NTE3097 and NTE3097-1 Optoisolator Zero Crossing TRIAC Driver ## **Description:** The NTE3097 and NTE3097–1 are an optoisolator in a 6–Lead DIP type package and contains a gallium arsenide IRED optically coupled to a monolithic silicon detector performing the function of a Zero Voltage Crossing bilateral TRIAC Driver. This device is designed for use with a TRIAC in the interface of logic systems to equipment powered from 240VAC lines such as solid–state relays, industrial controls, motors, solenoids, and consumer appliances, etc. ## Features: - Simplifies Logic Control of 240VAC Power - Zero Voltage Crossing - High Breakdown Voltage: V_{DRM} = 400V Min - High Isolation Voltage: V_{ISO} = 7500V Guaranteed - Small, Economical 6-Lead DIP Package - dv/dt of 2000V/μs Typ., 1000V/μs Guaranteed | Absolute Maximum Rating: (T _A = +25°C unless otherwise specified) Infrared Emitting Diode | |--| | Reverse Voltage, V _R 6V | | Continuous Forward Current, I _F | | Total Power Dissipation ($T_A = +25$ °C, Negligible Power in Output Driver), P_D | | Output Driver | | Off-State Output Terminal Voltage, V _{DRM} | | Peak Repetitive Surge Current (PW = 100μs, 120pps), I _{TSM} | | Total Power Dissipation ($T_A = +25^{\circ}C$), P_D | | Total Device | | Isolation Surge Voltage (Peak AC Voltage, 60Hz, 1sec Duration, Note 1), V _{ISO} | | | | Junction Temperature Range, T _J 40° to +100°C | | Ambient Operating Temperature Range, T _A –40° to +85°C | | Storage Temperature Range, T _{stg} 40° to +150°C | | Lead Temperature (During Soldering, 10sec), T _L +260°C | ## **<u>Electrical Characteristics:</u>** (T_A = +25°C unless otherwise specified) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | | |--|-------------------|---|------|------|-----|---------|--| | Input LED | | | | | | | | | Reverse Leakage Current | I _R | V _R = 6V | _ | 0.05 | 10 | μΑ | | | Forward Voltage | V _F | I _F = 30mA | - | 1.3 | 1.5 | V | | | Output Detector (I _F = 0 unless otherwise specified) | | | | | | | | | Leakage With LED OFF | I _{DRM1} | Either Direction, V _{DRM} = 400V, Note 2 | _ | 2 | 100 | nA | | | Peak On-State Voltage | V_{TM} | Either Direction, I _{TM} = 100mA Peak | _ | 1.8 | 3.0 | V | | | Critical Rate of Rise of Off–State Voltage | dv/dt | Note 4 | 1000 | 2000 | _ | V/μs | | | Coupled | | | | | | | | | LED Trigger Current,
Current Required to
Latch Output
NTE3097 | I _{FT} | Main Terminal Voltage = 3V, Note 3 | _ | _ | 15 | mA | | | NTE3097-1 | | | _ | _ | 5 | mA | | | Holding Current | I _H | Either Direction | _ | 100 | _ | μΑ | | | Isolation Voltage | V _{ISO} | f = 60Hz, t = 1sec | 7500 | _ | _ | VAC(pk) | | | Zero Crossing | | | | | | | | | Inhibit Voltage | V _{IH} | I _F = 15mA, MT1–MT2 Voltage Above
Which Device Will Not Trigger | _ | 5 | 20 | V | | | Leakage in Inhibit State | I _{DRM2} | I _F = 15mA, V _{DRM} = 400V, Off–State | _ | - | 500 | μΑ | | - Note 2. Test voltage must be applied within dv/dt rating. - Note 3. This device is guaranteed to trigger at an I_{F1} value less than or equal to max. I_{FT} . Therefore, recommended operating I_F lies between max. I_{FT} and absolute max. I_F (60mA). - Note 4. This is static dv/dt. Commutating dv/dt is a function of the load-driving thyristor only.