

NTE3097 and NTE3097-1 Optoisolator Zero Crossing TRIAC Driver

Description:

The NTE3097 and NTE3097–1 are an optoisolator in a 6–Lead DIP type package and contains a gallium arsenide IRED optically coupled to a monolithic silicon detector performing the function of a Zero Voltage Crossing bilateral TRIAC Driver. This device is designed for use with a TRIAC in the interface of logic systems to equipment powered from 240VAC lines such as solid–state relays, industrial controls, motors, solenoids, and consumer appliances, etc.

Features:

- Simplifies Logic Control of 240VAC Power
- Zero Voltage Crossing
- High Breakdown Voltage: V_{DRM} = 400V Min
- High Isolation Voltage: V_{ISO} = 7500V Guaranteed
- Small, Economical 6-Lead DIP Package
- dv/dt of 2000V/μs Typ., 1000V/μs Guaranteed

Absolute Maximum Rating: (T _A = +25°C unless otherwise specified) Infrared Emitting Diode
Reverse Voltage, V _R 6V
Continuous Forward Current, I _F
Total Power Dissipation ($T_A = +25$ °C, Negligible Power in Output Driver), P_D
Output Driver
Off-State Output Terminal Voltage, V _{DRM}
Peak Repetitive Surge Current (PW = 100μs, 120pps), I _{TSM}
Total Power Dissipation ($T_A = +25^{\circ}C$), P_D
Total Device
Isolation Surge Voltage (Peak AC Voltage, 60Hz, 1sec Duration, Note 1), V _{ISO}
Junction Temperature Range, T _J 40° to +100°C
Ambient Operating Temperature Range, T _A –40° to +85°C
Storage Temperature Range, T _{stg} 40° to +150°C
Lead Temperature (During Soldering, 10sec), T _L +260°C

<u>Electrical Characteristics:</u> (T_A = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Input LED							
Reverse Leakage Current	I _R	V _R = 6V	_	0.05	10	μΑ	
Forward Voltage	V _F	I _F = 30mA	-	1.3	1.5	V	
Output Detector (I _F = 0 unless otherwise specified)							
Leakage With LED OFF	I _{DRM1}	Either Direction, V _{DRM} = 400V, Note 2	_	2	100	nA	
Peak On-State Voltage	V_{TM}	Either Direction, I _{TM} = 100mA Peak	_	1.8	3.0	V	
Critical Rate of Rise of Off–State Voltage	dv/dt	Note 4	1000	2000	_	V/μs	
Coupled							
LED Trigger Current, Current Required to Latch Output NTE3097	I _{FT}	Main Terminal Voltage = 3V, Note 3	_	_	15	mA	
NTE3097-1			_	_	5	mA	
Holding Current	I _H	Either Direction	_	100	_	μΑ	
Isolation Voltage	V _{ISO}	f = 60Hz, t = 1sec	7500	_	_	VAC(pk)	
Zero Crossing							
Inhibit Voltage	V _{IH}	I _F = 15mA, MT1–MT2 Voltage Above Which Device Will Not Trigger	_	5	20	V	
Leakage in Inhibit State	I _{DRM2}	I _F = 15mA, V _{DRM} = 400V, Off–State	_	-	500	μΑ	

- Note 2. Test voltage must be applied within dv/dt rating.
- Note 3. This device is guaranteed to trigger at an I_{F1} value less than or equal to max. I_{FT} . Therefore, recommended operating I_F lies between max. I_{FT} and absolute max. I_F (60mA).
- Note 4. This is static dv/dt. Commutating dv/dt is a function of the load-driving thyristor only.

