ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Power Factor Controller

The MC33232 is the monolithic Integrated Circuit using the SMARTMOS® process as the new technology. And is active power factor controller specially design for use as off-line power converter application. This integrated circuit features an internal startup timer for stand-alone application, a one quadrant multiplier for near unity power factor, zero current detector to ensure critical condition operation, transconductance error amplifier, quickstart circuit for enhanced startup, trimmed internal bandgap reference, current sensing comparator, a totem pole output ideally suited for drive a power MOSFET, and a one shot-rigger circuit to eliminate a problem at the light loading.

Also included are protective features consisting of an overvoltage comparator to eliminate runaway output voltage due to removal, and a protect circuit to eliminate thermal runaway. This device is available in dual-in-line and surface mount plastic package.

Features

- One Shot-trigger Circuit to Eliminate a Problem at the Light Loading
- Overvoltage Comparator Eliminates Runaway Output Voltage
- Quickstart Circuit for Enhanced Startup
- Internal Startup Timer
- One Quadrant Multiplier
- Zero Current Detector
- Trimmed 2% Internal Bandgap Reference
- Totem Pole Output with High State Clamp
- Undervoltage Lockout with 6.0 V of Hysteresis
- Low Startup and Operating Current
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

SILICON MONOLITHIC INTEGRATED CIRCUIT

		MARKING DIAGRAMS
	PDIP-8 P SUFFIX CASE 626	<u>К К Л</u> MC33232P) AwL _ YYWWG Г Г Г Ј
Contraction of the second	SOIC-8 D SUFFIX CASE 751	8
A WL or L Y WW or V G or ■		Veek
Р	IN ASSIGNI	MENT

PIN ASSIGNMEN

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Figure 1. Simplified Block Diagram

ORDERING INFORMATION

Device	Operating Junction Temperature Range	Package	Shipping [†]
MC33232PG		PDIP-8 (Pb-Free)	50 Units / Rail
MC33232DG	−40°C to +150°C	SOIC-8 (Pb-Free)	98 Units / Rail
MC33232DR2G		SOIC–8 (Pb–Free)	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Total Power Supply and Zener Current	$(I_{CC} + I_Z)$	30	mA
Output Current, Source or Sink (Note 1) Peak Current (Under 0.5 μsec) DC (Continuously Current)	I _O	750 300	mA
Current Sense, Multiplier and Voltage Feedback Input	V _{in}	–0.3 to 10	V
Zero Current Detect Input High State Forward Current Low State Reverse Current	l _{in}	50 –10	mA
Power Dissipation and Thermal Characteristic D Suffix, Plastic Package, Case 751 Maximum Power Dissipation @ $T_A = 70^{\circ}C$ Thermal Resistance, Junction-to-Air P Suffix, Plastic Package, Case 626 Maximum Power Dissipation @ $T_A = 70^{\circ}C$ Thermal Resistance, Junction-to-Air	P _D R _{θJA} P _D R _{θJA}	450 178 800 100	mW °C/W mW °C/W
Operating Junction Temperature	TJ	+150	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Maximum package power dissipation limits must be observed.

RECOMMENDED OPERATING CONDITION (V_{CC} = 12 V and T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Мах	Unit
Operating Frequency (R_{ZCD} = 4.7 k Ω , C_{err} = 0.68 μ F)	F				MHz
Normal Loading			0.4		
Under Loading			1.0		
External Resistance for Zero Current Detect Control	R _{ZCD}	-	4.7	-	kΩ
Operating Ambient Temperature	T _A	-20	-	+85	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 12 V, for typical values $T_A = -20^{\circ}C \sim +85^{\circ}C$, unless otherwise noted)

	71	,		,	
Characteristic	Symbol	Min	Тур	Max	Unit
ERROR AMPLIFIER					

Voltage Feedback Input Threshold					V
$T_A = 25^{\circ}C$			2.5	2.535	
= 12 V ~ 25 V)		2.44	-	2.54	
$(V_{CC} = 12 \text{ V} \sim 25 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C})$	Reg _{line}	-	1.0	10	mV
(V _{FB} = 0 V)	I _{IB}	-	-0.1	-0.5	μΑ
(T _A = 25°C)	gm	80	100	130	μmho
(V_{CC} = 12 V \sim 28 V, T_A = 25°C)					μΑ
(V _{FB} = 2.3 V)	I _{source}	-	10	-	
(V _{FB} = 2.7 V)	I _{sink}	-	10	-	
					V
(V _{FB} = 2.3 V)	V _{OH(ea)}	5.8	6.2	-	
(V _{FB} = 2.7 V)	V _{OL(ea)}	-	1.7	2.4	
ATOR					
Voltage Feedback Input Threshold			1.067 V _{FB}	1.095 V _{FB}	V
DTECT CIRCUIT (This item is just reference	ce value without a	any specifying))		
	TSD	120	-	-	°C
	= $12 \text{ V} \sim 25 \text{ V}$ $(\text{V}_{CC} = 12 \text{ V} \sim 25 \text{ V}, \text{ T}_{\text{A}} = 25^{\circ}\text{C})$ $(\text{V}_{FB} = 0 \text{ V})$ $(\text{T}_{\text{A}} = 25^{\circ}\text{C})$ $(\text{V}_{CC} = 12 \text{ V} \sim 28 \text{ V}, \text{ T}_{\text{A}} = 25^{\circ}\text{C})$ $(\text{V}_{FB} = 2.3 \text{ V})$ $(\text{V}_{FB} = 2.3 \text{ V})$ $(\text{V}_{FB} = 2.3 \text{ V})$ $(\text{V}_{FB} = 2.7 \text{ V})$ ATOR reshold	$= 12 \text{ V} \sim 25 \text{ V})$ $(V_{CC} = 12 \text{ V} \sim 25 \text{ V}, T_A = 25^{\circ}\text{C}) \qquad \text{Reg}_{\text{line}}$ $(V_{FB} = 0 \text{ V}) \qquad I_{IB}$ $(T_A = 25^{\circ}\text{C}) \qquad gm$ $(V_{CC} = 12 \text{ V} \sim 28 \text{ V}, T_A = 25^{\circ}\text{C})$ $(V_{FB} = 2.3 \text{ V}) \qquad I_{\text{source}}$ $(V_{FB} = 2.7 \text{ V}) \qquad I_{\text{sink}}$ $(V_{FB} = 2.7 \text{ V}) \qquad V_{OH(ea)}$ $(V_{FB} = 2.7 \text{ V}) \qquad V_{OL(ea)}$ ATOR reshold V_{TH} DTECT CIRCUIT (This item is just reference value without at the signal of the	$I = 12 V \sim 25 V$) 2.465 $(V_{CC} = 12 V \sim 25 V, T_A = 25^{\circ}C)$ Reg _{line} - $(V_{FB} = 0 V)$ I_{IB} - $(T_A = 25^{\circ}C)$ gm 80 $(V_{CC} = 12 V \sim 28 V, T_A = 25^{\circ}C)$ I_{source} - $(V_{FB} = 2.3 V)$ I_{source} - $(V_{FB} = 2.3 V)$ $V_{OH(ea)}$ 5.8 $(V_{FB} = 2.7 V)$ $V_{OL(ea)}$ - ATOR V_TH 1.04 V_{FB} DTECT CIRCUIT (This item is just reference value without any specifying) V_{TH} 1.04 V_{FB}	$I = 12 V \sim 25 V$) 2.465 2.5 $(V_{CC} = 12 V \sim 25 V, T_A = 25^{\circ}C)$ Reg_{line} $ 1.0$ $(V_{FB} = 0 V)$ I_{IB} $ -0.1$ $(T_A = 25^{\circ}C)$ gm 80 100 $(V_{CC} = 12 V \sim 28 V, T_A = 25^{\circ}C)$ I_{source} $ 10$ $(V_{FB} = 2.3 V)$ I_{source} $ 10$ $(V_{FB} = 2.3 V)$ $V_{OH(ea)}$ 5.8 6.2 $(V_{FB} = 2.7 V)$ $V_{OL(ea)}$ $ 1.7$ ATOR TECT CIRCUIT (This item is just reference value without any specifying)	I_{LD} 2.465 2.5 2.535 $= 12 \ V \sim 25 \ V$ $T_A = 25^{\circ} \ C$) Reg_{line} $ 1.0$ 10 $(V_{CC} = 12 \ V \sim 25 \ V, \ T_A = 25^{\circ} \ C)$ I_{IB} $ -0.1$ -0.5 $(T_A = 25^{\circ} \ C)$ gm 80 100 130 $(V_{CC} = 12 \ V \sim 28 \ V, \ T_A = 25^{\circ} \ C)$ I_{source} $ 10$ $ (V_{FB} = 2.3 \ V)$ I_{source} $ 10$ $ (V_{FB} = 2.7 \ V)$ I_{sink} $ 10$ $ (V_{FB} = 2.7 \ V)$ $V_{OH(ea)$ 5.8 6.2 $ (V_{FB} = 2.7 \ V)$ $V_{OL(ea)$ $ 1.7$ 2.4 ATORreshold V_{TH} $1.04 \ V_{FB}$ $1.067 \ V_{FB}$ DTECT CIRCUIT (This item is just reference value without any specifying)

MULTIPLIER Input Threshold Dynamic Input Voltage Ra	(Pin 2)	V _{thm}				
Dynamic Input Voltage Ra	(Pin 2)	Vii	4.0511	т <u>т</u>		
		* thm	1.05 V _{OL} (ea)	1.2 V _{OL} (ea)	_	V
	nge					V
Multiplier Input (Pin 3)		Vpin 3	0 to 2.5	0 to 3.5	-	
Compensation	(Pin 2)	Vpin 2	V _{thm} to V _{thm} + 1.0	V _{thm} to V _{thm} + 1.5	_	
Input Bias Current, Pin 3	(V _{FB} = 0 V)	I _{IB(mult)}	-	-0.1	-0.5	μΑ
Multiplier Gain	(Vpin 3 = 0.5 V, Vpin 2 = V _{FB} + 1.0 V)	K	0.43	0.65	0.87	1/V
ZERO CURRENT DETECT	TOR	1		11		
Input Threshold Voltage (V	/ _{in} Increasing)	V _{th(ZCD)}	1.33	1.6	1.87	V
Hysteresis (V _{in} Decreasing	 g)	V _{H(ZCD)}	100	200	300	mV
Input Clamp Voltage	High State (I _{DET} = +3.0 mA)	V _{IH}	5.0	5.3	_	V
	Low State ($I_{DET} = -3.0 \text{ mA}$)	V _{IL}	0.3	0.7	1.0	
Propagation Delay Time 7	Zero Current Detect to Drive Out	- IL				nsec
	$R_{ZCD} = 4.7 \text{ k}\Omega$	TZO	-	100	200	1000
ONE SHOT TRIGGER						<u> </u>
Output Minimum Off Time		T _{OS}	500	-	850	nsec
CURRENT SENSE COMPA	ARATOR					
Input Bias Current	(Vpin 4 = 0 V)	I _{IB(cs)}	-	-0.15	-1.0	μΑ
Input Offset Voltage	(Vpin 2 = 1.1 V, Vpin 3 = 0 V)	V _{io(cs)}	-	9.0	25	mV
Maximum Current Sense I	nput Threshold	V _{thmax}	1.3	1.5	1.8	V
Delay to Output		t _{PHL(in/out)}	_	100	200	nsec
DRIVE OUTPUT		<u> </u>	_			_
Output Voltage (V _{CC} = 12 Low State	V) (I _{sink} = 20 mA) (I _{sink} = 200 mA)	V _{OL}		0.3 2.4	0.8 3.3	V
High State	(I _{source} = 20 mA) (I _{source} = 200 mA)	V _{OH}	9.8 7.8	10.3 8.4	_	V
Output Voltage (V _{CC} = 25	V, I _{source} = 20 mA, C _L = 15 pF)	Vo	14	16	18	V
Output Voltage Rise Time	(C _L = 1.0 nF)	t _r	-	50	120	nsec
Output Voltage Fall Time	(C _L = 1.0 nF)	t _f	_	50	120	nsec
Output Voltage with UVLO) Active (V _{CC} = 7.0 V, I _{sink} = 1.0 mA)	V _{O(UVLO)}	-	0.1	0.5	V
RESTART TIMER			-1	L L		4
Restart Time Delay		tDLY	200	900	_	μsec
Restart Time at Startup		POR	0	25	-	μsec
UNDER VOLTAGE LOCKO	OUT (Metal Option Version)		-1	11		-1
Startup Threshold (V _{CC} In	V _{th(on)}	14.4	16	17.6	V	
Minimum Operating Voltaç	ge After Turn-off (V _{CC} Decreasing)	V _{shut}	9.0	10	11	V
Hysteresis		V _H	3.5	6.0	8.6	V
TOTAL DEVICE	-	1	1	<u>ı </u>		
	Startup (V _{CC} = 7.0 V) Operating	Icc		0.05 6.5	0.1 12	mA
C	Dynamic Operating (50 KHz, C _L = 1.0 nF)	1	-	9.0	20	

ltem	Con	dition	Measurement Method
V_{FB}			
V _{FB2}	SW1 = B	- Pin 1 = Pin 2	Measure Pin 1 voltage when connect Pin 1 and Pin 2
Regline			Regline = V _{FB2} – V _{FB}
I _{IB(err)}	Pin 1 = 0 V		Measure Pin 1 current
gm	Pin 2 = 2.0 V Pin 2 current (Ipin2) @ Pin 1 = 2.55 Pin 2 current (Ipin2) @ Pin 1 = 2.45		$gm = \frac{(lpin2 - l'pin2)}{(2.55 - 2.45)}$
I _{source}	Pin 1 = 2.3 V	SW1 = A&B	Maaaura Dia 0 astast aurorat
l _{sink}	Pin 1 = 2.7 V	Pin 2 = 2.0 V	Measure Pin 2 output current
V _{OH(ea)}	Pin 1 = 2.3 V		Marca in Dia O allare
V _{OL(ea)}	Pin 1 = 2.7 V		Measure Pin 2 voltage
V _{th}	V _{in} = Ref.1 Pin 4 = GND	Pin 2 = 4.0 V Pin 3 = 2.0 V	Measure Pin 1 voltage when Pin 7 switch to low by increasing Pin 1 voltage from 0 V
V _{th(mult)}	V _{in} = Ref.1 Pin 1 = 0 V	Pin 4 = 0.015 V Pin 3 = 0.5 V	Measure Pin 2 voltage when Pin 7 switch to low by decreasing Pin 2 voltage from 2.5 V
Vpin3	V _{in} = Ref.1 Pin 2 = V _{th(mult)}		$\alpha = \frac{C}{A} \times \frac{0.77}{1.67} + A$
	Measure Pin 4 voltage v with each Pin 3 condition		$25\% \cdot \frac{ B - \alpha }{ C - A } \times 100$
Vpin2	A: @ Pin 3 = 0 V B: @ Pin 3 = 1.25 V C: @ Pin 3 = 2.5 V		Measure the A, B and C with the condition and calculate the linearity of the multiplier
I _{IB(mult)}	Pin 1, 3 = 0 V	Pin 2 = 1.1 V	Measure Pin 3 current
к	Pin 1 = 0 V Pin 3 = 0.5 V		Measure V _{thp4} as Pin 4 voltage when Pin 7 switch to low by increasin Pin 4 voltage from 0 V and calculate by the following equation.
	Pin 2 = V _{th(mult)} + 1 V	V _{in} = Ref.1	K = V _{thp4} / 0.50
V _{th(ZCD)}	V _{in} = Ref.1		Measure Pin 5 voltage when Pin 7 switch to low by increasing V _{in} voltage from 0 V
V _H			Measure V_{th2} as Pin 5 voltage when Pin 7 switch to low by increasing V_{in} voltage from 4 V and calculate V_H by the following equation.
TZO	SW3 = ON	Pin 1 = 0 V	$V_{H} = V_{th(zero)} - V_{th2}$
TZO2	SW2 = B	Pin 2 = 3.0 V Pin 3 = 0.5 V Pin 4 = GND	Measure the propagation delay time from V _{in} to Pin 7 V _{in} 50% TZO Pin 7 Fin 7
TOS	V _{in} = Ref.1 Pin 3 = 0.5 V	Pin 1 = 0 V	Measure the minimum off time for Pin 7 Pin 4 delay delay
	Delay: 500 nSec ~ 700 n	nSec	V _{in}

Ref.1: Pin 4 = GND, V_{in} = 4 V return to zero pulse

MEASUREMENT CONDITION

ltem	C	ondition	Measurement Method
V _{IH(ZCD)}	Pin 1 = 0 V	Pin 5 = 3 mA	Measure Pin 5 voltage at 3 mA to Pin 5
V _{IL(ZCD)}	Pin 2 = 1.1 V	Pin 5 = -3 mA	Measure Pin 5 voltage at –3 mA to Pin 5
I _{IB(CS)}		Pin 4 = 0 V	Measure Pin 4 current
V _{IO(CS)}		Pin 3 = 0 V V _{in} = Ref.1	Measure Pin 4 voltage when Pin 7 switch to low by increasing Pin 4 voltage from -0.3 V
ťрнц	$\begin{array}{l} \mbox{Pin 1 = 0 V} \\ \mbox{Pin 2 = V_{th(mult)} + 0.5} \\ \mbox{Pin 3 = 0.5 V} \\ \mbox{Pin 4 = See right figu} \\ \mbox{V_{in} = Ref.1} \\ \mbox{V_{th(cs)}: Threshold vol} \\ \mbox{(at Pin 2 = V_{th(mult)})} \end{array}$	re	Pin 4 V _{th(cs)} 5 V Pin 7 0 V
V _{th(max)}	Pin 1 = 0 V Pin 2 = 4.0 V	Pin 3 = 3.0 V V _{in} = Ref.1	Measure Pin 4 voltage when Pin 7 switch to low by increasing Pin 4 voltage from 0 V
N/	Pin 1 = 0 V	Pin 7 = 20 mA	Measure Pin 7 voltage at 20 mA to Pin 7
V _{OL(OUT)}	SW2 = C	Pin 7 = 200 mA	Measure Pin 7 voltage at 200 mA to Pin 7
.,	Pin 1 = 0 V	Pin 7 = -20 mA	Measure Pin 7 voltage at -20 mA to Pin 7
V _{OH(OUT)}	Pin 4 = GND	Pin 7 = -200 mA	Measure Pin 7 voltage at -200 mA to Pin 7
V _{O(max)}	V _{in} = Ref.1	SW1 = C Pin 7 = -20 mA	Measure Pin 7 voltage at -20 mA to Pin 7
t _r	Pin 1, 4 = 0 V SW3 = ON	V _{in}	4V
t _f	V _{in} = See right figure f = 50 KHz	Pin 7	90% t _f 10% t _r
V _{O(UVLO)}	Pin 1 = 0 V SW1 = D	Pin 7 = 1.0 mA	Measure Pin 7 voltage at 10 mA to Pin 7
V _{th(ON)}	SW1 = E		Measure Pin 8 voltage when Pin 2 change to over 1 V by increasing Pin 8 voltage from 7 V
V _{shut}	Pin 4 = 0 V		Measure Pin 8 voltage when Pin 2 change to under 1 V by increasing Pin 8 voltage from 15 V

I _{CC} Startup	Pin 1 = 0 V	SW1 = D		Measure Pin 8 current
Operating				
Dynamic Operating	Pin 1 = 0 V	Pin 4 = 0 V SW3 = ON	Pin 2 = 2.5 V Pin 3 = 0.5 V	Measure Pin 8 current
		V _{in} : Low = 0 V	, High = 4 V	
		f _{in} = Square W	/ave @ TBD KHz	

Ref.1: Pin 4 = GND, V_{in} = 4 V return to zero pulse

ltem	Condition	Measurement Method
Vz	SW1 = E Pin 5 = 2.0 V Pin 8 = 25 mA Pin 1, 4 = 0 V	Measure Pin 8 voltage
toly	$V_{in} = 0 V Pin 1, 3 = 0 V$ $Pin 4 I f = 100 \text{ KHz} I 0 V$	Measure Pin 7 frequency (FPin 7) t _{DLY} = 1 / FPin 7
POR	SW1 = E Pin 4 = 0 V V _{in} = 0 V	Pin 8 Pin 7 POR = $T_{start} - t_{DLY}$ Pin 7 POR = $T_{start} - t_{DLY}$

TEST CIRCUIT

PIN FUNCTION DESCRIPTION

Name	Pin No.	Equivalent Circuit	Function
V _{FB}	1	Vx PNP-L PNP-L PNP-L PNP-L Vx Vx Vref	Voltage Feedback Input This pin is an input for error amplifier to feedback the voltage from the converter output. Have the overvoltage detect circuit to cut off the drive out when the voltage is over 8% from setting value.
СОМР	2	PMOS-L NP N-L PMOS-L NP N-L NP N-L E NMOS-L	Error Amplifier Output/Compensation This pin is an error amplifier output. Can do phase compensation or gain adjustment by this pin.
Mult	3	PNP-S	Multiplier Input Monitor the AC off line voltage using this input.
CS	4	PMOS-L PMOS-L Multiout	Current Sense Input Control the output voltage by sensing the overcurrent at each cycle. This pin connects the RC filter and 1.5 V clamp diode.

PIN FUNCTION DESCRIPTION

Name	Pin No.	Equivalent Circuit	Function
ZCD	5	V _{DD} V _{DD}	Zero Current Detect Input Control the output ON point to detect the zero current point on the coil. This pin has the 0.7 V and 5.3 V clamp diode internal.
GND	6		Ground
Output	7	V _{CC} Pin 8	Drive Out Totem pole output.
V _{CC}	8	$ \begin{array}{c} $	Power Supply

INTERNAL EQUIVALENT CIRCUIT

SUGGESTED APPLICATION CIRCUIT

PACKAGE DIMENSIONS

PDIP-8 **P SUFFIX** CASE 626-05 ISSUE L

NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.40	10.16	0.370	0.400	
В	6.10	6.60	0.240	0.260	
С	3.94	4.45	0.155	0.175	
D	0.38	0.51	0.015	0.020	
F	1.02	1.78	0.040	0.070	
G	2.54 BSC		0.100 BSC		
Н	0.76	1.27	0.030	0.050	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300 BSC		
М		10°		10°	
Ν	0.76	1.01	0.030	0.040	

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SMARTMOS is a registered trademark of Motorola, Inc.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILC does not convey any license under its patent rights or the rights of others. SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

- NOTES: 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. 2. 3 DIMENSION A AND B DO NOT INCLUDE
- MOLD PROTRUSION
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) 4. PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR 5. PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. 6

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
в	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
к	0.40	1.27	0.016	0.050
м	0 °	8 °	0 °	8 °
Ν	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ON Semiconductor Website: www.onsemi.com