

STK11C68 64 Kbit (8K x 8) SoftStore nvSRAM

Features

- 25 ns, 35 ns, and 45 ns access times
- Pin compatible with industry standard SRAMs
- Software initiated nonvolatile STORE
- Unlimited Read and Write endurance
- Automatic RECALL to SRAM on power up
- Unlimited RECALL cycles
- 1,000,000 STORE cycles
- 100 year data retention
- Single 5V±10% operation
- Commercial and industrial temperature
- 28-pin (330 mil) SOIC package
- 28-pin (300 mil) CDIP and 28-pad (350 mil) LCC packages
- RoHS compliance

Functional Description

The Cypress STK11C68 is a 64Kb fast static RAM with a nonvolatile element in each memory cell. The embedded nonvolatile elements incorporate QuantumTrap technology producing the world's most reliable nonvolatile memory. The SRAM provides unlimited read and write cycles, while independent nonvolatile data resides in the highly reliable Quantum Trap cell. Data transfers under software control from SRAM to the nonvolatile elements (the STORE operation). On power up, data is automatically restored to the SRAM (the RECALL operation) from the nonvolatile memory. RECALL operations are also available

198 Champion Court

٠

San Jose, CA 95134-1709 ٠ 408-943-2600 Revised December 11, 2009

STK11C68

Contents

Features 1	Operating Range
Functional Description1	DC Electrical Chara
Logic Block Diagram 1	Data Retention and
Contents 2	Capacitance
Pin Configurations 3	Thermal Resistance
Pin Definitions 3	AC Test Conditions
Device Operation 4	AC Switching Chara
SRAM Read 4	SRAM Read Cyc
SRAM Write 4	SRAM Write Cyc
Software STORE 4	AutoStore INHIBIT of
Software RECALL 4	Software Controlled
Hardware RECALL (Power Up) 4	Part Numbering Nor
Hardware Protect4	Ordering Informatio
Noise Considerations 4	Package Diagrams.
Low Average Active Power 4	Document History F
Best Practices 5	Sales, Solutions, an Worldwide Sales
Maximum Ratings 6	Products
Hardware Protect 4 Noise Considerations	signs produ

Operating Range	6
DC Electrical Characteristics	6
Data Retention and Endurance	6
Capacitance	7
Thermal Resistance	7
AC Test Conditions	7
AC Switching Characteristics	8
AC Switching Characteristics SRAM Read Cycle SRAM Write Cycle	8
SRAM Write Cycle	9
AutoStore INHIBIT or Power Up RECALL	
Software Controlled STORE/RECALL Cycle	11
Part Numbering Nomenclature	12
Ordering Information	12
Package Diagrams	14
Document History Page	17
Sales, Solutions, and Legal Information	17
Worldwide Sales and Design Support	17
Products	17

Pin Configurations

Figure 1. Pin Diagram - 28-Pin SOIC/DIP and 28-Pin LLC

Pin Definitions

Pin Name	Alt	I/О Туре	Description				
A ₀ -A ₁₂		Input	Address Inputs. Used to select one of the 8,192 bytes of the nvSRAM.				
DQ ₀ -DQ ₇		Input or Output	rectional Data I/O Lines. Used as input or output lines depending on operation.				
WE	W	Input	Write Enable Input, Active LOW. When the chip is enabled and \overline{WE} is LOW, data on the I/O pins is written to the specific address location.				
CE	Ē	Input	Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.				
OE	G	Input	Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read cycles. Deasserting OE HIGH causes the I/O pins to tristate.				
V _{SS}		Ground	bund for the Device. The device is connected to ground of the system.				
V _{CC}	~	Power Supply	Power Supply Inputs to the Device.				
	HOT IN	rodule					

Device Operation

The STK11C68 is a versatile memory chip that provides several modes of operation. The STK16C88 can operate as a standard 8K x 8 SRAM. A 8K x 8 array of nonvolatile storage elements shadow the SRAM. SRAM data can be copied nonvolatile memory or nonvolatile data can be recalled to the SRAM.

SRAM Read

The STK11C<u>68</u> performs a Read cycle whenever \overline{CE} and \overline{OE} are LOW while WE is HIGH. The address specified on pins A₀₋₁₂ determines the 8,192 data bytes accessed. When the Read is initiated by an address transition, the outputs are valid after a delay of t_{AA} (Read cycle 1). If the Read is initiated by CE or OE, the outputs are valid at t_{ACE} or at t_{DOE}, whichever is later (Read cycle 2). The data outputs repeatedly respond to address changes within the t_{AA} access time without the need for transitions on any control input pins, and remains valid until another address change or until CE or OE is brought HIGH, or WE brought LOW.

SRAM Write

A Write cycle is performed whenever \overline{CE} and \overline{WE} are LOW. The address inputs must be stable prior to entering the Write cycle and must remain stable until either \overline{CE} or \overline{WE} goes HIGH at the end of the cycle. The data on the common I/O pins DQ_{0-7} are written into the memory if it has valid t_{SD} , before the end of a WE controlled Write or before the end of an \overline{CE} controlled Write. Keep \overline{OE} HIGH during the entire Write cycle to avoid data bus contention on common I/O lines. If \overline{OE} is left LOW, internal circuitry turns off the output buffers t_{HZWE} after WE goes LOW.

Software STORE

Data is transferred from the SRAM to the nonvolatile memory by a software address sequence. The STK11C<u>68</u> software STORE cycle is initiated by executing sequential CE controlled Read cycles from six specific address locations in exact order. During the STORE cycle, an erase of the previous nonvolatile data is first performed followed by a program of the nonvolatile elements. When a STORE cycle is initiated, input and output are disabled until the cycle is completed.

Because a sequence of Reads from specific addresses is used for STORE initiation, it is important that no other Read or Write accesses intervene in the sequence. If they intervene, the sequence is aborted and no STORE or RECALL takes place.

To initiate the software STORE cycle, the following Read sequence is performed:

- 1. Read address 0x0000, Valid READ
- 2. Read address 0x1555, Valid READ
- 3. Read address 0x0AAA, Valid READ
- 4. Read address 0x1FFF, Valid READ
- 5. Read address 0x10F0, Valid READ
- 6. Read address 0x0F0F, Initiate STORE cycle

The software sequence is clocked with \overline{CE} controlled Reads. When the sixth address in the sequence is entered, the STORE cycle commences and the chip is disabled. It is important that Read cycles and not Write cycles are used in the sequence. It is not necessary that \overline{OE} is LOW for a valid sequence. After the t_{STORE} cycle time is fulfilled, the SRAM is again activated for Read and Write operation.

Software RECALL

Data is transferred from the nonvolatile memory to the SRAM by a software address sequence. A software RECALL cycle is initiated with a sequence of Read operations in a manner similar to the software STORE initiation. To initiate the RECALL cycle, the following sequence of CE controlled Read operations is performed:

- 1. Read address 0x0000, Valid READ
- 2. Read address 0x1555, Valid READ
- 3. Read address 0x0AAA, Valid READ
- 4. Read address 0x1FFF, Valid READ
- 5. Read address 0x10F0, Valid READ
- 6. Read address 0x0F0E, Initiate RECALL cycle

Internally, RECALL is a two step procedure. First, the SRAM data is cleared; then, the nonvolatile information is transferred into the SRAM cells. After the t_{RECALL} cycle time, the SRAM is again ready for Read and Write operations. The RECALL operation does not alter the data in the nonvolatile elements. The nonvolatile data can be recalled an unlimited number of times.

Hardware RECALL (Power Up)

During power up or after any low power condition (V_{CC} < V_{RESET}), an internal RECALL request is latched. When V_{CC} once again exceeds the sense voltage of V_{SWITCH}, a RECALL cycle is automatically initiated and takes t_{HRECALL} to complete.

If the STK11C68 is in a Write state at the end of power up RECALL, the SRAM data is corrupted. To help avoid <u>this</u> situation, a 10 Kohm resisto<u>r</u> is connected either between WE and system V_{CC} or between CE and system V_{CC} .

Hardware Protect

The STK11C68 offers hardware protection against inadvertent STORE operation and SRAM Writes during low voltage conditions. When V_{CAP} - V_{SWITCH} , all externally initiated STORE operations and SRAM Writes are inhibited.

Noise Considerations

The STK11C68 is a high speed memory. It must have a high frequency bypass capacitor of approximately 0.1 μF connected between V_{CC} and V_{SS} , using leads and traces that are as short as possible. As with all high speed CMOS ICs, careful routing of power, ground, and signals reduce circuit noise.

Low Average Active Power

CMOS technology provides the STK11C68 the benefit of drawing significantly less current when it is cycled at times longer than 50 ns. Figure 2 shows the relationship between I_{CC} and Read or Write cycle time. Worst case current consumption is shown for both CMOS and TTL input levels (commercial temperature range, VCC = 5.5V, 100% duty cycle on chip enable). Only standby current is drawn when the chip is disabled.

The overall average current drawn by the STK11C68 depends on the following items:

- The duty cycle of chip enable
- The overall cycle rate for accesses
- The ratio of Reads to Writes
- CMOS versus TTL input levels
- The operating temperature
- The V_{CC} level
- I/O loading

Figure 2. Current Versus Cycle Time (Read)

Figure 3. Current Versus Cycle Time (Write)

Best Practices

nvSRAM products have been used effectively for over 15 years. While ease of use is one of the product's main system values, experience gained working with hundreds of applications has resulted in the following suggestions as best practices:

- The nonvolatile cells in an nvSRAM are programmed on the test floor during final test and quality assurance. Incoming inspection routines at customer or contract manufacturer's sites sometimes reprograms these values. Final NV patterns are typically repeating patterns of AA, 55, 00, FF, A5, or 5A. The end product's firmware should not assume that an NV array is in a set programmed state. Routines that check memory content values to determine first time system configuration,
- cold or warm boot status, and so on must always program a unique NV pattern (for example, complex 4-byte pattern of 46 E6 49 53 hex or more random bytes) as part of the final system manufacturing test to ensure these system routines work consistently.
- Power up boot firmware routines should rewrite the nvSRAM into the desired state. While the nvSRAM is shipped in a preset state, best practice is to again rewrite the nvSRAM into the desired state as a safeguard against events that might flip the bit inadvertently (program bugs, incoming inspection routines,

Table 1. Hardware Mode Selection

CE	CE WE		Mode	I/O	Notes
	er olit	0x0000 0x1555 0x0AAA 0x1FFF 0x10F0 0x0F0F	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile STORE	Output Data Output Data Output Data Output Data Output Data Output High Z	[1]
L	Н	0x0000 0x1555 0x0AAA 0x1FFF 0x10F0 0x0F0E	Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile RECALL	Output Data Output Data Output Data Output Data Output Data Output High Z	[1]

Note

1. The six consecutive addresses must be in the order listed. WE must be high during all six consecutive CE controlled cycles to enable a nonvolatile cycle.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested.

Storage Temperature65°C to +150°C
Temperature under bias55°C to +125°C
Supply Voltage on V _{CC} Relative to GND0.5V to 7.0V
Voltage on Input Relative to Vss0.6V to V_{CC} + 0.5V
Voltage on DQ ₀₋₇ 0.5V to Vcc + 0.5V

DC Electrical Characteristics

Power Dissipation1.0W	V
-----------------------	---

DC Output Current (1 output at a time, 1s duration).... 15 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	4.5V to 5.5V
Industrial	-40°C to +85°C	4.5V to 5.5V

Voltage on Input Relative to Vss		$-0.6V$ to $V_{CC} + 0.5V$ Industrial	-40°C to +85	°C	4.5V to 5.	5V
Voltage on DQ ₀₋₇		0.5V to Vcc + 0.5V			4.	
	ical Characteristic rating range (V _{CC} = 4.5V f			Sol		
Parameter	Description	Test Conditions		Min	Max	Unit
CC1	Average V _{CC} Current	$t_{RC} = 25 \text{ ns}$ $t_{RC} = 35 \text{ ns}$ $t_{RC} = 45 \text{ ns}$	Commercial	0	90 75 65	mA mA mA
	Dependent on output loading and Values obtained without output loa I _{OUT} = 0 mA.		Industrial		90 75 65	mA mA mA
CC2	Average V _{CC} Current during STORE	All Inputs Do Not Care, V _{CC} = Max Average current for duration t _{STORE}			3	mA
ССЗ	Average V _{CC} Current at t _{RC} = 200 ns, 5V, 25°C Typical	$\overline{\text{WE}} \ge (V_{CC} - 0.2V)$. All other inputs cycling. Dependent on output loading and cycle rate. V without output loads.		10	mA	
SB1 ^[2]	V _{CC} Standby Current (Standby, Cycling TTL Input Levels)	$\begin{array}{l} t_{RC} = 25 \text{ ns, } \underline{CE} \geq V_{H} \\ t_{RC} = 35 \text{ ns, } \underline{CE} \geq V_{IH} \\ t_{RC} = 45 \text{ ns, } \underline{CE} \geq V_{IH} \end{array}$	Commercial		27 23 20	mA mA mA
		for not one	Industrial		28 24 21	mA mA mA
I _{SB2} ^[2]	V _{CC} Standby Current	$\overrightarrow{CE} \ge (V_{CC} - 0.2V)$. All others $V_{IN} \le 0.2V$ or $\ge V_{CC} - 0.2V$). Standby current level after	Commercial		750	μΑ
	en	nonvolatile cycle is complete. Inputs are static. f = 0 MHz.	Industrial		1500	μΑ
IX	Input Leakage Current	$V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}$		-1	+1	μΑ
oz	Off State Output Leakage Current	$V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}, \overline{CE} \text{ or } \overline{OE} \ge V_{IH}$	or $\overline{WE} \leq V_{IL}$	-5	+5	μΑ
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage			$V_{SS} - 0.5$	0.8	V
V _{OH}	Output HIGH Voltage	I _{OUT} = -4 mA		2.4		V
V _{OL}	Output LOW Voltage	I _{OUT} = 8 mA			0.4	V

Data Retention and Endurance

Parameter	Description	Min	Unit
DATA _R	Data Retention	100	Years
NV _C	Nonvolatile STORE Operations	1,000	К

Note_ 2. $\overline{CE} \ge V_{IH}$ does not produce standby current levels until any nonvolatile cycle in progress has timed out.

Capacitance In the following table, the capacitance parameters are listed.^[3]

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, f = 1 MHz,	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 0$ to 3.0V	7	pF

Thermal Resistance

In the following table, the thermal resistance parameters are listed.^[3]

Parameter	Description	Test Conditions	28-SOIC	28-CDIP	28-LCC	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Test conditions follow standard test methods and procedures for measuring thermal	TBD	TBD	TBD	°C/W
Θ_{JC}	Thermal Resistance (Junction to Case)	impedance, per EIA / JESD51.	TBD	TBD	TBD	°C/W
		Figure 4. AC Test Loads	,00	5		
	5. Output	Figure 4. AC Test Loads	5n 9'			
	conditions					
put Rise an put and Out	d Fall Times (10% to 90%) put Timing Reference Leve					
	evels d Fall Times (10% to 90%) put Timing Reference Leve connends	20 JUPPC				
Ŷ	Not rerodule					

AC Switching Characteristics

SRAM Read Cycle

Parameter			25 ns		35 ns		45 ns		
Cypress Parameter	Alt	Description	Min	Max	Min	Max	Min	Max	Unit
t _{ACE}	t _{ELQV}	Chip Enable Access Time		25		35		45	ns
t _{RC} ^[4]	t _{AVAV} , t _{ELEH}	Read Cycle Time	25		35		45		ns
t _{AA} ^[5]	t _{AVQV}	Address Access Time		25		35		45	ns
t _{DOE}	t _{GLQV}	Output Enable to Data Valid		10		15	Ś	20	ns
t _{OHA} ^[5]	t _{AXQX}	Output Hold After Address Change	5		5		୍		ns
t _{LZCE} ^[6]	t _{ELQX}	Chip Enable to Output Active	5		5	0	S 5		ns
t _{HZCE} ^[6]	t _{EHQZ}	Chip Disable to Output Inactive		10		13		15	ns
t _{LZOE} ^[6]	t _{GLQX}	Output Enable to Output Active	0		0	~~~~	0		ns
t _{HZOE} [6]	t _{GHQZ}	Output Disable to Output Inactive		10	.0	13		15	ns
t _{PU} ^[3]	t _{ELICCH}	Chip Enable to Power Active	0		θ		0		ns
t _{PD} ^[3]	t _{EHICCL}	Chip Disable to Power Standby		25	04	35		45	ns

Switching Waveforms

Notes

WE must be High during SRAM Read cycles.
I/O state assumes CE and OE ≤ V_{IL} and WE ≥ V_{IH}; device is continuously selected.
Measured ±200 mV from steady state output voltage.

SRAM Write Cycle

ameter		25 ns		35 ns		45 ns		
Alt	Description	Min	Max	Min	Max	Min	Max	Unit
t _{AVAV}	Write Cycle Time	25		35		45		ns
t _{WLWH} , t _{WLEH}	Write Pulse Width	20		25		30		ns
t _{ELWH,} t _{ELEH}	Chip Enable To End of Write	20		25		30		ns
t _{DVWH} , t _{DVEH}	Data Setup to End of Write	10		12		15		ns
t _{WHDX} , t _{EHDX}	Data Hold After End of Write 0 0				0	<i>.</i>	ns	
t _{AVWH} , t _{AVEH}	Address Setup to End of Write	20		25		30		ns
t _{AVWL} , t _{AVEL}	Address Setup to Start of Write 0 0 0			ns				
t _{WHAX,} t _{EHAX}	Address Hold After End of Write	0		0	5	\mathbf{v}_0		ns
t _{WLQZ}	Write Enable to Output Disable 10 13		15	ns				
t _{WHQX}	Output Active After End of Write	5		5	0	5		ns
1	Alt tavav twlwh, twleh telwh, teleh tovwh, toveh twhdx, tehdx tavwh, taveh tavwl, tavel tavwl, tavel twhax, tehax twlqz twhqx	AltDescriptiontAVAVWrite Cycle TimetWLWH, tWLEHWrite Pulse WidthtELWH, tELEHChip Enable To End of WritetDVWH, tDVEHData Setup to End of WritetWHDX, tEHDXData Hold After End of WritetAVWH, tAVEHAddress Setup to End of WritetAVWL, tAVELAddress Setup to Start of WritetWHAX, tEHAXAddress Hold After End of WritetWLQZWrite Enable to Output Disable	AltDescriptionAltMintAVAVWrite Cycle TimetAVAVWrite Pulse WidthtWLWH, tWLEHWrite Pulse WidthtELWH, tELEHChip Enable To End of WritetDVWH, tDVEHData Setup to End of WritetWHDX, tEHDXData Hold After End of WritetAWWL, tAVEHAddress Setup to End of WritetAWWL, tAVELAddress Setup to Start of WritetWHAX, tEHAXAddress Hold After End of WritetWHQZWrite Enable to Output DisabletWHQXOutput Active After End of Write	AltDescriptionMinMaxtAVAVWrite Cycle Time25twuwh, twuEHWrite Pulse Width20teluwh, teleHChip Enable To End of Write20town, town, town, townData Setup to End of Write10twhDX, tendXData Hold After End of Write0tavwuh, taveHAddress Setup to End of Write0tavwuh, taveLAddress Setup to Start of Write0twhAX, tendXAddress Hold After End of Write0twhQZWrite Enable to Output Disable10twhQXOutput Active After End of Write5	AltDescriptionMinMaxMintAVAVWrite Cycle Time2535tWLWH, tWLEHWrite Pulse Width2025tELWH, tELEHChip Enable To End of Write2025tDVWH, tDVEHData Setup to End of Write1012tWHDX, tEHDXData Hold After End of Write00tAVWL, tAVEHAddress Setup to End of Write00tAVWL, tAVELAddress Setup to Start of Write00tWHAX, tEHAXAddress Hold After End of Write00tWLQZWrite Enable to Output Disable1010tWHQXOutput Active After End of Write55	AltDescriptionMinMaxMinMaxtAVAVWrite Cycle Time253535twLwh, twLEHWrite Pulse Width202525teLWH, teLEHChip Enable To End of Write202525toWHX, toVEHData Setup to End of Write101212twHDX, teHDXData Hold After End of Write000tAVWL, taVEHAddress Setup to End of Write000tAVWL, taVELAddress Setup to Start of Write0013twHQZWrite Enable to Output Disable101313	AltDescriptionMinMaxMinMaxMintAvAvWrite Cycle Time253545twLwh, twLEHWrite Pulse Width202530teLWH, teLEHChip Enable To End of Write202530toWh, toVEHData Setup to End of Write101215twHDX, teHDXData Hold After End of Write000taVWL, taVEHAddress Setup to End of Write000taVWL, taVELAddress Setup to Start of Write000twHAX, teHAXAddress Hold After End of Write000twLQZWrite Enable to Output Disable101313twHQXOutput Active After End of Write555	AltDescriptionMinMaxMinMaxMinMaxtAVAVWrite Cycle Time253545tWLWH, tWLEHWrite Pulse Width202530teLWH, tELEHChip Enable To End of Write202530toWHX, tDVEHData Setup to End of Write101215twHDX, tEHDXData Hold After End of Write000tAVWL, tAVEHAddress Setup to End of Write000tAVWL, tAVELAddress Setup to End of Write000tWHAX, tEHAXAddress Setup to Start of Write000tWLQZWrite Enable to Output Disable101315tWHQXOutput Active After End of Write555

Switching Waveforms

 $\begin{array}{l} \textbf{Notes} \\ \textbf{7. If WE is Low when CE goes Low, the outputs remain in the high impedance state.} \\ \textbf{8. CE or WE must be greater than V_{IH} during address transitions.} \end{array}$

AutoStore INHIBIT or Power Up RECALL

Parameter	Alt	Description	STK1	Unit		
Farameter	All	Description	Min	Мах	Unit	
t _{HRECALL} ^[9]	t _{RESTORE}	Power up RECALL Duration		550	μS	
t _{STORE}	t _{HLHZ}	STORE Cycle Duration	ms			
V _{SWITCH}		ow Voltage Trigger Level 4.0 4.5		V		
V _{RESET}		Low Voltage Reset Level	V			

Switching Waveform

Software Controlled STORE/RECALL Cycle

The software controlled STORE/RECALL cycle follows. ^[10, 11]

Parameter	Alt	Description	25 ns		35 ns		45 ns		Unit
Farameter		Description	Min	Max	Min	Max	Min	Max	Unit
t _{RC}	t _{AVAV}	STORE/RECALL Initiation Cycle Time	25		35		45		ns
t _{SA} ^[10]	t _{AVEL}	Address Setup Time	0		0		0		ns
t _{CW} ^[10]	t _{ELEH}	Clock Pulse Width	20		25		30	١.	ns
t _{HACE} ^[10]	t _{ELAX}	Address Hold Time	20		20		20		ns
t _{RECALL} ^[10]		RECALL Duration		20		20	0,	20	μS

Switching Waveform

Notes

10. The software sequence is clocked on the falling edge of CE without involving OE (double clocking aborts the sequence).

11. The six consecutive addresses must be read in the order listed in Table 1 on page 5. WE must be HIGH during all six consecutive cycles.

Part Numbering Nomenclature

STK11C68 - S F 45 I TR

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
25	STK11C68-SF25TR	001-85058	28-Pin SOIC (330 mil)	Commercial
	STK11C68-SF25	001-85058	28-Pin SOIC (330 mil)	
	STK11C68-SF25ITR	001-85058	28-Pin SOIC (330 mil)	Industrial
	STK11C68-SF25I	001-85058	28-Pin SOIC (330 mil)	
35	STK11C68-SF35TR	001-85058	28-Pin SOIC (330 mil)	Commercial
	STK11C68-SF35	001-85058	28-Pin SOIC (330 mil)	
	STK11C68-C35	001-51695	28-Pin CDIP (300 mil)	
	STK11C68-L35	001-51696	28-Pin LCC (350 mil)	
7	STK11C68-SF35ITR	001-85058	28-Pin SOIC (330 mil)	Industrial
	STK11C68-SF35I	001-85058	28-Pin SOIC (330 mil)	
	STK11C68-C35I	001-51695	28-Pin CDIP (300 mil)	
	STK11C68-L35I	001-51696	28-Pin LCC (350 mil)	

Ordering Information (continued)

These parts are not recommended for new designs. They are in production to support ongoing production programs only.

Speed (ns) 45	Ordering Code			
45		Package Diagram	Package Type	Operating Range
	STK11C68-SF45TR	001-85058	28-Pin SOIC (330 mil)	Commercial
	STK11C68-SF45	001-85058	28-Pin SOIC (330 mil)	
	STK11C68-C45	001-51695	28-Pin CDIP (300 mil)	
	STK11C68-L45	001-51696	28-Pin LCC (350 mil)	
	STK11C68-SF45ITR	001-85058	28-Pin SOIC (330 mil)	Industrial
	STK11C68-SF45I	001-85058	28-Pin SOIC (330 mil)	
	STK11C68-C45I	001-51695	28-Pin CDIP (300 mil)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	STK11C68-L45I	001-51696	28-Pin LCC (350 mil)	
	STK11C68-SF451 STK11C68-C451 STK11C68-L451 ree. The above table contains Final in	tor new design	s. roduction .	

Document Number: 001-50638 Rev. *A

Package Diagrams

Figure 11. 28-Pin (330 Mil) SOIC (51-85058)

Package Diagrams (continued)

Package Diagrams (continued)

Document History Page

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	2625084	GVCH/PYRS	01/30/09	New data sheet
*A	2826441	GVCH	12/11/2009	Added following text in the Ordering Information section: "These parts are not recommended for new designs. In production to support ongoing pro- duction programs only." Added watermark in PDF stating "Not recommended for new designs. In production to support ongoing production programs only." Added Contents on page 2.
		, and Legal Id Design Sup		n ograffis

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress com/sales closest to you, visit us at cypress.com/sales.

Products

PSoC	psoc.cypress.com clocks.cypress.com wireless.cypress.com memory.cypress.com image.cypress.com/usb
Clocks & Buffers	clocks.cypress.com
Wireless	wireless.cypress.com
Memories	memory.cypress.com
Image Sensors	image.cypress.com
USB	psoc.cypress.com/usb
	psoc.cypress.com/usb psoc.cypress.com/usb https://psoc.cypress.com/usb psoc.cypress.com/usb psoc.cypress.com/usb psoc.cypress.com/usb psoc.cypress.com/usb psoc.cypress.com/usb psoc.cypress.com/usb psoc.cypress.com/usb psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not waranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-50638 Rev. *A

Revised December 11, 2009

Page 17 of 17

All products and company names mentioned in this document may be the trademarks of their respective holders