-	14	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 17: "Unclamped	-	134	-	ns
t _f	Fall time	inductive load test circuit")	-	26	-	ns

Table 7: Switching times

Electrical characteristics

Table 8: Source drain diode							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Isd	Source-drain current		-		7	А	
Isdm	Source-drain current (pulsed)		-		28	А	
Vsd ⁽¹⁾	Forward on voltage	$I_{SD} = 7 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.5	V	
trr	Reverse recovery time	$I_{SD} = 7 \text{ A}, V_{DD} = 60 \text{ V}$	-	448		ns	
Qrr	Reverse recovery charge	di/dt = 100 A/µs,	-	8.24		μC	
I _{RRM}	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	36.8		А	
trr	Reverse recovery time	I _{SD} = 7 A,V _{DD} = 60 V	-	564		ns	
Qrr	Reverse recovery charge	di/dt = 100 A/µs,	-	9.48		μC	
I _{RRM}	Reverse recovery current	Tj = 150 °C (see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	33.6		A	

Notes:

 $^{(1)}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _(BR) gso	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	30		-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

DocID026818 Rev 3

Electrical characteristics

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 package information

Package information

Table 10: TO-247 package mechanical data

STW21N150K5

Dim.		mm.				
Dini.	Min.	Тур.	Max.			
A	4.85		5.15			
A1	2.20		2.60			
b	1.0		1.40			
b1	2.0		2.40			
b2	3.0		3.40			
С	0.40		0.80			
D	19.85		20.15			
E	15.45		15.75			
е	5.30	5.45	5.60			
L	14.20		14.80			
L1	3.70		4.30			
L2		18.50				
ØP	3.55		3.65			
ØR	4.50		5.50			
S	5.30	5.50	5.70			

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
26-Aug-2015	1	First release.
10-Sep-2015	2	Text and formatting changes throughout document. Updated features on cover page. Updated sections <i>Electrical ratings</i> and <i>Electrical characteristics</i> . Added section <i>Electrical characteristics (curves)</i> . Updated section <i>TO-247 package information</i> .
01-Oct-2015	3	On cover page: - updated figure Internal schematic diagram In section Electrical characteristics: - updated and renamed table Static (was On/off states).

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

