DSA61XX # **Ultra-Small, Low Power MEMS Oscillator for Automotive** #### **Features** - · Automotive AEC-Q100 Qualified - · Wide Frequency Range: 3.5 kHz to 100 MHz - Ultra-Low Power Consumption: 3 mA/1 μA (Active/Standby) - Ultra-Small Footprints - $1.6 \text{ mm} \times 1.2 \text{ mm}$ - $2.0 \text{ mm} \times 1.6 \text{ mm}$ - $2.5 \text{ mm} \times 2.0 \text{ mm}$ - Frequency Select Input Supports Two Pre-Defined Frequencies - High Stability: ±20 ppm, ±25 ppm, ±50 ppm - · Wide Temperature Range - Automotive Grade 1: -40°C to +125°C - Automotive Grade 2: -40°C to +105°C - Automotive Grade 3: -40°C to +85°C - · Excellent Shock and Vibration Immunity - Qualified to MIL-STD-883 - · High Reliability - 20x Better MTF Than Quartz Oscillators - Supply Range of 1.71V to 3.63V - Short Sample Lead Time: <1 week - · Lead Free & RoHS Compliant #### **Applications** - · Automotive Infotainment - Automotive ADAS, Surround View Cameras - In-Vehicle Networking, CAN bus, Ethernet #### **General Description** The DSA61xx family of MEMS oscillators combines the industry leading low power consumption and ultra-small packages with exceptional frequency stability and jitter performance over temperature. The single-output DSA61xx MEMS oscillators are excellent choices for use as clock references in automotive applications in which small size, low power consumption, and long-term reliability are paramount. The family of devices are AEC-Q100 qualified. The DSA61xx family is available in ultra-small 1.6 mm x 1.2 mm, 2.0 mm x 1.6 mm, and 2.5 mm x 2.0 mm packages. These packages are "drop-in" replacements for standard 4-pin CMOS quartz crystal oscillators. ### **Package Types** # DSA61XX # **Block Diagram** ## 1.0 ELECTRICAL CHARACTERISTICS # **Absolute Maximum Ratings** | Supply Voltage | | |----------------|-----------------------------| | | | | - 1 | 4 kV HBM, 400V MM, 2 kV CDM | ### **ELECTRICAL CHARACTERISTICS** | Electrical Characteristics: Unless otherwise indicated, V _{DD} = 1.8V –5% to 3.3V +10%, T _A = –40°C to +125°C. | | | | | | | | |--|-------------------|-----------------------|------|-----------------------|-------|---|--| | Parameters | Sym. | Min. | Тур. | Max. | Units | Conditions | | | Supply Voltage | V _{DD} | 1.71 | | 3.63 | V | Note 1 | | | Power Supply Ramp | t _{PU} | 0.1 | 1 | 100 | ms | Note 8 | | | Active Supply Current | I _{DD} | _ | 3.0 | _ | mA | f _{OUT} = 27 MHz, V _{DD} = 1.8V, No
Load | | | Otanadha Canada Canada | 1 | _ | 1 | _ | | V _{DD} = 1.8/2.5V, Note 2 | | | Standby Supply Current | I _{STBY} | _ | 1.5 | _ | μA | V _{DD} = 3.3V, Note 2 | | | Output Duty Cycle | SYM | 45 | _ | 55 | % | _ | | | Frequency | f_0 | 0.0035 | _ | 100 | MHz | _ | | | Frequency Stability | Δf | | _ | ±20
±25
±50 | ppm | All temp ranges, Note 3 | | | A | ٨٤ | _ | _ | ±5 | | 1st year @ 25°C | | | Aging | Δf | _ | _ | ±1 | ppm | Per year after first year | | | Startup Time | t _{SU} | _ | _ | 1.5 | ms | From 90% V _{DD} to valid clock output, T = 25°C | | | land and and | V _{IH} | 0.7 x V _{DD} | _ | _ | V | Input Logic High, Note 4 | | | Input Logic Levels | V _{IL} | _ | _ | 0.3 x V _{DD} | V | Input Logic Low, Note 4 | | | Output Disable Time | t _{DA} | _ | | 200 +
2 Periods | ns | Note 5 | | | Output Enable Time | t _{EN} | _ | _ | 1 | μs | Note 6 | | | Enable Pull-up Resistor | _ | _ | 300 | _ | kΩ | If configured, Note 7 | | - **Note 1:** Pin 4 V_{DD} should be filtered with 0.1 μ F capacitor. - 2: Not including current through pull-up resistor on EN pin (if configured). Higher standby current seen at >3.3V V_{DD}. - 3: Includes frequency variations due to initial tolerance, temp. and power supply voltage. - 4: Input waveform must be monotonic with rise/fall time < 10 ms - **5:** Output Disable time takes up to two periods of the output waveform + 200 ns. - **6:** For parts configured with OE, not Standby. - **7:** Output is enabled if pad is floated or not connected. - 8: Time to reach 90% of target V_{DD} . Power ramp rise must be monotonic. # DSA61XX # **ELECTRICAL CHARACTERISTICS (CONTINUED)** | Electrical Characteristics: Unless otherwise indicated, $V_{DD} = 1.8V - 5\%$ to $3.3V + 10\%$, $T_A = -40$ °C to $+125$ °C. | | | | | | | | | |--|----------------------------------|-----------------------|------|-----------------------|-------------------|--|-----------------------------|--| | Parameters | Sym. | Min. | Тур. | Max. | Units | Co | nditions | | | | | | | | ., | Output Logic
Std. Drive | High, I = 3 mA, | | | Output Lagia Lavala | V _{OH} | 0.8 x V _{DD} | _ | 1 | V | Output Logic
High Drive | High, I = 6 mA, | | | Output Logic Levels | V | | | 0.2 v.V | \/ | Output Logic
Std. Drive | Low, $I = -3 \text{ mA}$, | | | | V _{OL} | _ | _ | 0.2 x V _{DD} | V | Output Logic Low, I = -6 mA,
High Drive | | | | | | _ | 1 | 1.5 | ns | DSC61x2
High Drive,
20% to 80%
C _L = 15 pF | V _{DD} = 1.8V | | | Output Transition Time | t _{RX} /t _{FX} | _ | 0.5 | 1.0 | ns | | V _{DD} = 2.5V/3.3V | | | Rise Time/Fall Time | t _{RY} /t _{FY} | _ | 1.2 | 2.0 | ns | DSC61x1
Std Drive,
20% to 80%
C _L = 10 pF | V _{DD} = 1.8V | | | | | _ | 0.6 | 1.2 | ns | | V _{DD} = 2.5V/3.3V | | | David Litter DMC | | _ | 8.5 | _ | | f _{OUT} = | V _{DD} = 1.8V | | | Period Jitter, RMS | J _{PER} | _ | 7 | | ps _{RMS} | 27 MHz | $V_{DD} = 2.5 V/3.3 V$ | | | Cycle-to-Cycle Jitter | | _ | 50 | 70 | | f _{OUT} = | V _{DD} = 1.8V | | | (Peak) | J _{Cy–Cy} | _ | 35 | 60 | ps | 27 MHz | $V_{DD} = 2.5 V/3.3 V$ | | | Period Jitter | | _ | 70 | _ | ne | f _{OUT} = | V _{DD} = 1.8V | | | (Peak-to-Peak) | J _{PP} | _ | 60 | _ | ps | 27 MHz | $V_{DD} = 2.5 V/3.3 V$ | | Note 1: Pin 4 V_{DD} should be filtered with 0.1 μF capacitor. - 2: Not including current through pull-up resistor on EN pin (if configured). Higher standby current seen at $>3.3 \text{V} \text{V}_{DD}$. - 3: Includes frequency variations due to initial tolerance, temp. and power supply voltage. - 4: Input waveform must be monotonic with rise/fall time < 10 ms - **5**: Output Disable time takes up to two periods of the output waveform + 200 ns. - 6: For parts configured with OE, not Standby. - 7: Output is enabled if pad is floated or not connected. - 8: Time to reach 90% of target V_{DD} . Power ramp rise must be monotonic. # **TEMPERATURE SPECIFICATIONS (Note 1)** | Parameters | Sym. | Min. | Тур. | Max. | Units | Conditions | |-----------------------------------|----------------|------|------|------|-------|--------------| | Temperature Ranges | | | | | | | | Junction Operating Temperature | TJ | -40 | _ | +150 | °C | _ | | Storage Ambient Temperature Range | T _A | -55 | _ | +150 | °C | _ | | Soldering Temperature | T _S | _ | +260 | _ | °C | 40 sec. max. | Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability. ### 2.0 PIN DESCRIPTIONS The DSA61xx is a highly configurable device and can be factory programmed in many different ways to meet the customer's needs. Microchip's ClockWorks[®] Configurator http://clockworks.microchip.com/Timing/ must be used to choose the necessary options, create the final part number, data sheet, and order samples. The descriptions of the pins are listed in Table 2-1. TABLE 2-1: DSA61XX PIN FUNCTION TABLE | Pin Number | Pin Name | Description | |------------|----------|---| | _ | OE | Output Enable: H = Active, L = Disabled (High Impedance). | | (Note 1) | STDBY | Standby: H = Device is active, L = Device is in standby (Low Power Mode). | | (Note 1) | FS | Frequency Select: H = Output Frequency 1, L = Output Frequency 2. | | 2 | GND | Ground. | | 3 | Output | Oscillator clock output. | | 4 | VDD | Power supply: 1.71V to 3.63V. | **Note 1:** DSC610xB/1xB/3xB has a 300 kΩ internal pull-up resistor on pin 1. DSC614xB/5xB/7xB has no internal pull-up resistor on pin 1 and needs an external pull-up or to be driven by another chip. An explanation of the different options listed in Table 2-1 follows. #### 2.1 Pin 1 This is a control pin and may be configured to fulfill one of three different functions. If not actively driven, a 10 k Ω pull-up resistor is recommended. #### 2.1.1 OUTPUT ENABLE (OE) Pin 1 may be configured as OE. Oscillator output may be turned on and off according to the state of this pin. ### 2.1.2 STDBY Pin 1 may be configured as Standby. When the pin is low, both output buffer and PLL will be off and the device will enter a low power mode. #### 2.1.3 FREQUENCY SELECT (FS) Pin 1 may be configured as FS. The output may be set to one of two pre-programmed frequencies. The output clock frequencies can only be set to either kHz or MHz. A combination of kHz and MHz cannot be set. ### 2.2 Pins 2 through 4 Pins 2 and 4 are the supply terminals, GND and VDD respectively. Pin 3 is the clock output, programmable to Standard and High Drive strength settings. Visit ClockWorks® Configurator to customize your device. ### 2.3 Output Buffer Options The DSC61xx family is available in multiple output driver configurations. The standard-drive (61x1) and high-drive (61x2) deliver respective output currents of greater than 3 mA and 6 mA at 20%/80% of the supply voltage. For heavy loads of 15 pF or higher, the high-drive option is recommended. # 3.0 DIAGRAMS FIGURE 3-1: Output Waveform. FIGURE 3-2: Test Circuit. FIGURE 3-3: Recommended Board Layout. # 4.0 SOLDER REFLOW PROFILE FIGURE 4-1: Solder Reflow Profile. | MSL 1 @ 260°C refer to JSTD-020C | | | | | | | |-----------------------------------|----------------|--|--|--|--|--| | Ramp-Up Rate (200°C to Peak Temp) | 3°C/sec. max. | | | | | | | Preheat Time 150°C to 200°C | 60 to 180 sec. | | | | | | | Time maintained above 217°C | 60 to 150 sec. | | | | | | | Peak Temperature | 255°C to 260°C | | | | | | | Time within 5°C of actual Peak | 20 to 40 sec. | | | | | | | Ramp-Down Rate | 6°C/sec. max. | | | | | | | Time 25°C to Peak Temperature | 8 minutes max. | | | | | | ## 5.0 PACKAGING INFORMATION # 5.1 Package Marking Information **Legend:** XX...X Product code or customer-specific information Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') SSS Alphanumeric traceability code e3 Pb-free JEDEC® designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package. ullet, lacktriangle Pin one index is identified by a dot, delta up, or delta down (triangle mark). **Note**: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo. Underbar (_) and/or Overbar (_) symbol may not be to scale. # 4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-1199A Sheet 1 of 2 # 4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA] For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | |--------------------------------------|-------------|-------|----------|-------| | Dimension | Limits | MIN | NOM | MAX | | Number of Terminals | Ν | | 4 | | | Terminal Pitch | Ф | | 1.20 BSC | | | Terminal Pitch | e1 | | 0.75 BSC | | | Overall Height | Α | 0.79 | 0.84 | 0.89 | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | Substrate Thickness (with Terminals) | A3 | | 0.20 REF | | | Overall Length | D | | 1.60 BSC | | | Overall Width | Е | | 1.20 BSC | | | Terminal Width | b1 | 0.25 | 0.30 | 0.35 | | Terminal Width | b2 | 0.325 | 0.375 | 0.425 | | Terminal Length | Ĺ | 0.30 | 0.35 | 0.40 | | Terminal 1 Index Chamfer | СН | - | 0.125 | - | #### Notes: Note: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated - 3. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-1199A Sheet 2 of 2 # 4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | | MILLIMETERS | | | | |-----------------------------|-------------|----------------|----------|------| | Dimension | n Limits | MIN | NOM | MAX | | Contact Pitch | E1 | 1.20 BSC | | | | Contact Pitch | E2 | | 1.16 BSC | | | Contact Spacing | С | | 0.75 | | | Contact Width (X3) | X1 | | | 0.35 | | Contact Width | X2 | | | 0.43 | | Contact Pad Length (X6) | Υ | | | 0.50 | | Space Between Contacts (X4) | G1 | 0.85 | | | | Space Between Contacts (X3) | G2 | 0.25 | | | | Contact 1 Index Chamfer | CH | 0.13 X 45° REF | | | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-3199A # 4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-1200A Sheet 1 of 2 ## 4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA] For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | |--------------------------------------|-------------|----------|----------|------| | Dimension | Limits | MIN | NOM | MAX | | Number of Terminals | Ν | | 6 | | | Terminal Pitch | е | | 1.55 BSC | | | Terminal Pitch | e1 | | 0.95 BSC | | | Overall Height | Α | 0.79 | 0.84 | 0.89 | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | Substrate Thickness (with Terminals) | A3 | 0.20 REF | | | | Overall Length | D | | 2.00 BSC | | | Overall Width | Е | | 1.60 BSC | | | Terminal Width | b1 | 0.30 | 0.35 | 0.40 | | Terminal Width | b2 | 0.40 | 0.45 | 0.50 | | Terminal Length | L | 0.50 | 0.55 | 0.60 | | Terminal 1 Index Chamfer | CH | - | 0.15 | - | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated - 3. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-1200A Sheet 2 of 2 # 4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA] For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | | MILLIMETERS | | | | | |-----------------------------|-------------|----------------|----------|------|--| | Dimension | Limits | MIN | NOM | MAX | | | Contact Pitch | Е | | 1.55 BSC | | | | Contact Spacing | С | | 0.95 | | | | Contact Width (X4) | X1 | | | 0.50 | | | Contact Width (X2) | X2 | | | 0.40 | | | Contact Pad Length (X6) | Υ | | | 0.70 | | | Space Between Contacts (X4) | G1 | 1.05 | | | | | Space Between Contacts (X3) | G2 | 0.25 | | · | | | Contact 1 Index Chamfer | CH | 0.13 X 45° REF | | | | ## Notes: Note: 1. Dimensioning and tolerancing per ASME Y14.5M $\,$ BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-3200A # 4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-1202A Sheet 1 of 2 # 4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | |--------------------------------------|-------------|----------|----------|------| | Dimension | Limits | MIN | NOM | MAX | | Number of Terminals | Ν | | 4 | | | Terminal Pitch | е | | 1.65 BSC | | | Terminal Pitch | e1 | 1.25 BSC | | | | Overall Height | Α | 0.79 | 0.84 | 0.89 | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | Substrate Thickness (with Terminals) | A3 | 0.20 REF | | | | Overall Length | D | | 2.50 BSC | | | Overall Width | E | 2.00 BSC | | | | Terminal Width | b1 | 0.60 | 0.65 | 0.70 | | Terminal Length | L | 0.60 | 0.65 | 0.70 | | Terminal 1 Index Chamfer | CH | - | 0.225 | - | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated - 3. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-1202A Sheet 2 of 2 # 4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | | MILLIMETERS | | | | |-----------------------------|-------------|----------------|------|------| | Dimension | Limits | MIN | NOM | MAX | | Contact Pitch | Е | 1.65 BSC | | | | Contact Spacing | С | | 1.25 | | | Contact Width (X4) | Х | 0.70 | | | | Contact Pad Length (X6) | Υ | | | 0.80 | | Space Between Contacts (X4) | G1 | 0.95 | | | | Space Between Contacts (X3) | G2 | 0.45 | | | | Contact 1 Index Chamfer | CH | 0.13 X 45° REF | | | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-3202A # APPENDIX A: REVISION HISTORY # Revision A (June 2019) • Initial creation of DSA61xx Microchip data sheet DS20006222A. NOTES: # PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office. | PART NO. | <u>X</u> | <u>X</u> | <u>X</u> | <u>X</u> | <u>X</u> | <u>X</u> | -XXX.XXXX | <u>X</u> | XXX | | |---------------------------|--|-----------------------------|--|--|---|---|--|---------------------------------|---------------------------------|--| | Device E | Pin 1
efinition | Output
Drive
Strength | | e Temperature
Range | Frequency
Stability | Revision | Frequency | Media
Type | Automotive
Suffix | | | Device: Pin 1 Definition: | DSA Selec | | Ultra-Small, Low Power MEMS Oscillator Pin 1 Internal Pull-Up Register | | | a) DSA6 ²
Ultra- | Examples: a) DSA6112JI2B-100.0000VAO: Ultra-Small, Low Power MEMS Oscillator, | | | | | | 0
1
2
4
5 | | STDBY FS OE STDBY | Pull-up Pull-up Pull-up Pull-up None None None | J | Stren
Autor
±25 p
140/7
b) DSA6′
Ultra-
Pin 1 | Pin 1 = STDBY with Internal Pull-Up, High Dr Strength, 4-Lead 2.5 mm x 2.0 mm VLGA, Automotive Grade 3 Temperature, ±25 ppm Stability, Revision B, 100 MHz Freq 140/Tube b) DSA6101HL1B-016.0000TVAO: Ultra-Small, Low Power MEMS Oscillator, Pin 1 = OE with Internal Pull-Up, Standard D Strength, 4-Lead 1.6 mm x 1.2 mm VFLGA, | | | | | Output Drive
Strength: | 1
2 | | Standard
High | | | Revis | Automotive Grade 2 Temperature, ±50 ppm Stability Revision B, 16 MHz Frequency, 1,000/Reel c) DSA6121MA2B-0101BVAO: | | | | | Package: | J
M
H | = | 4-Lead 2.5 mm x 2.0 mm VLGA 4-Lead 2.0 mm x 1.6 mm VFLGA 4-Lead 1.6 mm x 1.2 mm VFLGA -40°C to +125°C (Automotive Grade 1) -40°C to +105°C (Automotive Grade 2) -40°C to +85°C (Automotive Grade 3) | | | Pin 1
Stand
VFLG | Ultra-Small, Low Power MEMS Oscillator, Pin 1 = Freq. Select with Internal Pull-Up, Standard Drive Strength, 4-Lead 2.0 mm x 1.6 mm VFLGA, Automotive Grade 1 Temperature, | | | | | Temperature
Range: | A
L
I | | | | | | ±25 ppm Stability, Revision B, Two Frequencies Configured through ClockWorks, 3,000/Reel Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is | | | | | Frequency
Stability: | 1
2
3 | = | ± 50 ppm
± 25 ppm
± 20 ppm | | | | used for ordering p
the device package
Sales Office for pa
and Reel option. | ourposes and i
e. Check with | s not printed on your Microchip | | | Revision: | В | = | Revision B | | | | | | | | | Frequency: | | xxx = | 001.0000 M
User-Defined
and 999.999
Frequency co | onfiguration code w
ne part online throu | Hz
en 002.000 kHz
hen pin 1 = FS. | | | | | | | Media Type: |

 | | 140/Tube (J Package Option)
100/Bag (M & H Package Options)
1,000/Reel
3,000/Reel | | | | | | | | | Automotive Suf | ix: Vxx | = | The "xx" is a | ssigned by Microcl | hip. | | | | | | **Note 1:** Please visit Microchip ClockWorks[®] Configurator Website to configure the part number for customized frequency. http://clockworks.microchip.com/timing/. NOTES: #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. #### **Trademarks** The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2019, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-4709-2 For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. # Worldwide Sales and Service #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Austin, TX** Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 **Detroit** Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 **Raleigh, NC** Tel: 919-844-7510 New York, NY Tel: 631-435-6000 **San Jose, CA**Tel: 408-735-9110 Tel: 408-436-4270 **Canada - Toronto** Tel: 905-695-1980 Fax: 905-695-2078 #### ASIA/PACIFIC Australia - Sydney Tel: 61-2-9868-6733 **China - Beijing** Tel: 86-10-8569-7000 **China - Chengdu** Tel: 86-28-8665-5511 **China - Chongqing** Tel: 86-23-8980-9588 **China - Dongguan** Tel: 86-769-8702-9880 China - Guangzhou Tel: 86-20-8755-8029 China - Hangzhou Tel: 86-571-8792-8115 China - Hong Kong SAR Tel: 852-2943-5100 **China - Nanjing** Tel: 86-25-8473-2460 China - Qingdao Tel: 86-532-8502-7355 **China - Shanghai** Tel: 86-21-3326-8000 **China - Shenyang** Tel: 86-24-2334-2829 **China - Shenzhen** Tel: 86-755-8864-2200 **China - Suzhou** Tel: 86-186-6233-1526 **China - Wuhan** Tel: 86-27-5980-5300 **China - Xian** Tel: 86-29-8833-7252 China - Xiamen Tel: 86-592-2388138 **China - Zhuhai** Tel: 86-756-3210040 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 India - New Delhi Tel: 91-11-4160-8631 India - Pune Tel: 91-20-4121-0141 **Japan - Osaka** Tel: 81-6-6152-7160 Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu Tel: 82-53-744-4301 Korea - Seoul Tel: 82-2-554-7200 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 Malaysia - Penang Tel: 60-4-227-8870 Philippines - Manila Tel: 63-2-634-9065 **Singapore** Tel: 65-6334-8870 **Taiwan - Hsin Chu** Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830 **Taiwan - Taipei** Tel: 886-2-2508-8600 Thailand - Bangkok Tel: 66-2-694-1351 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 **Denmark - Copenhagen** Tel: 45-4450-2828 Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400 **Germany - Heilbronn** Tel: 49-7131-72400 Germany - Karlsruhe Tel: 49-721-625370 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Rosenheim Tel: 49-8031-354-560 Israel - Ra'anana Tel: 972-9-744-7705 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Padova Tel: 39-049-7625286 **Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7288-4388 **Poland - Warsaw** Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 **Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **Sweden - Gothenberg** Tel: 46-31-704-60-40 **Sweden - Stockholm** Tel: 46-8-5090-4654 **UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820