Power Management Unit Total Power Solution for SSD

General Description

The RT5091C is a total power management solution for SSDs (Solid State Drive) with dedicated input supply voltages of 3.3V or 5V. The RT5091C incorporates three high-efficiency synchronous buck regulators and one LDO that deliver several output voltages from a single power source. This provides flexibility to support applications of different VIDs with a regulated power-on sequence.

The RT5091C can provide configurable output voltages to supply ASIC core, DDR, Flash I/O, and PHY. With a dedicated I^2C interface, it supports dynamic voltage scaling (DVS), and PS3.5/PS4 power states for minimized standby power consumption.

Ordering Information

RT5091C 🗖 📮

Package Type QW : WQFN-32L 4x4 (W-Type) —Lead Plating System G : Green (Halogen Free and Pb Free)

Note :

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Applications

Solid State Drives

Features

- Input Supply Voltage Range : 2.8V to 5.5V
- Three High-Efficiency Configurable Low-Voltage Buck Converters at Default Switching Frequency of 2MHz
 - CH1 for ASIC Core Power : Output Current : 4A
 Output Voltages Programmable by REFIN Pin or 0.7V to 1.3V in 10mV/Step Via I²C
 - CH2 for DDR Power :
 - **Output Current : 2A**
 - Output Voltages Programmable by FB2 Pin
 - CH3 for Flash I/O Power : Output Current : 2A
 Output Voltages Programmable by FB3 Pin
- One LDO of Low Quiescent Current
- ► LDO for Analog and PHY Power : Output Current : 300mA Output Voltages Programmable by FB4 Pin
- Gate Control for External N-MOSFET Against Inrush Current from Power Input
- Internal Soft-Start and Current Limit Protection for CH1 to CH3 and LDO
- STANDBY and PS3P5 Pins for PS3.5 and PS4 Power States Control
- Two Output Pins to Control External Regulators/ Switches
- One Input Pin to Sense External Regulators/ Switches Output Voltage
- High-Speed Mode I²C Interface for CH1 Output Voltage Programming
- PGOOD Indicator for VSYS, CH1 to CH3, and LDO Output Voltages Monitoring
- Power-On Sequence Control During Start-up
- Over-Voltage Protection (OVP), Under-Voltage Protection (UVP), Under-Voltage Lockout (UVLO), and Thermal Shutdown Protection
- Small 32-Lead WQFN Package

Pin Configuration

Marking Information

7B=YM DNN

7B= : Product Code YMDNN : Date Code

Typical Application Circuit

Power States Operation by l^2C & CH1 VOUT DVID by l^2C

Power States Operation by $\overline{\text{STANDBY}}$ & CH1 VOUT DVID by $I^2\text{C}$

Power States Operation by $\overline{\text{STANDBY}}$ & CH1 VOUT Adjustment at Sleep Mode & no I²C

Power States Operation by STANDBY & CH1 VOUT Adjustment via REFIN & no I²C

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	REFIN	CH1 external reference input. CH1 output voltage is equal to V _{REFIN} x 1.6.
2	VOUT1	This pin is CH1 buck feedback input. Connect this pin to CH1 buck output. To disable this rail, connect this pin to VIN.
3, 4	PVIN1	CH1 buck converter power input.
5, 6, 7, 8	LX1	CH1 buck converter switch node.
9	PS3P5	Power state control pin. Refer to PS3P5 control.
10	STANDBY	Power state control pin. Refer to $\overline{\text{STANDBY}}$ control. Internal pull low by $1\mu A.$
11	FB3	This pin is CH3 buck feedback input. Connect this pin to a resistor divider to program CH3 output voltage, or directly to CH3 output node to have a default 1.8V for CH3 output voltage. To disable this rail, connect this pin to VIN.
12	MODE	SATA 3.3V/5V select. MODE = Low, VIN = 3.3V; MODE = High, VIN = 5V. Internal pull low by 1 μ A.
13	LX3	CH3 buck converter switch node.
14	PVIN3	CH3 buck converter power input.
15	PVIN2	CH2 buck converter power input.
16	LX2	CH2 buck converter switch node.
17	VSNS	External regulator output sense. If not used, tied to GND.
18	FB2	This pin is CH2 buck feedback input. Connect this pin to a resistor divider to program CH2 output voltage, or directly to CH2 output node to have a default 1.2V for CH2 output voltage. To disable this rail, connect this pin to VIN.
19	PGOOD	This is open drain type. It indicates all rails output and VSYS is ready or not.
20	EXT_EN2	This pin is used to enable an external regulator/switch. Push-pull output. Should be floated if unused.
21	EXT_EN1	This pin is used to enable an external regulator/switch. Push-pull output. Should be floated if unused.
22	SDA	I ² C interface data signal. Connect to VIN if not used.
23	SCL	I ² C interface clock signal. Connect to VIN if not used.
24	AGND	Analog ground pin.
25	VIN	Power input.
26	GATE	This pin is used to control external power MOSFET. It should be connected to VIN if unused.
27	VSYS	System power sense.
28	PVIN4	LDO input.
29	VOUT4	LDO output.
30	FB4	This pin is LDO feedback input. Connect this pin to a resistor divider to program CH4 output voltage, or set this pin floated to have a default 1.8V for CH4 output voltage. To disable this rail, connect this pin to VIN.

Pin No.	Pin Name	Pin Function					
31	REFOUT	Reference voltage output. It provides 1% high accuracy reference 1.2V with 0.1mA source ability. Bypass to GND with a 6.8nF ceramic capacitor. Series resistors connected to this pin should be lower than $1M\Omega$.					
32	REFADJ	Reference adjustment output. Refer to PWM-VID Dynamic Voltage Control. If this pin is not used, ties to GND.					
33 (Exposed Pad)	PGND	Power ground. The exposed pad must be soldered to a large PCB and connected to PGND for maximum thermal dissipation.					

Functional Block Diagram

Operation

The RT5091C provides three high-efficiency synchronous buck regulators and one LDO for the power system of SSD.

Buck Converter

The RT5091C incorporates three high-efficiency synchronous switching buck converters that deliver programmable output voltages. They feature constant-ontime current mode for low output voltage, quick transient response, and low quiescent current. These buck converters also possess all standard protections.

Buck Over-Current Limiter (OCL)

The buck converters provides current limiter for over-current protection through detecting low-side MOSFET current, which is known as the valley current limiter behavior. If the sensed inductor current is above the current limit threshold, then current limiter will start to constrain the valley of inductor current to the current limiter threshold until inductor current drops below the current limiter threshold.

Buck Under-Voltage Protection (UVP)

The output voltages are continuously monitored for undervoltage protection. If the output voltage falls below 62.5% of the reference voltage, under-voltage protection will be triggered and then the high-side and low-side MOSFET will be turned off. The UVP circuit will turn off all rails and latched. The only way to reset the latched behavior is restarting VIN power of the RT5091C.

Buck Over-Voltage Protection (OVP)

The output voltages are continuously monitored for overvoltage protection. If the output voltage exceeds 125% of the reference voltage, over-voltage protection will be triggered and then the high-side and low-side MOSFET will be turned off. The MOSFET drivers will keep in offstate until the over-voltage protection is released.

Linear Dropout Regulator (LDO)

The RT5091C includes one high performance linear dropout regulator. The LDO contains an independent current limit and under-voltage protection circuit to prevent unexpected

applications. When the path current is above the current limit threshold, the current limit circuit adjusts the gate voltage of power stage to limit the output current. Besides, if the output voltage is lower than 60% of reference voltage, the UVP circuit will turn off all rails and latched. The only way to reset the latched behavior is restarting VIN power of the RT5091C.

LDO Under-Voltage Protection (UVP)

The output voltages are continuously monitored for under voltage protection. If the output voltage falls below 60% of the reference voltage, under-voltage protection will be triggered and VOUT4 will be turned off. The UVP circuit will turn off all rails and latched. The only way to reset the latched behavior is restarting VIN power of the RT5091C.

Over-Temperature Protection (OTP)

If chip temperature is higher than 150° C, the OTP circuit will shut down all power rails. PMIC will reboot with powerup sequence after chip temperature cools down lower than 125° C.

GPIO

The RT5091C includes two external regulators/switches enable signals and one external regulator/switch output voltage sense.

MODE

MODE is an input pin to select the threshold voltage of VIN for POR. If VIN voltage is above the threshold voltage, PMIC will begin to start up with power-up sequence.

Absolute Maximum Ratings (Note 1)

 Supply Input Voltage, VIN VSYS, PVIN1, PVIN2, PVIN3, PVIN4 GATE 	–0.3V to 6V
• LX1, LX2, LX3 to GND	
<50ns	–5V to 10V
Other Pins	–0.3V to 6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WQFN-32L 4x4	3.59W
Package Thermal Resistance (Note 2)	
WQFN-32L 4x4, θ_{JA}	27.8°C/W
WQFN-32L 4x4, θ_{JC}	
• Junction Temperature	150°C
• Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	–65°C to 150°C
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV

Recommended Operating Conditions (Note 4)

Supply Input Voltage, VIN	- 2.8V to 5.5V
Other Pins	- 0V to 5.5V
Junction Temperature Range	- –40°C to 125°C
Ambient Temperature Range	- –40°C to 85°C

Electrical Characteristics

(V_{IN} = 3.3V, T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
PMIC	IC						
VIN Voltage Range	Vvin	MODE = low/high	2.8/3.8	3.3/5	3.7/5.5	V	
VIN Supply Current	Ivin	All voltage rails, REFOUT buffer, VSNS GPIO & external MOSFET are disabled.		20		μA	
STANDBY Threshold = High	VSTANDBY_H		1.2			V	
STANDBY Threshold = Low	VSTANDBY_L				0.4	V	
PS3P5 Threshold = High	Vps3p5_h		1.2			V	
PS3P5 Threshold = Low	V _{PS3P5_L}				0.4	V	
VIN UVLO Threshold		Falling	2.1	2.2	2.3	V	
VIN UVLO Threshold Hysteresis				100		mV	
Thermal Shutdown Threshold	T _{SD}	(Note 5)		150		°C	

RT5091C

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Thermal Shutdown Hysteresis	ΔT _{SD}	(Note 5)		25		°C
VSYS Monitor	-					-
RESET Rising	V _{RSTTH_} H	MODE = low		2.8	2.9	
Threshold		MODE = high	3.7	3.8	3.9	- V
RESET Falling Threshold	V _{RSTTH_L}	If VSYS falls below V _{RSTTH_L} pull low.	2.2	2.3	2.4	V
VSYS Ready Falling Threshold	Veveen	Program by PGOOD_VSYS_REG[2:1] via I ² C; MODE = low	2.7		3	v
	VSYSRDY_L	Program by PGOOD_VSYS_REG[2:1] via I ² C; MODE = high	3.8		4.1	V
VSYS Ready Threshold Step Size		Step size for I ² C programming		100		mV
VSYS Ready Falling Accuracy		MODE = low; VSYS ready falling default threshold	2.6	2.7	2.8	V
		MODE = high; VSYS ready falling default threshold	3.65	3.8	3.95	V
VSYS Ready Hysteresis				150		mV
External N-MOSFET S	witch					
Quiescent Current		External N-MOSFET are enabled		30		μA
GATE Control Current		Source current from GATE		875		nA
VIN OVP		MODE = low	3.8	4		- v
		MODE = high	5.6		6	v
VIN OVP Hysteresis				300		mV
CH1 (4A)						
Converter			-	-		
VIN Quiescent Current	I _{Q_VIN}	Enable, no switching, other voltage rails off, not include I _{VIN} .		25	35	μA
Output Voltage Scaling	Vout	Controlled by I ² C. (Note 6)	0.7		1.3	V
DC Output Voltage Programmable Step	VSTEP			10		mV
Output Voltage Default	Vout	REFOUT = REFADJ = REFIN = VIN, refer to configuration for other default voltage	0.99	1	1.01	V
Dynamic Voltage Scale Slew Rate				5		mV/μs
Line Regulation		(Note 5)		0.5		%/V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Load Regulation		Force PWM (Note 5)		0.5		%/A
H/S Switch On Resistance	RDS(ON)_H	PVIN1 = 5V		36		mΩ
L/S Switch On Resistance	RDS(ON)_L	PVIN1 = 5V		27		mΩ
Current Limit	I _{LIM}	Valley current	4.1	5		А
Switching Frequency	fsw		1.8	2	2.2	MHz
Minimum Off-Time	toff_min			120	160	ns
OVP Trip Threshold	VOVP	OVP detected	120	125	130	%
OVP Propagation Delay (Note 5)	tovpdly			1		μS
UVP Trip Threshold	VUVP	UVP detected	57.5	62.5	67.5	%
UVP Propagation Delay (Note 5)	tuvpdly			2		μS
PGOOD Trip Threshold		Falling edge, measured at CH1 VOUT	80	85	90	%
PGOOD Trip Hysteresis				5		%
Soft-Start Time	tss	VOUT1 = 1V		0.5	0.8	ms
Discharge Resistance	RDISCHG	V_{IN} = 5V, discharge from LX1		10		Ω
		PVIN1 = 3.3V, VOUT1 = 1V, I _{OUT} = 10mA	85			%
Efficiency		PVIN1 = 3.3V, VOUT1 = 1V, I _{OUT} = 1A	85			%
REFOUT Buffer		•				
Quiescent Current		REFOUT buffer are enabled.		5		μA
REFADJ Switch On Resistance		V _{IN} = 5V		10		Ω
REFOUT Voltage	VREFOUT	Sourcing Current = 0.05mA, with 6.8nF Capacitor	-1%	1.2	1%	V
CH2 (2A)						
VIN Quiescent Current	I _{Q_IN}	Enable, no switching, other voltage rails off, not include I_{VIN} .		25	35	μA
Internal Reference Voltage		Connect FB2 to resistor voltage divider, measure at FB2 pin.	0.792	0.8	0.808	V
Output Voltage Default	Vout	FB2 connected to VOUT2		1.2		V
Line Regulation		(Note 5)		0.5		%/V
Load Regulation		Force PWM (Note 5)		0.5		%/A
H/S Switch On Resistance	Rds(on)_H	PVIN2 = 5V		103		mΩ
L/S Switch On Resistance	RDS(ON)_L	PVIN2 = 5V		64		mΩ

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Current Limit	Ilim	Valley current	2.1	3		А
Switching Frequency	f _{SW}		1.8	2	2.2	MHz
Minimum Off-Time	toff_min			120	160	ns
OVP Trip Threshold	VOVP	OVP detected	120	125	130	%
OVP Propagation Delay (Note 5)	tovpdly			1		μS
UVP Trip Threshold	Vuvp	UVP detected	57.5	62.5	67.5	%
UVP Propagation Delay (Note 5)	tuvpdly			2		μS
PGOOD Trip Threshold		Falling edge, measured at CH2 VOUT	80	85	90	%
PGOOD Trip Hysteresis				5		%
Soft-Start Time	tss			0.5	0.8	ms
Discharge Resistance	RDISCHG	V_{IN} = 5V, discharge from LX2		10		Ω
		PVIN2 = 3.3V, FB2 = 1.2V, I _{OUT} = 10mA	85			%
Efficiency		PVIN2 = 3.3V, FB2 = 1.2V, I _{OUT} = 0.5A	85			%
CH3 (2A)						
VIN Quiescent Current	Iq_in	Enable, no switching, other voltage rails off, not include I_{VIN} .		25	35	μA
Internal Reference Voltage		Connect FB3 to resistor voltage divider, measure at FB3 pin.	0.792	0.8	0.808	V
Output Voltage Default	Vout	FB3 connected to CH3 VOUT		1.8		V
Line Regulation		(Note 5)		0.5		%/V
Load Regulation		Force PWM (Note 5)		0.5		%/A
H/S Switch On Resistance	Rds(on)_h	PVIN3 = 5V		101		mΩ
L/S Switch On Resistance	Rds(on)_L	PVIN3 = 5V		58		mΩ
Current Limit	ILIM	Valley current	2.1	3		А
Switching Frequency	f _{SW}		1.8	2	2.2	MHz
Minimum Off-Time	toff_min			120	160	ns
OVP Trip Threshold	V _{OVP}	OVP detected	120	125	130	%
OVP Propagation Delay (Note 5)	tovpdly			1		μS
UVP Trip Threshold	Vuvp	UVP detected	57.5	62.5	67.5	%

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
UVP Propagation Delay (Note 5)	tuvpdly			2		μS
PGOOD Trip Threshold		Falling edge, measured at CH3 VOUT	80	85	90	%
PGOOD Trip Hysteresis				5		%
Soft-Start Time	tss			0.5	0.8	ms
Discharge Resistance	RDISCHG	V _{IN} = 5V, discharge from LX3		10		Ω
		PVIN3 = 3.3V, FB3 = 1.8V, I _{OUT} = 10mA	85			%
Efficiency		PVIN3 = 3.3V, FB3 = 1.8V, I _{OUT} = 0.5A	85			%
LDO (0.3A)	•			•		
VIN Quiescent Current	I _{Q_IN}	Enable, no load, other voltage rails off, not include $\ensuremath{I_{\text{VIN}}}$		28	38	μA
Internal Reference Voltage		Connect FB4 to resistor voltage divider, measure at FB4 pin.	0.4455	0.45	0.4545	V
Output Voltage Default		FB4 floating		1.8		V
Line Regulation				0.5		%/V
Load Regulation				0.5		%/A
Dropout Voltage	V _{DROP}	PVIN4 = 5V, VOUT4 = 3.3V, I _{OUT} =300mA			100	mV
Current Limit	ILIM		0.4			Α
UVP Trip Threshold	VUVP	UVP detected	55	60	65	%
UVP Propagation Delay (Note 5)	tuvpdly			2		μS
PGOOD Trip Threshold		Falling edge, measured at VOUT4	80	85	90	%
PGOOD Trip Hysteresis				5		%
Soft-Start Time	tss	VOUT4 = 1.8V		0.26	0.5	ms
Discharge Resistance	RDISCHG	V_{IN} = 5V, discharge from VOUT4		100		Ω
Power Supply		I _{OUT} = 100mA, f = 100Hz		-50		15
Rejection Rate	PSRR	I _{OUT} =100mA, f = 100kHz		-28		dB

RT5091C

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
GPIO						
GPIO Input (VSNS)						
VSNS Discharge Resistance	RDISCHG			10		Ω
I ² C for Fast Mode						
SDA, SCL Input Voltage High			1.2			V
SDA, SCL Input Voltage Low					0.4	V
SCL Clock Rate	f _{SCL}		100		400	kHz
Hold Time for a Repeated START Condition	thd;sta	After this period, the first clock pulse is generated.	0.6		-	μs
Low Period of the SCL Clock	t∟ow		1.3			μS
High Period of the SCL Clock	tніgн		0.6			μs
Set Up Time For a Repeated START Condition	tsu;sta		0.6			μs
Data Hold Time	t _{HD;DAT}		0		0.9	μS
Data Set Up Time	tsu;dat		100			ns
Set Up Time for STOP Condition	tsu;sto		0.6			μs
Bus Free Time between a STOP and a START Condition	tbuf		1.3			μs
Rising Time of Both SDA/SCL Signals	t _R		20		300	ns
Falling Time of Both SDA/SCL Signals	t⊨		20		300	ns
SDA Output Low Sink Current	I _{OL}	SDA voltage = 0.4V	2			mA

RI	CH	T	EK	-

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
I ² C for High Speed Mode	I	l	I	1	I	
SDA, SCL Input Voltage High			1.2			V
SDA, SCL Input Voltage Low					0.4	V
SCL Clock Rate	f _{SCL}		0.1		3.4	MHz
Hold Time for a Repeated START Condition	thd;sta	After this period, the first clock pulse is generated.	160			ns
Low Period of the SCL Clock	tLOW		160			ns
High Period of the SCL Clock	tніgн		60	-		ns
Set-Up Time For a Repeated START Condition	tsu;sta		60			ns
Data Hold Time	t _{HD;DAT}		0	-	70	ns
Data Set-Up Time	tsu;dat		10			ns
Set-Up Time for STOP Condition	tsu;sto		160			ns
Rising Time of Both SDA/SCL Signals	t _R		10		80	ns
Falling Time of Both SDA/SCL Signals	tF		10		80	ns
SDA Output Low Sink Current	I _{OL}	SDA voltage = 0.4V	2			mA

- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

Note 5. Guaranteed by design.

Note 6. Program CH1 output voltage via I²C need default output voltage setting during power-up sequence. Please set CH1 buck converter by Table 15.

Copyright ©2018 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

CH3 Switch Frequency vs. Output Current

Power On with Fast Slew Rate VIN Detected

CH1

(500mV/Div)

CH2

(1V/Div)

CH3

(1V/Div)

STANDBY (3V/Div)

Enter/Exit PS4 Power State

V_{CH1 Normal Mode} = 0.9V

V_{CH1 Sleep Mode} = 0.7V

 $V_{CH2} = 1.2V$

V_{CH3} = 1.8V

PS3P5 = L

Enter/Exit PS3.5 Power State

Time (10ms/Div)

Copyright ©2018 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Time (10ms/Div)

CH2 Transient Response

Copyright ©2018 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Functional Register Table

Name	Туре	Register Reset	Address Offset	
STANDBY	R/W	0x00h	0x00	
PGOOD_VSYS_REG	R/W		0x01	
CH1_VID_REG	R/W		0x02	
DCDCCTRL0_REG0	R/W	0x00h	0x03	
DCDCCTRL1_REG	R/W	0x00h	0x04	
CH1/CH2_CONTROL	R/W	0x56h	0x05	
CH3/LDO_CONTROL	R/W	0XE1h	0x06	
EXT_EN1/EXT_EN2_CONTROL	R/W	0x8Ah	0x07	
PRODUCT_ID_REG	R	0x00h	0x0A	
MANUFACTURER_ID_REG	R	0x00h	0x0B	
REVISION_NUMBER_REG	R	0x00h	0x0C	
PROTECT	R		0x0D	

Table 2. STANDBY

Address : 0x00 Description : PS3.5/PS4 Power State Enable/Disable											
Bits	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0									
Name				Reserved				STANDBYEN			
Reset Value	0	0	0	0	0	0	0	0			
Read/ Write	R	R	R	R	R	R	R	R/W			

Bits	Name	Description
7 : 1	Reserved	Reserved bit
0	STANDBYEN	PS3.5/PS4 power state allowed to enter 0 : Not allowed 1 : Allowed

Table 3. PGOOD_VSYS_REG

Address : 0x01 Description : Power good information register When voltage rails achieve 90% of VID target, the relative bit will set to 1.										
Bits	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0								
Name	CH1_ PGOOD	CH2_ PGOOD	CH3_ PGOOD	LDO_ PGOOD	MODE	VSYSRDY_TH		Reserved		
Reset Value	0	0	0	0				1		
Read/ Write	R	R	R	R	R	R/W	R/W	R/W		

Bits	Name	Description
7	CH1_PGOOD	Status bit. Indicates power good on CH1
6	CH2_PGOOD	Status bit. Indicates power good on CH2
5	CH3_PGOOD	Status bit. Indicates power good on CH3
4	LDO_PGOOD	Status bit. Indicates power good on CH4
3	MODE	MODE = Low, MODE[3] = 0b MODE = High, MODE[3] = 1b
2 : 1	VSYSRDY_TH	MODE = Low, MODE[3] = 0b : VSYSRDY_TH[2:1] = 00b : 2.7V (default) VSYSRDY_TH[2:1] = 01b : 2.8V VSYSRDY_TH[2:1] = 10b : 2.9V VSYSRDY_TH[2:1] = 11b : 3V MODE = High, MODE[3] = 1b : VSYSRDY_TH[2:1] = 00b : 3.8V (default) VSYSRDY_TH[2:1] = 01b : 3.9V VSYSRDY_TH[2:1] = 10b : 4V VSYSRDY_TH[2:1] = 10b : 4.1V
0	Reserved	Reserved bit. Keep it always be 1.

Table 4. CH1_VID_REG

Address : 0x02 Description : CH1 VID setting register									
Bits	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0							
Name	Reserved		SEL						
Reset Value	0	0							
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	

Bits	Name	Description
7:6	Reserved	Reserved bit
5:0	SEL	$\begin{split} & Supply voltage : \\ & SEL[5:0] = 000000b : 0.7V \\ & SEL[5:0] = 000010b : 0.71V \\ & SEL[5:0] = 000010b : 0.72V \\ & SEL[5:0] = 000010b : 0.73V \\ & SEL[5:0] = 000100b : 0.74V \\ & SEL[5:0] = 000110b : 0.75V \\ & SEL[5:0] = 000110b : 0.78V \\ & SEL[5:0] = 000100b : 0.78V \\ & SEL[5:0] = 001010b : 0.78V \\ & SEL[5:0] = 001010b : 0.79V \\ & SEL[5:0] = 001010b : 0.79V \\ & SEL[5:0] = 001101b : 0.81V \\ & SEL[5:0] = 001110b : 0.81V \\ & SEL[5:0] = 001110b : 0.82V \\ & SEL[5:0] = 001110b : 0.82V \\ & SEL[5:0] = 001110b : 0.83V \\ & SEL[5:0] = 001110b : 0.84V \\ & SEL[5:0] = 001110b : 0.88V \\ & SEL[5:0] = 001110b : 0.88V \\ & SEL[5:0] = 010000b : 0.86V \\ & SEL[5:0] = 010010b : 0.88V \\ & SEL[5:0] = 010010b : 0.88V \\ & SEL[5:0] = 010010b : 0.91V \\ & SEL[5:0] = 010110b : 0.92V \\ & SEL[5:0] = 011010b : 0.92V \\ & SEL[5:0] = 011111b : 0.93V \\ & SEL[5:0] = 011101b : 0.93V \\ & SEL[5:0] = 011101b : 0.95V \\ & SEL[5:0] = 011101b : 0.95V \\ & SEL[5:0] = 011101b : 0.98V \\ & SEL[5:0] = 011111b : 0.99V \\ & SEL[5:0] = 011111b : 0.99V \\ & SEL[5:0] = 011101b : 0.98V \\ & SEL[5:0] = 011110b : 0.98V \\ & SEL[5:0] = 011101b : 0.98V \\ & SEL[5:0] = 011110b : 0.98V \\ & SEL[5:0] = 011111b : 0.99V \\ & SEL[5:0] = 011110b : 0.98V \\ & SEL[5:0] = 011110b : 0.98V \\ & SEL[5:0] = 011110b : 0.98V \\ & SEL[5:0] = 010010b : 1.02V \\ & SEL[5:0] = 1000010b : 1.02V \\ & SEL[5:0] = 1000010b : 1.04V \\ & SEL[5:0] = 100010b : 1.04V \\ & SEL[5:0] = 100010b : 1.04V \\ & SEL[5:0] = 100010b : 1.06V \\ & SEL[5:0] = 100101b : 1.07V \\ & SEL[5:0] = 100101b : 1.07V \\ & SEL[5:0] = 1001010b : 1.06V \\ & SEL[5:0] = 1001010b : 1.06V \\ & S$

Bits	Name	Description					
5:0	SEL	$\begin{array}{l} {\rm SEL}[5:0] = 100110b: 1.08V\\ {\rm SEL}[5:0] = 100111b: 1.09V\\ {\rm SEL}[5:0] = 101000b: 1.1V\\ {\rm SEL}[5:0] = 101001b: 1.11V\\ {\rm SEL}[5:0] = 101010b: 1.12V\\ {\rm SEL}[5:0] = 101010b: 1.12V\\ {\rm SEL}[5:0] = 101100b: 1.14V\\ {\rm SEL}[5:0] = 101100b: 1.14V\\ {\rm SEL}[5:0] = 101110b: 1.15V\\ {\rm SEL}[5:0] = 101110b: 1.16V\\ {\rm SEL}[5:0] = 101111b: 1.17V\\ {\rm SEL}[5:0] = 110000b: 1.18V\\ {\rm SEL}[5:0] = 110000b: 1.18V\\ {\rm SEL}[5:0] = 110001b: 1.20V\\ {\rm SEL}[5:0] = 110010b: 1.20V\\ {\rm SEL}[5:0] = 110010b: 1.22V\\ {\rm SEL}[5:0] = 110010b: 1.22V\\ {\rm SEL}[5:0] = 110100b: 1.22V\\ {\rm SEL}[5:0] = 110101b: 1.23V\\ {\rm SEL}[5:0] = 110101b: 1.23V\\ {\rm SEL}[5:0] = 110110b: 1.24V\\ {\rm SEL}[5:0] = 110110b: 1.24V\\ {\rm SEL}[5:0] = 110110b: 1.26V\\ {\rm SEL}[5:0] = 111001b: 1.26V\\ {\rm SEL}[5:0] = 111000b: 1.28V\\ {\rm SEL}[5:0] = 111001b: 1.28V\\ {\rm SEL}[5:0] = 111010b: 1.29V\\ {\rm SEL}[5:0] = 111010b: 1.29V\\ {\rm SEL}[5:0] = 111001b: 1.29V\\ {\rm SEL}[5:0] = 111100b: 1.11111b: 1.3V\\ {\rm SEL}[5:0] = 111100b: 1.111111b: 1.3V\\ {\rm SEL}[5:0] = 111100b: 1.111111b: 1.3V\\ {\rm S$					

Table 5. DCDCCTRL0_REG0

Address : 0x03 Description : Internal enable register											
Bits	BitsBit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0										
Name	LSW1_ EN	CH1_ EN	CH2_ EN	CH3_ EN	LDO_ EN	EXT_EN1_ EN	EXT_EN2_ EN	Reserved			
Reset Value	0	0	0	0	0	0	0	0			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R			

Bits	Name	Description
7	LSW1_EN	LSW1_EN[7] = 0b : Disable LSW1 LSW1_EN[7] = 1b : Enable LSW1 After PMIC powering up, this register value is auto-written to 1b. Power off all rails by setting 0b, PMIC will automatically set this register to 0x00h. Setting to 1b will re-power on all rails in sequence, DO NOT set this register to any value other than 0x80h. In case of rails are forced to be turned on during internal circuits are still doing the auto-calibration and detecting progress.
6	CH1_EN	CH1_EN[6] = 0b : Disable CH1 CH1_EN[6] = 1b : Enable CH1 After PMIC powering up, this register value is auto-written to 1b.
5	CH2_EN	CH2_EN[5] = 0b : Disable CH2 CH2_EN[5] = 1b : Enable CH2 After PMIC powering up, this register value is auto-written to 1b.
4	CH3_EN	CH3_EN[4] = 0b : Disable CH3 CH3_EN[4] = 1b : Enable CH3 After PMIC powering up, this register value is auto-written to 1b.
3	LDO_EN	LDO_EN[3] = 0b : Disable LDO LDO_EN[3] = 1b : Enable LDO After PMIC powering up, this register value is auto-written to 1b.
2	EXT_EN1_EN	EXT_EN1_EN[2] = 0b : Disable EXT_EN1 EXT_EN2_EN[2] = 1b : Enable EXT_EN1 After PMIC powering up, this register value is auto-written to 1b.
1	EXT_EN2_EN	CH6_EN[1] = 0b : Disable EXT_EN2 CH6_EN[1] = 1b : Enable EXT_EN2 After PMIC powering up, this register value is auto-written to 1b.
0	Reserved	Reserved bit

Table 6. DCDCCTRL1_REG

Address : 0x04 Description : DCDC PSKIP/PWM mode control register									
Bits	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	CH1_ PWM	CH2_ PWM	CH3_ PWM	Reserved					
Reset Value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R	R	R	R	R	

Bits	Name	Description
7	CH1_PWM	CH1_PWM[7] = 0b : PSKIP mode CH1_PWM[7] = 1b : Forced PWM mode
6	CH2_PWM	CH2_PWM[6] = 0b : PSKIP mode CH2_PWM[6] = 1b : Forced PWM mode
5	CH3_PWM	CH3_PWM[5] = 0b : PSKIP mode CH3_PWM[5] = 1b : Forced PWM mode
4:0	Reserved	Reserved bit

Table 7. CH1_CH2_CONTROL

	Address : 0x05 Description : CH1/CH2 wake up timing configure register & sleep mode control register												
Bits	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
Name	CH1_WAKE-UP_TIME			CH1_ALIVE	H1_ALIVE CH2_WAKE-UP_TIME CH			CH2_ALIVE					
Reset Value	0	1	0	1	0	1	1	0					
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					

Bits	Name	Description
7 : 5	CH1_WAKE-UP _TIME	CH1 wake up sequence timing setting [7:5] = 000b : Time slot 0 [7:5] = 001b : Time slot 1 [7:5] = 010b : Time slot 2 [7:5] = 011b : Time slot 3 [7:5] = 100b : Time slot 4 [7:5] = 101b : Time slot 5 [7:5] = 110b : Time slot 6 [7:5] = 111b : Time slot 7 The duration between wake-up signal and a rail rising edge is : TWAKE_UP_DELAY = $150\mu s + N \times 512\mu s$. ($0 \le N \le 7$)
4	CH1_ALIVE	When entering sleep mode : CH1_ALIVE[4] = 0b : CH1 turns off CH1_ALIVE[4] = 1b : CH1 keeps alive and enters sleep mode
3 : 1	CH2_WAKE-UP _TIME	Please refer to "CH1_WAKE-UP_TIME" register description.
0	CH2_ALIVE	When entering sleep mode: CH2_ALIVE[0] = 0b : CH2 turns off CH2_ALIVE[0] = 1b : CH2 keeps alive and enters sleep mode

Table 8. CH3_LDO_CONTROL

	Address : 0x06 Description : CH3/LDO wake up timing configure register & sleep mode control register												
Bits	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
Name	CH3_	WAKE-UP_	TIME	CH3_ALIVE	CH3_ALIVE LDO_WAKE-UP_TIME			LDO_ALIVE					
Reset Value	1	1	1	0	0	0	0	1					
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					

Bits	Name	Description
7 : 5	CH3_WAKE-UP _TIME	Please refer to "CH1_WAKE-UP_TIME" register description.
4	CH3_ALIVE	When entering sleep mode : CH3_ALIVE[4] = 0b : CH3 turns off CH3_ALIVE[4] = 1b : CH3 keeps alive and enters sleep mode
3 : 1	LDO_WAKE-UP _TIME	Please refer to "CH1_WAKE-UP_TIME" register description.
0	LDO_ALIVE	When entering sleep mode: LDO_ALIVE[0] = 0b : LDO turns off LDO_ALIVE[0] = 1b : LDO keeps alive and enters sleep mode

Table 9. EXT_EN1&EXT_EN2_CONTROL

Address : 0x07 Description : E	Address : 0x07 Description : EXT_EN1/EXT_EN2 wake up timing configure register & sleep mode control register												
Bits	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
Name	EXT_E	N1_WAKE-U	P_TIME	EXT_EN1_ ALIVE EXT_EN2_WAKE-UP_TIME			EXT_EN2_ ALIVE						
Reset Value	1	0	0	0	1	0	1	0					
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					

Bits	Name	Description
7 : 5	EXT_EN1_ WAKE-UP_TIME	Please refer to "CH1_WAKE-UP_TIME" register description.
4	EXT_EN1_ALIVE	When entering sleep mode : EXT_EN1_ALIVE[4] = 0b : EXT_EN1 turns off EXT_EN1_ALIVE[4] = 1b : EXT_EN1 keeps alive and enters sleep mode
3 : 1	EXT_EN2_ WAKE-UP_TIME	Please refer to "CH1_WAKE-UP_TIME" register description.
0	EXT_EN2_ALIVE	When entering sleep mode : EXT_EN2_ALIVE[0] = 0b : EXT_EN2 turns off EXT_EN2_ALIVE[0] = 1b : EXT_EN2 keeps alive and enters sleep mode

Table 10. PRODUCT_ID_REG

	Address : 0x0A Description : Product ID number register												
Bits	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
Name				PRODU	JCT_ID								
Reset Value		0x00h											
Read/Write	R	R R R R R R R											

Bits	Name	Description
7:0	PRODUCT_ID	Return the product ID number : 0x00h

Table 11. MANUFACTURER_ID_REG

	Address : 0x0B Description : Manufacturer ID number register											
Bits	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0										
Name				MANUFAC	TURER_ID							
Reset Value		0x00h										
Read/Write	R	R R R R R R R										

Bits	Name	Description
7:0	MANUFACTURER_ID	Return the manufacturer ID number : 0x00h

Table 12. REVISION_NUMBER_REG

	Address : 0x0C Description : Revision number register											
Bits	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name				REVISION	_NUMBER							
Reset Value	0	0	0	0	0	0	0	0				
Read/Write	R	R R R R R R R										

Bits	Name	Description
7:0	REVISION_NUMBER	Return the revision number : 0x00h

	Address : 0x0D Description : Protect register											
BitsBit7Bit6Bit5Bit4Bit3Bit2Bit1												
Name	UV_CH1	UV_CH2	UV_CH3	UV_LDO	OT_IC	OV_VIN	GATE_READY	PORB_VOUT				
Reset Value							1	1				
Read/ Write	R	R	R	R	R	R	R	R				

Table 13	3. PR	OTECT
----------	-------	-------

Bits	Name	Description
7	UV_CH1	Indicator for CH1 under voltage event.
6	UV_CH2	Indicator for CH2 under voltage event.
5	UV_CH3	Indicator for CH3 under voltage event.
4	UV_LDO	Indicator for LDO under voltage event.
3	OT_IC	Indicator for PMIC over temperature event.
2	OV_VIN	Indicator for VIN over voltage event.
1	GATE_READY	Internal monitoring signal. (only for vendor)
0	PORB_VOUT	Internal monitoring signal. (only for vendor)

Application Information

The RT5091C is a total power management solution for SSDs (Solid State Drive) with dedicated input supply voltages of 3.3V or 5V. The RT5091C incorporates three high-efficiency synchronous buck regulators and one LDO that deliver several output voltages from a single power source. CH1 buck supports VID programming by either I²C interface or REFIN pin. And the output voltages of the rest two bucks, CH2 and CH3, can be programmed by resistor dividers or set with default voltage by connecting FB2 pin to VOUT2 node and FB3 pin to VOUT3 node. Output voltage of CH4 (LDO) can also be programmed by resistor divider or set with default voltage by floating FB4 pin.

PS3.5/PS4 power states function is available for both I²C interface, PS3P5 pin and STANDBY pin. If I²C interface is applied, PGOOD and UV can be monitored individually.

Resource Name	Туре	Voltage Range	Current Rating		
CH1	Buck Converter	0.7V to 1.3V, 10mV/step via I ² C or Programmable by REFIN Pin	4000mA		
CH2	Buck Converter	Programmable by FB2 Pin	2000mA		
CH3	Buck Converter	Programmable by FB3 Pin	2000mA		
CH4	LDO	Programmable by FB4 Pin	300mA		

Table 14. Detail of Power Rails

Buck Converter

The RT5091C incorporates three high-efficiency synchronous switching buck converters that deliver programmable output voltages. They feature constant-ontime current mode for low output voltage, guick transient response, and low quiescent current. These buck converters also possess all standard protections.

Each switching regulator is specially designed for highefficiency operation throughout the load range. With high switching frequency (2MHz), the external LC filter can be small and keeps very low output voltage ripple.

Additional features include soft-start, discharged, undervoltage protection, over-voltage protection, and over-current limiter. Please note that the PMIC will be latched when any power rail occurs under-voltage protection. The other protections just make the rail output voltage drop and recovery when the faults are reset. With I²C interface, system is allowed to control the wake up sequences, set rails' on/off states, switch to forced PWM mode/pulseskipping mode (PSKIP), enter/leave sleep mode, and even directly program CH1 output voltage. Please check the register table for details.

Buck Output Voltage Setting

The RT5091C provides three synchronous Buck regulators. CH1 buck converter features programmable output voltage by REFIN pin or 0.7V to 1.3V in 10mV/step via I²C. If program CH1 output voltage by REFIN pin, the output voltage can be set by the following equation : V_{CH1} = V_{REFIN}×1.6

And the V_{REFIN} is setting by the reference resistors; $R_{\text{REFOUT}}, R_{\text{REFADJ}} \text{ and } R_{\text{REFIN}} \text{ (see Figure 1).}$

Figure 1. Setting REFIN Voltage with Reference Resistor Divider

When STANDBY goes high, VREFIN which in normal mode would equal to the equation below, where $V_{REFOUT} = 1.2V$: VREFIN = VREFOUT × RREFIN + RREFOUT

When $\overline{\text{STANDBY}}$ goes low, which also means PMIC is entering PS3.5 or PS4 power state, V_{REFIN} which in sleep mode would become following equation :

 $V_{REFIN} = V_{REFOUT} \times \frac{R_{REFIN} // R_{REFADJ}}{(R_{REFIN} // R_{REFADJ}) + R_{REFOUT}}$

Note that, if wants to keep V_{REFIN} in sleep mode, ties REFADJ pin to GND and removes $R_{\mathsf{REFADJ}}.$

If wants to program CH1 output voltage via I²C, PMIC would need default output voltage setting for CH1 buck converter during power-up sequence. Thus following table has four sets of default output voltages for CH1 buck converter.

Table 15. CH1 Buck Converter VOUT Default Setting

REFOUT	REFADJ	REFIN	CH1 V _{OUT}		
VIN	GND	GND	0.9V		
VIN	GND	VIN	1.1V		
VIN	VIN	GND	1.2V		
VIN	VIN	VIN	1.0V		

Other buck converters, CH2 and CH3, feature programmable output voltages through resister divider. Output voltages can be adjusted by setting the feedback resistors, R_{FB1} and R_{FB2} , see as Figure 2.

Figure 2. Setting CH2 and CH3 Voltage with Resistor Divider

And the relative equation is shown below, where V_{FB} is 0.8V typically :

 $V_{OUT} = V_{FB} \times \frac{R_{FB1} + R_{FB2}}{R_{FB2}}$

And please note that equivalent reactance from FB to GND, such as R_{FB1} parallels to R_{FB2} , must NOT be less than $20k\Omega$ for the application with external FB resistors.

Directly connect FB2 to CH2 output node to have a default output voltage 1.2V; FB3 to CH3 output node to have a default output voltage 1.8V.

Buck Over-Current Limiter

The over-current limit is implemented by using a cycleby-cycle "valley" current detected control circuit, see as Figure 3. The switching current is monitored by measuring the low-side voltage between the LX pin and GND. The voltage is proportional to the switching current and the on-resistance of the low-side MOSFET.

When high-side MOSFET turn-on (t_{ON}), the high-side switching current increases at a linear rate and determines by V_{IN}, V_{OUT}, t_{ON} and inductance. And when low-side MOSFET turn-on (t_{OFF}), the low-side switching current decreases linearly. The average value of the switching current is the output current loading. If the sensing voltage of the low-side MOSFET is above the voltage of current limiter threshold, the converter would keep the low-side turn on until the sensing voltage falls below the voltage of current limiter threshold and then starts a new switching cycle.

For the RT5091C buck converters, the low-side MOSFET are embedded and current limit threshold has defined in electrical characteristics.

Figure 3. Cycle-By-Cycle "valley" Current Detected Control

Buck Under-Voltage Protection

If over-current limiter is activated, output voltage would drop and trigger under-voltage protection when it drops lower than 62.5% of reference voltage. In case of UVP mis-triggering, a de-glitch time is implemented. PMIC will turn off all power rails as long as any UVP is occurred and also pull low PGOOD pin. Note that UVP is a latched function in the RT5091C, thus can only be reset by starting over VIN POR.

Copyright ©2018 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

DS5091C-00 April 2018

Buck Over-Voltage Protection

If output voltage exceeds 125% of reference voltage, overvoltage protection would be triggered. In case of OVP mistriggering, a de-glitch time is implemented. PMIC will keep functional but pulling low PGOOD pin. The power rail which is under OVP will turn off its drivers until OVP indicator is released. PGOOD pin will back to high after all OVP indicators are released.

Over-Temperature Protection

The over-temperature protection function of the RT5091C is built inside the PMIC to prevent overheat damage. If the die temperature is over 150°C, the OTP circuit would be activated and turn off all power rails of the RT5091C. PMIC will re-boot all power rails with power-up sequence after temperature cools down lower than 125°C.

Linear Dropout Regulator

The RT5091C includes one high performance linear dropout regulator. The LDO has soft-start function. An internal current source charges an internal capacitor to make the soft-start ramp voltage. During the power up procedure, the output voltage tracks the internal voltage ramp for inrush current control.

If VIN UVLO occurs, or the output under-voltage fault latch is set, then the output discharge mode will be activated. During the discharge mode, an internal switch creates a path for discharging the output capacitors' residual charge to GND.

The LDO contains an independent current limiter and under-voltage protection circuit to prevent unexpected applications. The current limit circuit monitors the current from input to output by a current sensing circuit and controls the gate voltage of power stage. When the current is over the current limit threshold, the current limit circuit adjusts the gate voltage to constrain the output current. And if the output voltage is less than 60% of reference voltage, UVP circuit will shut down the LDO and latched. Note that this latched protection can only be reset by starting over VIN POR. The LDO feature programmable output voltage through resister divider. Output voltages can be adjusted by setting the feedback resistors, R_{FB3} and R_{FB4}, see as Figure 4.

Figure 4. Setting LDO Voltage with Resistor Divider

And the relative equation is shown below, where V_{FB} is 0.45V typically :

$$V_{OUT4} = V_{FB} \times \frac{R_{FB3} + R_{FB4}}{R_{FB4}}$$

Besides, the equivalent resistance from FB to GND must be less than $400k\Omega$ for the application with external FB resistors.

Directly open VOUT4 to CH4 output node to have a default output voltage 1.8V.

VSNS Discharge

When EXT_EN1 is disabled either through the sequence or through an I²C command, it activated the discharge resistor is placed between the VSNS and ground. Which means if system wants to discharge external regulator/ switch through VSNS by EXT_EN1, must connect VSNS to the output of external regulation/switch.

Input OVP Deglitching

In order to prevent input OV is triggered by noise coupling, the RT5091C builds internal deglitching circuit to prevent unexpected triggering of VIN OVP.

If VIN is higher than VIN OVP threshold, where VIN OVP threshold level is selected by MODE pin, PMIC would turn off all power rails and external N-MOSFET to protect PMIC from being damaged by input over voltage.

MODE

MODE is an input pin to select the threshold voltage of VIN for POR. If VIN voltage is above the threshold voltage, PMIC will begin to start up with power-up sequence. Set MODE = high for 5VVIN applications and MODE = low for 3.3VVIN applications.

I²C Interface

The RT5091C I²C slave address = 0x1b (hex). I²C interface supports standard slave mode (100kbps), and fast mode (400kbps). The write or read bit stream (N \ge 1) is shown as Figure 5.

Figure 5. I²C Read and Write Stream and Timing Diagram

Inductor Selection

For given input voltage (V_{IN}), output voltage (V_{OUT}), and operation frequency (f_{SW}), the inductor value (L) determines the inductor ripple current (ΔI_L) as shown in equation below :

$$\Delta I_{L} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{f_{SW} \times L \times V_{IN}}$$

Having a lower ripple current reduces not only the ESR losses in the output capacitors, but also the output voltage ripple.

A reasonable starting point for selecting the ripple current is ΔI_L = 0.3 x I_{MAX} to 0.4 x I_{MAX} . The largest ripple current occurs at the highest V_{IN} . To guarantee that the ripple current stays below a specified maximum, the inductor value should be chosen according to the following equation :

$$L = \frac{V_{OUT} \times (V_{IN(MAX)} - V_{OUT})}{f_{SW} \times \Delta I_L \times V_{IN(MAX)}}$$

The current rating of the inductor must be large enough and will not saturate at the peak inductor current (I_{PEAK}):

$$I_{\text{PEAK}} = I_{\text{OUT}(\text{MAX})} + \frac{\Delta I_{\text{L}}}{2}$$

CIN and CSYS Selection

The input capacitance of every rail, C_{IN} , needs to filter the trapezoidal current at the source of the high-side MOSFET. To prevent large ripple voltage, a low ESR input capacitor for the maximum current should be used. The relation between C_{IN} ripple voltage and current ripple is shown as the Figure 6.

Figure 6. Relationship of C_{IN} Voltage Ripple and Current Ripple

The C_{IN} voltage ripple can use below equations to determine when f_{SW} works at CCM mode.

$$V_{CIN_{PP}} = D \times I_{OUT(MAX)} \times (ESR + \frac{(1-D)}{C_{IN} \times f_{SW}}$$

Where D = V_{OUT} / V_{IN} . If use MLCC as the input current, the ESR is almost equal to zero. And the minimum input capacitance requirement could be estimate as below :

$$C_{IN(MIN)} = I_{OUT(MAX)} \times \frac{D \times (1-D)}{V_{CIN_{PP}} \times f_{SW}}$$

Next, it needs to consider the input bulk capacitance, C_{SYS} , to ensure a stable input voltage during large load transient. The input host supply cannot typically provide the enough input current for the converter to respond to a fast transient current. The input bulk capacitor will provide the energy necessary to source current until the host supply fill the demand, as shown as Figure 7.

Figure 8 shows the diagram of every power rail of the RT5091C sharing a single bank of bulk input capacitors. It can calculate the input required transient current using following equation :

$$\Delta I_{INtrL} = \sum_{n=1}^{6} \frac{V_{OUTn} \times \Delta I_{OUTn}(MAX)}{V_{IN} \times \eta_{n}}$$

Where ΔI_{INtr} is the total input transient current required. ΔI_{OUT} is the maximum output transient current. η is the efficiency of the Buck at $I_{OUT(MAX)}$.

Copyright ©2018 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Figure 8. The Location of Bulk Input Capacitance Diagram

When ΔI_{INtr} is confirmed, the input bulk capacitance, C_{SYS} , can be decided with following estimating equation :

$$C_{\text{SYS}(\text{MIN})} \cong \frac{1.21 \times \Delta l_{\text{INT}}^2 \times L_{\text{IN}}}{\Delta V_{\text{INPP}(\text{MAX})}^2}$$

where $\Delta V_{\text{INPP}(MAX)}$ is the maximum ac voltage allowable. L_{IN} is the input series filter inductance, if not used, put a reasonable value 50nH due to PCB layout.

C_{OUT} Selection

The output capacitor and the inductor are used form a low pass filter in the buck topology. In steady state condition, the ripple current flowing into/out of the capacitor results in ripple voltage. The output voltage ripple (ΔV_{OUTPP}) can be calculated by the following equation :

$$\Delta V_{OUTPP} = \Delta I_{L} \left(ESR + \frac{1}{8 \times C_{OUT} \times f_{SW}} \right)$$

When load transient occurs, the output capacitor supplies the load current before the controller can respond. Therefore, the ESR will dominate the output voltage sag during load transient. The output voltage under-shoot (V_{SAG}) can be calculated by the following equation :

 $V_{SAG} = \Delta I_{LOAD} \times ESR$

For a given output voltage sag specification, the ESR value can be determined.

Another parameter that has influence on the output voltage sag is the equivalent series inductance (ESL). The rapid change in load current results in di/dt during transient. Therefore, the ESL contributes to part of the voltage sag. Using a capacitor with low ESL can obtain better transient performance. Generally, using several capacitors connected in parallel can have better transient performance than using a single capacitor for the same total ESR.

Unlike the electrolytic capacitor, the ceramic capacitor has relatively low ESR and can reduce the voltage deviation during load transient. However, the ceramic capacitor can only provide low capacitance value.

Therefore, use a mixed combination of electrolytic capacitor and ceramic capacitor to obtain better transient performance.

Serial Data Transfer Format in Hs-Mode

Serial data transfer format in Hs-mode meets the Standardmode I²C-bus specification. Hs-mode can only commence after the following conditions (all of which are in F/S-mode):

- START condition (S)
- 8-bit master code (00001xxx)
- not-acknowledge bit (A#)

Figures 8 and Figure 10 show this in more detail. This master code has two main functions :

- It allows arbitration and synchronization between competing masters at F/S-mode speeds, resulting in one winning master.
- It indicates the beginning of an Hs-mode transfer.

Hs-mode master codes are reserved 8-bit codes, which are not used for slave addressing or other purposes.

Furthermore, as each master has its own unique master code, up to eight Hs-mode masters can be present on the one I²C-bus system (although master code 0000 1000 should be reserved for test and diagnostic purposes). The master code for an Hs-mode master device is software programmable and is chosen by the System Designer.

Arbitration and clock synchronization only take place during the transmission of the master code and notacknowledge bit (A#), after which one winning master remains active. The master code indicates to other devices that an Hs-mode transfer is to begin and the connected devices must meet the Hs-mode specification. As no device is allowed to acknowledge the master code, the master code is followed by a not-acknowledge (A#).

After the not-acknowledge bit (A#), and the SCLH line has been pulled-up to a HIGH level, the active master switches to Hs-mode and enables (at time $t_{\rm H}$, see Figure

Copyright ©2018 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

RT5091C

10) the current-source pull-up circuit for the SCLH signal. As other devices can delay the serial transfer before t_H by stretching the LOW period of the SCLH signal, the active master will enable its current-source pull-up circuit when all devices have released the SCLH line and the SCLH signal has reached a HIGH level, thus speeding up the last part of the rise time of the SCLH signal.

The active master then sends a repeated START condition (Sr) followed by a 7-bit slave address (or 10-bit slave address) with an R/W bit address, and receives an acknowledge bit (A#) from the selected slave.

After a repeated START condition and after each acknowledge bit (A#) or not-acknowledge bit (A#), the active master disables its current-source pull-up circuit. This enables other devices to delay the serial transfer by stretching the LOW period of the SCLH signal. The active master re-enables its current-source pull-up circuit again.

When all devices have released and the SCLH signal reaches a HIGH level, and so speeds up the last part of the SCLH signal's rise time. Data transfer continues in Hs-mode after the next repeated START (Sr), and only switches back to F/S-mode after a STOP condition (P). To reduce the overhead of the master code, it's possible that a master links a number of Hs-mode transfers, separated by repeated START conditions (Sr).

Power On/Off Sequence

The RT5091C starts a power up sequence when VSYS > RESET rising threshold voltage, and the device shuts down with VIN < UVLO falling threshold voltage. The RT5091C applies PS3.5 and PS4 power states of PMIC to save power consumption with setting the PS3P5 to high for PS3.5 power state or low for PS4 power state before STANDBY goes to low. If the device goes to PS3.5 power state by PS3P5 goes to high then STANDBY to low, almost power rails still alive but CH1 goes to sleep mode form normal mode. If the device goes to PS4 power state by PS3P5 goes to low then STANDBY to low, all power rails set to sleep mode and the alive rails depend on sleep mode control register setting. The power rails will exit from sleep mode to normal mode and wake up with a sequence as the same as the power-up-sequence when STANDBY goes to high. Please note that when PMIC starts a power up sequence, sleep mode operation would not work until 5ms later. The relations of all power rails of the RT5091C and Normal/PS3.5/PS4 power states sequence are shown as Figure 12. The following Table 16 is the power states and active rails mode in each power state.

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-32L 4x4 package, the thermal resistance, θ_{JA} , is 27.8°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25^{\circ}$ C can be calculated as below :

 $P_{D(MAX)}$ = (125°C - 25°C) / (27.8°C/W) = 3.59W for a WQFN-32L 4x4 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 11 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 11. Derating Curve of Maximum Power Dissipation

Table 16. Power States ar	nd Active Rails Mode	in Each Power State
---------------------------	----------------------	---------------------

Power	Signals to	PMIC	Active Rails Mode in Each Power State							
State	STANDBY	PS3P5	CH1	CH2	CH3	CH4	EXT-EN1	EXT-EN2		
Normal	Н	H/L	Normal	Normal Normal		Normal	Normal	Normal		
PS3.5	L	Н	Sleep	Normal	Normal	Normal	Normal	Normal		
PS4	L	L	Sleep	Sleep	Sleep	Sleep	Sleep	Sleep		

Figure 12. Power Up/Off Sequence and Sleep Off/Wake Up Sequence

Copyright ©2018 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. DS5091C-00 April 2018 www.richtek.com

Outline Dimension

Ourseland	Dimensions	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175	0.250	0.007	0.010		
b	0.150	0.250	0.006	0.010		
D	3.900	4.100	0.154	0.161		
D2	2.650	2.750	0.104	0.108		
E	3.900	4.100	0.154	0.161		
E2	2.650	2.750	0.104	0.108		
е	0.4	100	0.016			
L	0.300	0.400	0.012	0.016		

W-Type 32L QFN 4x4 Package

Footprint Information

Package	Number of	Footprint Dimension (mm)								Tolerance		
Раскауе	Pin	Р	Ax	Ay	Вx	Ву	C*32	C1*8	D	Sx	Sy	TOIEIANCE
V/W/U/XQFN4*4-32	32	0.40	4.80	4.80	3.20	3.20	0.80	0.75	0.20	2.80	2.80	±0.05

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.