4-channel BTL driver for CD players and CD-ROMs BA5916FP-Y

The BA5916FP-Y contains a 4-channel BTL driver for CD player and CD-ROM motors and actuators and a multi-purpose operational amplifier. Perfect for compact applications with the use of the HSOP 25-pin package.

Applications

CD players, CD-ROM

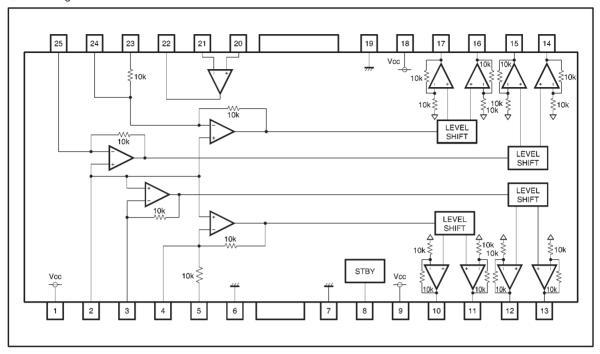
Features

- 1) 4-channel BTL driver.
- Perfect for compact applications with the use of the HSOP 25-pin power package.
- 3) Wide dynamic range (3.6V (Typ.) when Vcc = 5V and $R_L = 8\Omega$).
- 4) Internal thermal shutdown circuit.

- 5) Gain is adjustable with externally connected resistor.
- 6) Internal multi-purpose operational amplifier.
- 7) Standby pin allows IC to enter power saving mode.

● Absolute maximum ratings (Ta = 25°C)

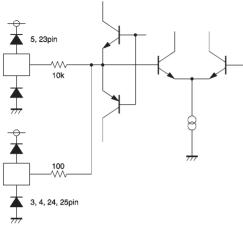
Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7	V
Power dissipation	Pd	1.45 *	w
Operating temperature	Topr	−35~+85	°C
Storage temperature	Tstg	−55∼+150	℃


[★] When mounted on a 70mm × 70mm × 1.5mm glass epoxy board with copper foil coverage of less than 3%.

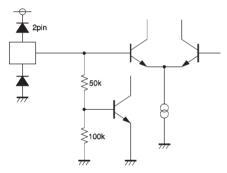
● Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.3	5	6.6	٧

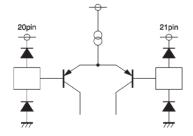
Block diagram

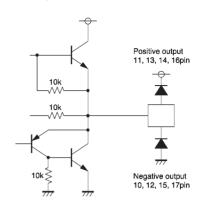

Pin descriptions

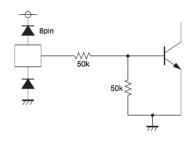
Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	Vcc	Vcc	14	VO4 (+)	Driver channel 4 positive output
2	BIAS IN	Bias amplifier input	15	VO4 (-)	Driver channel 4 negative output
3	VIN1	Driver channel 1 input	16	VO3 (+)	Driver channel 3 positive output
4	VIN2'	Input for driver channel 2 gain adjustment	17	VO3 (-)	Driver channel 3 negative output
5	VIN2	Driver channel 2 input	18	Vcc	Vcc
6	GND	GND	19	GND	GND
7	GND	GND	20	OP IN (+)	Op-amp positive input
8	STBY	Standby control	21	OP IN (-)	Op-amp negative input
9	Vcc	Vcc	22	OP OUT	Op-amp output
10	VO2 (-)	Driver channel 2 negative output	23	VIN3	Driver channel 3 input
11	VO2 (+)	Driver channel 2 positive output	24	VIN3'	Input for driver channel 3 gain adjustment
12	VO1 (-)	Driver channel 1 negative output	25	VIN4	Driver channel 4 input
13	VO2 (+)	Driver channel 1 positive output			


Note: Positive output and negative output are the polarities with respect to the input. If the input pin is high, the negative output pin is low and the positive output pin is high.

Input / output circuits




Bias


Op-amp input

Driver output

Standby

Op-amp output

50

22pin

•Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5V, BIAS = 2.5V, RIN = $10k\Omega$, RL = 8Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Circuit current during standby	Isт	_	_	200	μΑ	_
Circuit current	lcc	_	13	20	mA	No load
Output offset voltage	Voo	-40	_	40	mV	_
Maximum output amplitude	Vом	3.1	3.6	_	V	_
Closed-loop voltage gain 1	Gvc1	10.4	11.8	13.2	dB	V _{IN} =0.1Vrms, 1kHz (ch2, 3)
Closed-loop voltage gain 2	Gvc2	9.8	11.8	13.8	dB	V _{IN} =0.1Vrms, 1kHz (ch1, 4)
Standby voltage	Vsтву	_	_	0.5	V	_
Standby release voltage	Vstoff	2.0	_	_	V	_
(Operational amplifier)						
Offset voltage	Vofop	-6	0	6	mV	_
Input bias current	Vвор	_	_	300	nA	_
Output high level voltage	Vонор	3.9	4.35	_	٧	_
Output low level voltage	VOLOP	_	0.75	1.1	٧	_
Output drive current sink	Isı	10	30	_	mA	50 Ω at Vcc
Output drive current source	Iso	10	25	_	mA	50 Ω at GND
Slew rate	SROP	_	1	_	V / μs	100kHz rectangular wave, 2VP-P output

ONot designed for radiation resistance.

Measurement circuits

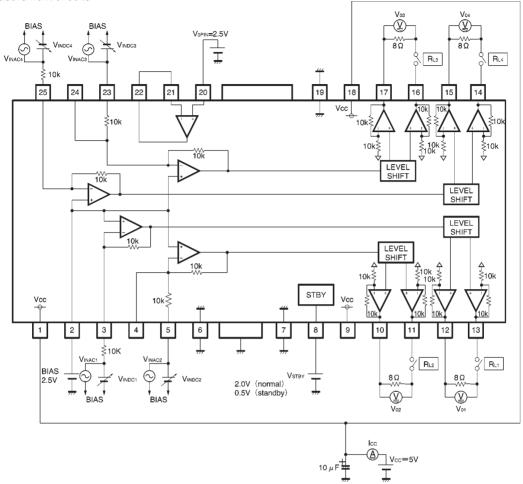


Fig.1 Driver block measurement circuit diagram

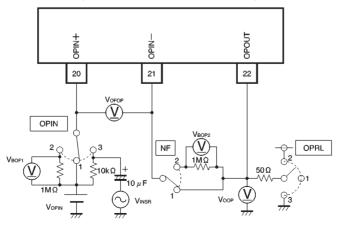


Fig.2 Operational amplifier measurement circuit diagram

Application example

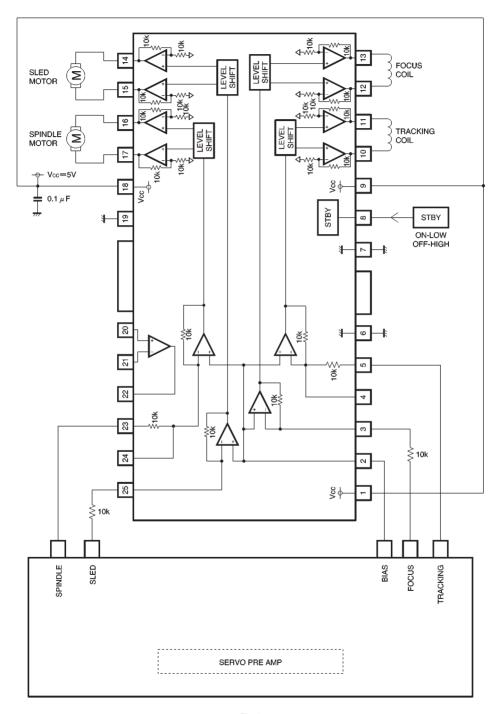


Fig.3

Operation notes

(1) The BA5916FP-Y contains a thermal shutdown circuit.

When the chip temperature reaches 175°C (Typ.), the output current is muted. If the chip temperature then drops below 150°C (Typ.), then the mute is released.

(2) By having the standby pin (pin 8) voltage open or lowered to 0.5V or below, the drivers turn off and the IC enters the power saving mode.

For normal operation, have the standby pin (pin 8) voltage pulled up to 2.0V or greater.

(3) If the voltage of the bias pin (pin 2) drops below 1.0V (Typ.), outputs are muted. For normal conditions, have the voltage above 1.4V.

(4) If the voltage of the thermal shutdown or bias pin drops, the mute is activated; however, in these situations, only the drivers are muted.

Also, the output pin voltage becomes the internal bias voltage (approx. Vcc - VF/2).

- (5) Connect a bypass capacitor (approx. $0.1\mu F$) between the bases of the power supply pins of this IC.
- (6) Even though the radiation fins are connected to ground within the package, be sure to also connect them to a ground externally as well.

Electrical characteristic curves

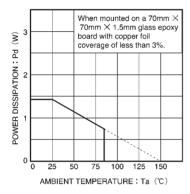


Fig.4 Thermal derating curve

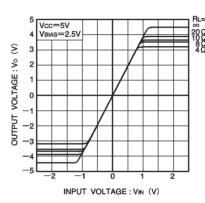


Fig.5 Driver I / O characteristics

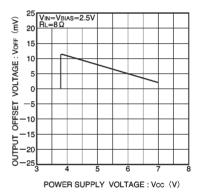


Fig.6 Power supply voltage vs. output offset voltage

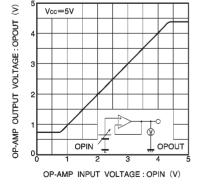


Fig.7 Op-amp I / O characteristics

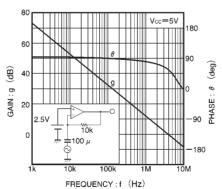
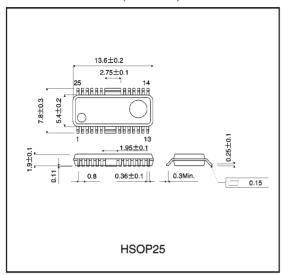



Fig.8 Op-amp open loop characteristics

●External dimensions (Units: mm)

