maxim
integrated.

MAXQ612/MAXQ622 USER’S GUIDE

MAXQ612/MAXQ622
REGULATOR o IR DRIVER
voLTAGE | [6kBROM | [sEcure mmy] [R TIVER
MONITOR

| CLOCK | [128KBFLASH| | ~ 2xSPI
GPIO
| WATCHDOG | | 6KBSRAM | [arT
USB SIE* 2 Btz NANO
TXCVR | [16-BITTIMER || RING loc
“MAXQ622 ONLY.

For pricing, delivery, and ordering information, please contact Maxim Direct at
1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com. Rev 2; 2/13

MAXQ612/MAXQ622 User’s Guide

TABLE OF CONTENTS

SECTION 1: OVEIVIEW . . oo 1-1
SECTION 2: ArChiteCtUre oo 2-1
SECTION 3: Programmingo 3-1
SECTION 4: System Register DesCription 4-1
SECTION 5: Peripheral Register MOAUIESo e 5-1
SECTION 6: General-Purpose /O Module. 6-1
SECTION 7: Timer/Counter Type B 7-1
SECTION 8: IR TimMer . o .o 8-1
SECTION 9: Serial I/O Module. 9-1
SECTION 10: Serial Peripheral Interface (SPI) Module 10-1
SECTION 11: 12C INterface 11-1
SECTION 12: Universal Serial Bus (USB) Interface (MAXQ622 Only) 12-1
SECTION 13: Test Access Port (TAP) . .o 13-1
SECTION 14: In-Circuit Debug Mode 14-1
SECTION 15: In-System Programming (JTAG)o 15-1
SECTION 16: MAXQ612/MAXQ622 Instruction Set Summary. 16-1
SECTION 17: Utility ROM . . . o 17-1
APPENDIX 1: Data Pointer Usage Examples A1-1
IND X . . -1
REVISION HISTORY . o o R-1
i Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 1: OVERVIEW

The MAXQ® family of 16-bit reduced instruction set computing (RISC) microcontrollers is targeted towards low-cost,
low-power embedded application designs. The flexible, modular architecture design used in these microcontrollers
allows development of targeted designs for specific applications with minimal effort.

1.1 Instruction Set

The MAXQ612/MAXQ622 microcontrollers use an instruction set where all instructions are fixed in length (16 bits). A
register-based, transport-triggered architecture allows all instructions to be coded as simple transfer operations. All
instructions reduce to either writing an immediate value to a destination register or memory location or moving data
between registers and/or memory locations.

This simple top-level instruction decoding allows all instructions to be executed in a single cycle. Because all CPU
operations are performed on registers only, any new functionality can be added by simply adding new register mod-
ules. The simple instruction set also provides maximum flexibility for code optimization by a compiler.

1.2 Harvard Memory Architecture

Program memory, data memory, and register space on the MAXQ612/MAXQ622 are separate from one another and
are each accessed by a separate bus. This type of memory architecture (known as Harvard architecture) has some
advantages.

First, the word lengths can be different for different types of memory. Program memory must be 16 bits wide to accom-
modate the instruction word size, but system and peripheral registers can be 8 bits wide or 16 bits wide as needed.
Because data memory is not required to store program code, its width can also vary and could conceivably be targeted
for a specific application.

Also, because data memory is accessed by the CPU only through appropriate registers, it is possible for register
modules to access memory entirely independent from the main processor, providing the framework for direct memory
access operations. It is also possible to have more than one type of data memory, each accessed through a different
register set.

1.3 Register Set

Because all functions in the MAXQ612/MAXQ622 are accessed through registers, common functionality is provided
through a common register set. Many of these registers provide the equivalent of higher level op codes, by directly
accessing the ALU, the loop counter registers, and the data pointer registers. Others, such as the interrupt registers,
provide common control and configuration functions that are equivalent across the MAXQ612/MAXQ622 family of
microcontrollers.

The common register set, also known as the system registers, includes the following:

e Arithmetic logic unit (ALU) access and control registers, including working accumulator registers and the processor
status flags

e Two data pointers and a frame pointer for data memory access
e Autodecrementing loop counters for fast, compact looping

e |nstruction pointer and other branching control access points

e Stack pointer and an access point to the 16-bit-wide soft stack
e |nterrupt vector table and priority registers

e One code pointer for quick program memory access as data

MAXQ is a registered trademark of Maxim Integrated Products, Inc.

Maxim Integrated 11

MAXQ612/MAXQ622 User’s Guide

Peripheral registers (module 0 to module 5) on the MAXQ612/MAXQ622 contain registers that are used to access the
peripherals, including:

e General-purpose /O ports

e External interrupts

e Timers/counters

e USART ports

e Serial peripheral interface (SPI™) port
e USB (MAXQ622 only)

SPI is a trademark of Motorola, Inc.

1-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 2: ARCHITECTURE

This section contains the following information:

2.1 Instruction DeCcoding oo 2-4
2.2 Register SPaCe. 2-5
2.3 Memory Organization. 2-6
2.3. 1 Program Memory . .. 2-6
2.3.2 Utility ROM . . o 2-6
2.3.3 Data Memory 2-7
2.3.4 StaCk MEMOrY. . .. o 2-8
2.4 Memory Management Unit. 2-8
2.5 Memory Mapping oo 2-8
2.5.1 Memory Mapping Into Data Space 2-9
2.5.2 Memory Mapping into Code SPace. 2-12
2.5.3 Memory Mapping RUles 2-14
254 Code EXamples 2-15
2.6 Memory ProteCtion 2-16
2.6.1 Rules for System Software 2-17
2.6.2 Privilege Exception Interrupt 2-18
2.6.3 Memory Access Protection Impact on Data Pointers (and Code Pointer) 2-18
2.6.4 DEDUGQING . . 2-20
2.6.5 Enabling Memory ProtecCtion 2-20
2.6.6 Reset Procedure and Setup of Memory Protection. 2-20
2.6.7 Loader Access CoNtrol 2-22
2.6.8 Disabling MAXQ612/MAXQ622-Specific Memory Access Features. 2-23
2.7 Clock Generation 2-23
2.7.1 External Clock (Crystal/Resonator) 2-23
2.7.2 External Clock (DireCt INpUL)o 2-25
2.7.3 Internal System Clock Generation 2-25
2.8 Wake-Up TImer . 2-25
2.8.1 Using the Wake-Up Timer to Exit Stop Mode 2-26
2. I EITUDES o o 2-26
2.9.1 Servicing INterruptso 2-26
2.9.2 Interrupt System Operation 2-26
2.9.3 Synchronous vs. Asynchronous INterrupt SOUrCES 2-27
2.9.4 Interrupt Prioritization by Software 2-27
2.9.5 Interrupt Exception WIiNdow 2-29
210 Operating MOdESo 2-29
211 Reset MOAE . . 2-29
2.11.1 Power-On/Power-Fail Reset 2-29

Maxim Integrated 2-1

MAXQ612/MAXQ622 User’s Guide

2. 11,2 External Reset . . .o 2-30
2.11.3 Watchdog Timer Reset. 2-31
2.11.4 Internal System Reset 2-31
2.12 Power-Management MOde. 2-31
2121 Switchback. . . 2-31
2183 S0P MOAE . .o 2-32

LIST OF FIGURES

Figure 2-1. MAXQ612/MAXQ622 Transport-Triggered Architecture. 2-3

Figure 2-2. Instruction Word Format 2-4

Figure 2-3. MAXQ612/MAXQ622 Memory Map (64KB Program Space), 2-9

Figure 2-4. CDA Functions in Word MOde. 2-10
Figure 2-5. CDA Functions in Byte Mode 2-11
Figure 2-6. CPA Impact on Code Pointer Access of Program Memory i i 2-12
Figure 2-7. MAXQ622 Memory Map and UPA. 2-13
Figure 2-8. Overview of Memory RegIONS oot 2-21
Figure 2-9. MAXQB12/MAXQB22 CIOCK SOUICES. . . . o o\ttt 2-24
Figure 2-10. On-Chip Crystal Oscillator. 2-24

LIST OF TABLES

Table 2-1. Register-to-Register Transfer Operations. 2-6

Table 2-2. CDA Bits to Access Program Space as Data 2-9

Table 2-3. CPA Access of Program Data with Code Pointer 2-12
Table 2-4. Memory Areas and Associated Maximum Privilege Levels. 2-16
Table 2-5. PRIV Register Bit Definitions. 2-16
Table 2-6. Privilege Level Constants 2-16
Table 2-7. System Clock Rate Control Settings. 2-25
Table 2-8. Interrupt Priorityo 2-28
Table 2-9. Power-Fail Reset Check Interval. 2-29

2-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 2: ARCHITECTURE

The MAXQ612/MAXQB22 are designed to be modular and expandable. Top-level instruction decoding is extremely
simple and based on transfers to and from registers. The registers are organized into functional modules, which are
in turn divided into the system register and peripheral register groups. Figure 2-1 illustrates the modular architecture
and the basic transport possibilities.

CLOCK CONTROL, PROGRAM DATA
WATCHDOG TIMER MEMORY MEMORY
AND POWER MONITOR STACK
MEMORY
CKCN A A
WDCN SP <= Y \
A MEMORY MANAGEMENT
Ic —
UNIT (MMU) <
\
INTERRUPT > ADDRESS *
LOGIC GENERATION DATA POINTERS
Ic P -
" DP[0], DP[1]
FP=
IPRO LOOP COUNTERS - (BP + OFFS)
A LCIn] DPC
BOOLEAN
VARIABLE
MANIPULATION g
SYSTEM MODULES/
ACCUMULATORS REGISTERS
(16) e
\
AP
INSTRUCTION
APC DECODE
PSF
(src, dst TRANSPORT
DETERMINATION)
SIe T dst
ast =] sre

PERIPHERAL MODULES/REGISTERS

S L] ey [S S8 ADDITIONAL MODULES
o COUNTERS i FOR FUTURE EXPANSION
A A A A A
\ \ \ \ \

Figure 2-1. MAXQ612/MAXQ622 Transport-Triggered Architecture

Maxim Integrated 2-3

MAXQ612/MAXQ622 User’s Guide

Memory access from the MAXQ612/MAXQ622 is based on a Harvard architecture with separate address spaces
for program and data memory. The simple instruction set and transport-triggered architecture allow the MAXQ612/
MAXQ622 to decode and execute nearly all instructions in a single clock cycle. Data memory is accessed through one
of three data pointer registers. Two of these data pointers, DP[0] and DP[1], are stand-alone 16-bit pointers. The third
data pointer, FP, is composed of a 16-bit base pointer (BP) and an offset register (OFFS). All three pointers support
postincrement/decrement functionality for read operations and preincrement/decrement for write operations. For the
frame pointer (FP = BP[OFFS]), the increment/decrement operation is executed on the OFFS register and does not
affect the base pointer (BP). Stack functionality is accessible through the stack pointer (SP). Program memory is read
accessible through the code pointer (CP), which supports postincrement/decrement functionality.

2.1 Instruction Decoding
Every MAXQ instruction is encoded as a single 16-bit word according to the format shown in Figure 2-2.

format Destination source
f d|d|d|d|d|d|d s|s|s|s|s|s|s|s

Figure 2-2. Instruction Word Format

Bit 15 (f) indicates the format for the source field of the instruction as follows:

e |f f equals O, the instruction is an immediate source instruction, and the source field represents an immediate 8-bit
value.

e |f f equals 1, the instruction is a register source instruction, and the source field represents the register from which
the source value is read.

Bits 0 to 7 (ssssssss) represent the source for the transfer. Depending on the value of the format field, this can either
be an immediate value or a source register. If this field represents a register, the lower 4 bits contain the module speci-
fier and the upper 4 bits contain the register index in that module.

Bits 8 to 14 (ddddddd) represent the destination for the transfer. This value always represents a destination register,
with the lower 4 bits containing the module specifier and the upper 3 bits containing the register subindex within that
module.

Because the source field is 8 bits wide and 4 bits are required to specify the module, any one of 16 registers in that
module can be specified as a source. However, the destination field has one less bit, which means that only eight
registers in a module can be specified as a destination in a single-cycle instruction.

While the asymmetry between source and destination fields of the op code can initially be considered a limitation, this
space can be used effectively. First, since read-only registers can never be specified as destinations, they can be
placed in the second eight locations in a module to give single-cycle read access. Second, there are often critical con-
trol or configuration bits associated with system and certain peripheral modules where limited write access is beneficial
(e.g., watchdog timer enable and reset bits). By placing such bits in one of the upper 24 registers of a module, this
write protection is added in a way that is virtually transparent to the assembly source code. Anytime that it is necessary
to directly select one of the upper 24 registers as a destination, the prefix register, PFX[n], is used to supply the extra
destination bits. This prefix register write is inserted automatically by the assembler/compiler and requires one
additional execution cycle.

The MAXQ architecture is transport-triggered. This means that writing to or reading from certain register locations also
causes side effects. These side effects form the basis for the higher level op codes defined by the assembler, such
as ADDC, OR, JUMP, and so on. These op codes are actually implemented as MOVE instructions between certain
register locations, while the encoding is handled by the assembler/compiler and need not be a concern to the
programmer. The registers defined in the system register and peripheral register maps operate as described in the
documentation; the unused empty locations are the ones used for these special cases.

2-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

The MAXQ instruction set is designed to be highly orthogonal. All arithmetic and logical operations that use two reg-
isters can use any register along with the accumulator. Data can be transferred between any two registers in a single
instruction.

2.2 Register Space

The MAXQ612/MAXQ622 provide a total of 16 register modules. Each of these modules contains 32 registers. The first
eight registers in each module can be read from or written to in a single cycle; the second eight registers can be read
from in a single cycle and written to in two cycles (by using the prefix register, PFX[n]); the last 16 registers can be
read or written in two cycles (always requiring use of the prefix register, PFX[n]).

Registers can be either 8 or 16 bits in length. Within a register, any number of bits can be implemented; bits not
implemented are fixed at zero. Data transfers between registers of different sizes are handled as shown in Table 2-1.

e |f the source and destination registers are both 8 bits wide, data is transferred bit to bit accordingly.

e |f the source register is 8 bits wide and the destination register is 16 bits wide, the data from the source register is
transferred into the lower 8 bits of the destination register. The upper 8 bits of the destination register are set to the
current value of the prefix register; this value is normally zero, but it can be set to a different value by the previous
instruction if needed. The prefix register reverts back to zero after one cycle, so this must be done by the instruction
immediately before the one that would be using the value.

e |f the source register is 16 bits wide and the destination register is 8 bits wide, the lower 8 bits of the source are
transferred to the destination register.

e |f both registers are 16 bits wide, data is copied bit to bit.

The above rules apply to all data movements between defined registers. Data transfer to/from undefined register loca-
tions has the following behavior:

e |f the destination is an undefined register, the MOVE is a dummy operation, but can trigger an underlying operation
according to the source register (e.g., @DP[n]--).

e |f the destination is a defined register and the source is undefined, the source data for the transfer depends upon the
source module width. If the source is from a module containing 8-bit or 8-bit and 16-bit source registers, the source
data is equal to the prefix data concatenated with 00h. If the source is from a module containing only 16-bit source
registers, 0000h source data is used for the transfer.

The 16 available register modules are broken up into two different groups. The low six modules (specifiers Oh to5h) are
known as the peripheral register modules, while the high 10 modules (specifiers 6h to OFh) are known as the system
register modules. These groupings are descriptive only, as there is no difference between accessing the two register
groups from a programming perspective.

The system registers define basic functionality that remains the same across all products based on the MAXQ612/
MAXQ622 architecture. This includes all register locations that are used to implement higher level op codes as well as
the following common system features:

e ALU (16 bits) and associated status flags (zero, equals, carry, sign, overflow)

e 16 working accumulator registers (16-bit width), along with associated control registers

e |nstruction pointer

e Registers for interrupt control and handling

e Autodecrementing loop counters for fast, compact looping

e Two data pointer registers, a frame pointer, and a stack pointer for data memory/stack access
e One code pointer register for program memory access

The peripheral registers define additional functionality included in the MAXQ612/MAXQ622. This functionality is broken
up into discrete modules so that only the features that are required for a given product need to be included. Because
the peripheral registers add functionality outside the common MAXQ system architecture, they are not used to imple-
ment op codes.

Maxim Integrated 2-5

MAXQ612/MAXQ622 User’s Guide

Table 2-1. Register-to-Register Transfer Operations

DESTINATION
SOU;(;: ?;.?STER REGISTER SIZE PREFIX SET? DESTINATION SET TO VALUE

(BITS) HIGH 8 BITS LOW 8 BITS
8 8 — Source[7:0]
8 16 No 00h Source[7:0]
8 16 Yes Prefix[7:0] Source[7:0]
16 8 — Source[7:0]
16 16 No Source[15:8] Source[7:0]

2.3 Memory Organization

Beyond the internal register space, memory on the MAXQ612/MAXQ622 microcontrollers is organized according to a
Harvard architecture, with a separate address space and bus for program memory and data memory.

To provide additional memory map flexibility, program memory space can be made accessible as data space, allowing
access to constant data stored in program memory.

2.3.1 Program Memory

Program memory begins at address 0000h and is contiguous through FFFFh (128KB). Program memory is accessed
directly by the program fetching unit and is addressed by the instruction pointer register. From an implementation
perspective, system interrupts and branching instructions simply change the contents of the instruction pointer and
force the op code fetch from a new program location. The instruction pointer is direct read/write accessible by the user
software; write access to the instruction pointer forces program flow to the new address on the next cycle following
the write. The content of the instruction pointer is incremented by one automatically after each fetch operation. The
instruction pointer defaults to 8000h, which is the starting address of the utility ROM. The default IP setting of 8000h is
assigned to allow initial in-system programming to be accomplished with utility ROM code assistance. The utility ROM
code interrogates a specific register bit in order to decide whether to execute in-system programming or jump imme-
diately to user code starting at 0000h. The user code reset vector is stored in the lowest bytes of the program memory.

Program flash memory provides in-system programming capability, but requires that the memory targeted for the write
operation be programmed (erased). The utility ROM provides routines to carry out the necessary operations (erase,
write, verify) on flash memory.

2.3.2 Utility ROM

A utility ROM is placed in the start of the upper half of the program memory space starting at address 8000h. This utility
ROM provides the following system utility functions:

¢ Reset vector
e Bootstrap function for system initialization

e Utility functions to match/query customer specific secrets to prevent loading and/or operation on generic MAXQ612/
MAXQ622 parts

e In-application programming (flash versions only)
e In-circuit debug (flash versions only)

2-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Following each reset, the processor automatically starts execution at address 8000h in the utility ROM, allowing utility
ROM code to perform any necessary system support functions. Next, the SPE bit is examined to determine whether
system programming should commence or whether that code should be bypassed, instead forcing execution to vector
to the start of user program code. When the SPE bit is set to 1, the processor executes the prescribed bootstrap-loader
mode program that resides in utility ROM. The SPE bit defaults to 0. To enter the bootstrap loader mode, the SPE bit
can be set to 1 during reset by the JTAG interface. When in-system programming is complete, the bootstrap loader
can clear the SPE bit and reset the device such that the in-system programming routine is subsequently bypassed.

2.3.3 Data Memory

On-chip SRAM data memory begins at address 0000h and is contiguous through OBFFh (6KB) in word mode. Data
memory is accessed by indirect register addressing through a data pointer (@DP), frame pointer (@BP[OFFS]), or
stack pointer (PUSH/POP). The data pointer is used as one of the operands in a MOVE instruction. If the data pointer is
used as source, the CPU performs a load operation that reads data from the data memory location addressed by the
data pointer. If the data pointer is used as destination, the CPU executes a store operation that writes data to the data
memory location addressed by the data pointer. The data pointer itself can be directly accessed by the user software.

The MAXQ612/MAXQ622 incorporate two 16-bit data pointers (DP[0] and DP[1]) to support data block transfers. All
data pointers support indirect addressing mode and indirect addressing with autoincrement or autodecrement. Data
pointers DP[0] and DP[1] can be used as postincrement/decrement source pointers by a MOVE instruction or prein-
crement/decrement destination pointers by a MOVE instruction. Using a data pointer indirectly with “++” automatically
increases the content of the active data pointer by 1 immediately following the execution of read data transfer (@
DP[n]++) or immediately preceding the execution of a write operation (@++DP[n]). Using data pointer indirectly with
“--" decreases the content of the active data pointer by 1 immediately following the execution of read data transfer (@
DP[n]--) or immediately preceding the execution of a write operation (@--DP[n]).

The frame pointer (BP[OFFS]) is formed by 16-bit unsigned addition of frame pointer base register (BP) and frame
pointer offset register (OFFS). Frame pointer can be used as a postincrement/decrement source pointer by a MOVE
instruction or as a preincrement/decrement destination pointer. Using the frame pointer indirectly with “++” (@
BP[++OFFS] for a write or @BP[OFFS++] for a read) automatically increases the content of the frame pointer offset
by 1 immediately before or after the execution of data transfer depending upon whether it is used as a destination or
source pointer respectively. Using frame pointer indirectly with “--” (@BP[--OFFS] for a write or @BP[OFFS--] for a read)
decreases the content of the frame pointer offset by 1 immediately before/after execution of data transfer depending
upon whether it is used as a destination or source pointer, respectively. Note that the increment/decrement function
affects the content of the OFFS register only, while the contents of the BP register remain unaffected by the borrow/
carryout from the OFFS register.

In addition, the MAXQ612/MAXQ622 have a code pointer (CP) to support data block transfer from flash memory. This
allows the user to access the program flash memory as data, even when execuing from the flash. In addition, there

supports indirect addressing mode and indirect addressing with autoincrement or autodecrement. The code pointer
can be used as postincrement/decrement source pointer by MOVE instructions. Using the code pointer indirectly with
“++” automatically increases the content of the active code pointer by 1 immediately following the execution of the read
operation (e.g., MOVE dst, @CP++). Using code pointer indirectly with “--” decreases the content of the active code
pointer by 1 immediately following the execution of the read operation (e.g., MOVE dst, @CP--).

A normal data memory cycle using DP[0], DP[1], and FP to access SRAM takes only one system clock period to sup-
port fast internal execution. This allows read or write operations on SRAM to be completed in one clock cycle. To read
program memory as data using CP requires two system clocks. Data memory mapping and access control are handled
by the memory management unit (MMU). Read/write access to the data memory can be in word or in byte.

Maxim Integrated 2-7

MAXQ612/MAXQ622 User’s Guide

2.3.4 Stack Memory

The MAXQ612/MAXQ622 implement a soft stack that uses the on-chip data memory (SRAM) for storage of program
return addresses and general-purpose use. The stack is used automatically by the processor when the CALL, RET, and
RETI instructions are executed and when an interrupt is serviced; it can also be used explicitly to store and retrieve data
by using the PUSH, POP, and POPI instructions. The POPI instruction acts identically to the POP instruction, except
that it additionally set the IPS bits.

The width of the stack is 16 bits to accommodate the instruction pointer size. As the stack pointer register, SP, is used
to hold the index of the top of the stack, the maximum size of the stack allowed for a MAXQ612/MAXQ622 is the SRAM
data memory size.

On reset, the stack pointer SP initializes to the top of the stack (03FOh). The CALL, PUSH, and interrupt vectoring
operations increase the stack depth (decrement SP) and then store a value at the memory location pointed to by SP.
The RET, RETI, POP, and POPI operations retrieve the value at @SP and then decrease the stack depth (increment SP).

2.4 Memory Management Unit

Memory allocation and access control for program and data memory is managed by the MMU.
The MAXQ612/MAXQ622 MMU supports the following:

e Flash code memory of up to 128KB; utility ROM of 6KB and data memory SRAM of 6KB.

¢ In-system and in-application programming of embedded flash (flash versions only).

e Access to any of the three memory areas (SRAM, code memory, utility ROM) using the data memory pointers and
the code pointer.

e Execution from any of the program memory areas (code memory, factory written and tested utility ROM routines)
and from data memory.

Given the above capabilities, the following rules apply to the memory map:
e Program memory:

Physical program memory pages (PO, P1, P2, P3) are logically mapped into data space based upon selection of
byte/word access mode and CDA[1:0] bit settings.

e Data memory:
Access can be either word or byte.
All 16 data pointer address bits are significant in either access mode (word or byte).

The MAXQ612/MAXQ622 can merge program and data into a linear memory map. This is accomplished by mapping
the data memory into the program space or mapping program memory segment into the data space.

2.5 Memory Mapping
Figure 2-3 summarizes the MAXQ612/MAXQ622 default memory maps.

2-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

PROGRAM
SPACE

3Kx 16
UTILITY ROM

64K x 16
PROGRAM FLASH

88FFh

8000h

FFFFh

0000h

DATA SPACE
(BYTE MODE)

17FFh
x8
DATA SRAM

0000h

DATA SPACE
(WORD MODE)

08FFh
x 16
DATA SRAM

0000h

Figure 2-3. MAXQ612/MAXQ622 Memory Map (64KB Program Space)

Table 2-2. CDA Bits to Access Program Space as Data

CDA[1:0] SELECTED PAGE IN BYTE MODE SELECTED PAGE IN WORD MODE
00 PO PO and P1
01 P1 PO and P1
10 p2 P2 and P3
11 P3 P2 and P3

2.5.1 Memory Mapping Into Data Space

The MAXQ612/MAXQ622 map program memory into data space from 0000h to FFFFh. The selection of physical pro-
gram memory page or pages to be logically mapped to data space is determined by the CDA1 and CDAO bits, as

shown in Table 2-2.

Figure 2-3 summarize the default memory maps for this memory structure. The WBSn bits of the MAXQ612/MAXQ622

default to word access mode (WBSnh = 1).

The upper half of the data memory map (8000h to FFFFh) is the logical area for the utility ROM when accessed as
data. Executing code from the utility ROM allows the user to map the program memory to 8000h to FFFFh by properly

selecting the CDA bits.

Figure 2-4 and 2-5 illustrate the effects of the CDA bits.

Maxim Integrated

2-9

MAXQ612/MAXQ622 User’s Guide

XFFFF

XA000

x8000

x0000

XFFFF

xA000

x8000

WORD MODE MEMORY MAP (UPA = 0, EXECUTING FROM UTILITY ROM)

x0000

PROGRAM MEMORY
15 | of T T —— - _ _
LOGICAL SPACE - .
Ve
s
/
Lo v
7
Ve
P2 s
/
Ve
UTILITY ROM L7 conr-g
PHYSICAL PROGRAM
(P1)
/Q .
QV:\:’/
PHYSICAL PROGRAM &~
(PO) o
WORD MODE MEMORY MAP (UPA = 0, EXECUTING FROM PHYSICAL DATA MEMORY)
PROGRAM MEMORY
15 | 0
AN
AN
LOGICAL SPACE - .
AN
AN
AN
LOGICAL DATA MEMORY N
AN
P2 N
AN
AN
UTILITY ROM] N
N o
AN
PHYSICAL PROGRAM AN
1) NS
T
N4
AN
AN
PHYSICAL PROGRAM N
(PO) AN
AN
CDAT =0

DATA MEMORY
15 0
X8000
x4000
PHYSICAL DATA
X0000
DATA MEMORY
15 0
XFFFF
LOGICAL SPACE
LOGICAL UTILITY ROM
X8000
X0000

Figure 2-4. CDA Functions in Word Mode

2-10

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

BYTE MODE MEMORY MAP (EXECUTING FROM UTILITY ROM)

XFFFF

xA000

x8000

x0000

15

PROGRAM MEMORY

LOGICAL SPACE

UTILITY ROM

PHYSICAL PROGRAM
(P1)

PHYSICAL PROGRAM
(PO)

N e

N
()()‘X\}\,@\; ” .

BYTE MODE MEMORY MAP (EXECUTING FROM PHYSICAL DATA MEMORY)

XFFFF

XA000

x8000

x0000

15

PROGRAM MEMORY

LOGICAL SPACE

UTILITY ROM

PHYSICAL PROGRAM
(P1)

PHYSICAL PROGRAM
(PO)

7

DATA MEMORY

PHYSICAL DATA

DATA MEMORY

LOGICAL SPACE

XFFFF

x8000

x0000

XFFFF

x8000

x0000

Figure 2-5. CDA Functions in Byte Mode

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

CODE POINTER ACCESS OF WORD MODE MEMORY MAP

PHYSICAL PROGRAM MEMORY CODE POINTER MAP
15 0o _ 15 0
XFFFF > XFFFF
PHYSICAL PROGRAM (P3) PHYSICAL PROGRAM (P3)
PHYSICAL PROGRAM (P2) PHYSICAL PROGRAM (P2)
PHYSICAL PROGRAM (P1) PHYSICAL PROGRAM (P1)
PHYSICAL PROGRAM (P0) PHYSICAL PROGRAM (P0)
o0 | X0000

\

CODE POINTER OF BYTE MODE MEMORY MAP

PHYSICAL PROGRAM MEMORY CODE POINTER MAP
15 0 7 0

XFFFF) XFFFF
PHYSICAL PROGRAM (P3) ’

PHYSICAL PROGRAM (P2)

PHYSICAL PROGRAM (P1)

PHYSICAL PROGRAM (P0) .
X0000 CPA=0) X0000

Figure 2-6. CPA Impact on Code Pointer Access of Program Memory

Table 2-3. CPA Access of Program Data with Code Pointer

CPA BYTE MODE ACCESS WORD MODE ACCESS
0 Lower 64KB Don’t care/no effect
1 Upper 64KB Don't care/no effect

2.5.2 Memory Mapping into Code Space

The effective program address can be anywhere in the full 128KB memory space. Program memory from 0000h to
FFFFh is the normal user code segment, followed by the utility ROM. The top of the memory is the logical area for data
memory when accessed as a code segment. Pages P2, P3 of the program memory are not accessible for program
execution by default. These pages need to be activated by user software. The upper program access (UPA) bit must
be set to 1 to activate P2 and P3. Once UPA is set, P2 and P3 occupy the upper half of the program space, and utility
ROM and physical data memory can be accessed as data only. Figure 2-7 summarizes UPA effect.

2-12 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

MAXQ612/MAXQ622 MEMORY MAP (DEFAULT, UPA = 0)

PROGRAM MEMORY
15 | 0
XFFFF
LOGICAL SPACE P3
P2
XA000
UTILITY ROM |
X8000
PHYSICAL PROGRAM
(P1)
PHYSICAL PROGRAM
(P0)
X0000

MAXQ612/MAXQ622 MEMORY MAP (UPA =1)

15 PROGRAM MEMORY

XFFFF

PHYSICAL PROGRAM
(P3)

PHYSICAL PROGRAM
(P2)

x8000

PHYSICAL PROGRAM
(P1)

PHYSICAL PROGRAM
(PO)

x0000

DATA MEMORY
15 0
XFFFF
X8000
LOGICAL SPACE
x4000
PHYSICAL DATA
X0000
DATA MEMORY
15 0
XFFFF
LOGICAL UTILITY ROM
X800
LOGICAL SPACE
x4000
PHYSICAL DATA
X0000

Figure 2-7. MAXQ622 Memory Map and UPA

Maxim Integrated

2-13

MAXQ612/MAXQ622 User’s Guide

2.5.3 Memory Mapping Rules

When executing program code in a particular memory segment, the same memory segment cannot be simultaneously
accessed as data.

The following is a summary of the memory mapping rules.
e When executing from the normal user code segment:
The lower 32KWords program space (PO and P1) is always executable as program.
The upper half of the code segment (P2 and P3) is accessible as program when UPA is set to 1.
The utility ROM is an extension of the program space if the UPA bit is O.
The physical data memory is available for access as a code segment with offset at 0AO0Oh if the UPA bit is O.
Load and store operations to data memory are executed normally when addressed to the physical data memory.
The utility ROM can be read as data, starting at 08000h of the data space.
e When executing from the utility ROM (only when UPA bit is 0):
The lower 32KWords program space (PO and P1) functions as normal program memory.

Data memory is available for access as a code segment at the upper half of the program memory map, immediately
following the utility ROM segment.

Load and store operations to data memory are executed normally when addressed to the physical data memory.
PO can be accessed as data with offset at 08000h when CDA[1:0] = 00b in byte mode or CDA1 = 0 in word mode.

P1 can be accessed as data with offset at 08000h when CDA[1:0] = 01b in byte mode or at offset 0CO00h when
CDA1 = 0 in word mode.

P2 can be accessed as data with offset at 00000h when CDA[1:0] = 10b in byte mode or CDA1 = 1 in byte mode.

P3 can be accessed as data with offset at 00000h when CDA[1:0] = 11b in byte mode or at offset 0CO0h when CDA1
= 1 in word mode.

e When executing from the data memory (only when UPA is 0):
Program flows freely between the lower 32KWords user code (PO and P1) and the utility ROM segment.
The utility ROM can be accessed as data with offset at 08000h.
PO can be accessed as data with offset at 0000h when CDA[1:0] = 00b in byte mode or CDA1 = 0 in word mode.

P1 can be accessed as data with offset at 0000h when CDA[1:0] = 01b in byte mode or at offset 04000h when CDA1
= 0 in word mode.

P2 can be accessed as data with offset at 00000h when CDA[1:0] = 10b in byte mode or CDA1 = 1 in byte mode.

P3 can be accessed as data with offset at 00000h when CDA[1:0] = 11b in byte mode or at offset 0C00h when CDA1
= 1 in word mode.

2-14 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

2.5.4 Code Examples

Because the MAXQ622 uses the maximum allowed program flash supported by this core, the most extreme example
of data pointer access would be the final bytes of the flash in byte mode. This can be accomplished by executing from
data memory (requiring the UPA bit to be cleared) and setting the CDA bits to map program segment P3 to the data
memory area. Code to read the final 3 bytes of the flash is shown below. This code would need to be executed from
data memory. Note that it is assumed that memory access protection, system clocking, etc., are all configured to allow
this access.

move SC, #00BO ; UPA=0, CDA[1l:0]=11

move DPC, #0000 ; SDPS[1:0]=00, WBSO0=0

move DP[0], #07FFD ;Point to 3 addresses from top of prog mem mapped intodata
move ACC, @DP[0]++ ; Move first byte to ACC to check and post increment

call CHECKB1 ; call subroutine to check first byte

move ACC, @DP[O]++ ; Move second byte to ACC to check and post increment

call CHECKB2

move ACC, @DP[0] ; Move final byte to ACC

call CHECKB3

Alternatively, the code pointer could be used for the same purpose. The advantage of this is that no code loading to
data memory is required and the UPA bit does not affect the operation. Also, the mechanism for accessing the upper
(P3) segment is a little different, using only the CPA bit instead of the CDA bits to access the upper 64KB of program
memory (since the code pointer uses the entire 64K address space for code).

move SC, #0040 ; CPA=1

move DPC, #0000 ; CWBS=0

move CP, #O0FFFD ; Point to 3 addresses from very top

move ACC, @CP++ ; Move first byte to ACC to check and post increment
call CHECKB1 ; call subroutine to check first byte

move ACC, @CP++ ; Move second byte to ACC to check and post increment
call CHECKB2

move ACC, @CP ; Move final byte to ACC

call CHECKB3

The above code could be called directly from user code in the program flash; however, each access would require two
system clock cycles to complete as opposed to the usual one cycle for data pointer access.

Maxim Integrated 2-15

MAXQ612/MAXQ622 User’s Guide

2.6 Memory Protection

The MAXQ612/MAXQ622 support privilege levels for code. When enabled, code memory is separated into three areas.
Each area has an associated privilege level. RAM/utility ROM are assigned privilege levels as well:

e Code in the system area can be confidential. Code in the user areas can be prevented from reading and writing
system code.

e The user loader can be protected from user application code.

Table 2-4. Memory Areas and Associated Maximum Privilege Levels

AREA PAGE ADDRESS MAXIMUM PRIVILEGE LEVEL
System 0 to ULDR-1 High
User Loader ULDR to UAPP-1 Medium
User Application UAPP to top Low
Utility ROM N/A High
Other (RAM) N/A Low

The PRIV register reflects the current execution privilege. Hardware guarantees that the contents of PRIV are never
higher than the maximum privilege level of the memory area the code is running from. For example, if user code were
trying to set PRIV to high, this would be prevented by hardware. However, any code can decide to lower the privilege
level at any time (see Equation 1).

PRIV = min(maxprivilege(IP), PRIV) (Equation 1)

The bit contents of the PRIV register are shown in Table 2-5. The convenient constants high/medium/low are defined
in Table 2-6, but all values from 00b to 11b can be used.

In addition to the PRIV register, the privilege level can also be set by writing to PRIVTO and PRIVT1 in sequence. Again,
hardware guarantees that the contents of PRIVTO are never higher than the maximum privilege level of the memory
area the code is running from.

When writing to PRIVT1, hardware modifies the PRIV register based on Equation 2.
PRIV = min(PRIVTO, argument, maxprivilege(IP)) (Equation 2)

This means that, when using PRIVT[1:0], the privilege level cannot be raised unless all code between the writes to
PRIVTO and PRIVT1 executes. Writing to PRIV automatically resets PRIVTO to low.

Table 2-5. PRIV Register Bit Definitions

BIT 3 2 1 0
MEANING System Write System Read User Loader Write User Loader Read

Table 2-6. Privilege Level Constants

BIT 3 2 1 0
HIGH 1 1 1 1
MEDIUM 0 0 1 1
LOwW 0 0 0 0

In addition to the PRIV register, the privilege level can also be set by writing to PRIVTO and PRIVT1 in sequence. Again,
hardware guarantees that the contents of PRIVTO are never higher than the maximum privilege level of the memory
area the code is running from.

When writing to PRIVT1, hardware modifies the PRIV register based on
PRIV’ = min(PRIVTO, argument, maxprivilege(IP))

2-16 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

This means that when using PRIVTO/PRIVT1, the privilege level cannot be raised unless all code between the writes to
PRIVTO and PRIVT1 executes. Writing to PRIV automatically resets PRIVTO to low.

2.6.1 Rules for System Software

While privilege levels are implemented in hardware, there are two ways user code could try to circumvent the memory

access protection:

e Manipulation of shared, common stack or registers

e Jumping or calling to code in system memory that is not an official entry point

To ensure a safe system and prevent these attacks, the system code programmer must follow the following rules:

e System code must not save and restore the privilege level. Instead, every interrupt and every system library func-
tion that raises the privilege must also unconditionally lower the privilege before exiting. If there are interrupts
that lower the privilege level, or interrupt code running outside of system space, any code that raises the privilege
must disable interrupts for the duration of the privileged operation.

Example:

interrupt:
move IGE, #0
move PRIV, #HIGH
. ; action
move PRIV, #LOW
move IGE, #1

reti

system code:
move IGE, #0
move PRIV, #HIGH
; action
move PRIV, #LOW
move IGE, #1
ret
e An operation that requires high privilege levels must not call subroutines to raise the privilege level.
Example:
incorrect:
call raise priv
. ; action
move PRIV, #LOW
correct:
move PRIV, #HIGH
. ; action
move PRIV, #LOW

Maxim Integrated 2-17

MAXQ612/MAXQ622 User’s Guide

e A system library function that checks arguments before raising the privilege level must do so in an atomic fash-
ion using PRIVTO and PRIVT1 to prevent short-circuiting the check (the rule about disabling interrupts also applies).

Example:
system library:
move IGE, #0
move PRIVTO, #HIGH
. ; check
jump ne, exit move PRIVT1, #HIGH
; .. action
exit:
move PRIV, #LOW
move IGE, #1

ret

2.6.2 Privilege Exception Interrupt

Any attempt to exceed the current privilege level causes a privilege exception interrupt that can be handled by system
code. Examples that cause an interrupt are writing high to PRIV from user code, or trying to read system code while
PRIV is low. The intent of the interrupt is to notify low priority code when an operation was denied by hardware.

2.6.3 Memory Access Protection Impact on Data Pointers (and Code Pointer)

Memory access protection complicates the use of the data and code pointers. In the MAXQ architecture, code pointers
must be activated before use in order for memory data to be available on the same cycle it is needed using synchro-
nous RAMs. This means that data is essentially prefetched into the physical data pointer when the pointer is activated
(e.g., by loading an address to DP[Q]). This can have some unintended consequences with respect to the memory
protection function.

Specifically, when MPE is enabled, and when executing from RAM, any write to the traditional MAXQ data pointers,
DPI[O], DP[1], and BP, OFFS, or DPC, has the potential to generate a memory fault.

For example, a scenario in which code is executed from RAM is presented. In this particular case, the code is stored in
a serial EEPROM. The code is loaded dynamically into RAM when needed. It is assumed this code has to have access
to RAM variables, and remember we are executing from RAM.

To accomplish this without memory access protection, the customer would configure DPC and load DP[0] and then
call the utility ROM function UROM_moveDPO. The code would look like the following:

MOVE DPC, #REQUIRED DPO_ MODE ;o (1)
MOVE DP[0], #REQUESTED RAM ADDRESS ; (2)
LCALL UROM MOVEDPO ;o (3)

; actual ROM function

MOVE DP[0], DP[O] ; (3a)
MOVE GR, Q@DP[0] ; (3b)
RET 7 (3c)

In the above example, (1) and (2) are both considered valid pointer activation instructions. In the MAXQ transfer-
triggered architecture every standard instruction represents a MOVE from a source (SRC) to a destination (DST). The
POP ACC instruction is equivalent to MOVE ACC, @SP--, JUMP LABEL is equivalent to MOVE IP, #LABEL, and so on.
With the exception of a handful of arithmetic and logical instructions, every instruction is interpreted as a MOVE DST,
SRC operation.

2-18 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

This is no different for instructions that operate on data pointers. For example, a pointer to pointer move such as MOVE
@DP[1], @DPJ0] first requires the read pointer to be activated. Architecturally, this strobes the chip enable and read
signals on the memory mapped to the location in DP[0]. This value is latched internally so that it is available when @
DP[0] is used as the source operand. At that time, the internally latched data is transferred to the destination register.

This functions normally when memory protection is not enabled. However if MPE is set the same code can cause a
memory protection fault. For this example let us assume the following:

1) The code is executing from RAM
2) REQUESTED_RAM_ADDRESS is defined as #0000h
3) Flash memory is located from 0000h—7FFFh
MOVE DPC, #REQUIRED DPO_ MODE ; Activates DP[0]
; In this MMU mapping,
; addresses O0-7FFFh are in Flash
; and *if* the previous contents
; of DP[0], modified by DPC, are
; 1in System space, we will generate
; a memory fault
MOVE DP[0], #REQUESTED RAM ADDRESS ; Again, activates DP[O0]
; Now we know that DPI[0]
; points to address 0000h
; and in the current MMU
; mapping, we are
; definitely pointing to
; *and reading from*
; System space in flash.
; MEMORY FAULT GUARANTEED
LCALL UROM MOVEDPO ; Changes MMU mapping. In
; this case, addresses
; 0-7FFFh point to RAM
; actual ROM function
MOVE DP[0], DP[O] ; ACTIVATE DP[0O] in RAM
; space. If we studied
; the above discussion
; carefully, we know that
; *activate* means *read*
MOVE GR, @DP[O0] ; Transfer the latched
; DP[0] wvalue to GR
RET ;

So, if MPE is enabled and the memory fault interrupt is enabled, the first two instructions generate a memory fault and
the corresponding interrupt is executed. To avoid a memory fault under these circumstances, a function must be writ-
ten in flash. This function has to take as an input, the address to be accessed, but it must be passed using a nonpointer
register (such as an accumulator register). The RAM code routine would write the address into this register (e.g., A[0]).

Maxim Integrated 2-19

MAXQ612/MAXQ622 User’s Guide

Next, the RAM routine calls into the flash function. Once we are executing out of flash, we can activate the DP[0] pointer
without causing a memory fault because the MMU now maps RAM into address range 0-7FFFh and ROM to higher
addresses. None of this space is MPE protected. That flash routine would look similar to this:

// this routine must be implemented in flash
ReadRAM:

push DPC

move DPC, #18h

move DP[0], A[O0]

move A[0] @DP[O]

pop DPC

ret
The corresponding RAM routine looks like:
; No pointer activation from RAM code
MOVE A[0], #REQUESTED RAM ADDRESS
LCALL ReadRAM

2.6.4 Debugging

Note that debugging system code (including trace, break, memory dump, etc.) is disabled once memory protection
is enabled.

2.6.5 Enabling Memory Protection

Memory protection is always enabled unless the system password is empty. Utility ROM initialization code is respon-
sible for checking the password and clearing the memory protection enable (MPE) bit.

2.6.6 Reset Procedure and Setup of Memory Protection
Utility ROM code as well as system and user loader code is responsible for setting up the memory protection boundaries.

Both passwords and memory area boundary definitions are loaded from code memory. These values are part of the sys-
tem, user loader, and user application image files, and are defined when assembling or compiling the code image files.

Example for the System Image:
org 0000h
; Reset
move CP, #usr ldr page
move ULDR, @QCP
jump sys_init
org 000Fh
user ldr page:
; Starting page address of user loader
dw 0020h ; Page 32
org 0010h
; System password
AW ., ey ey
org 0020h

interruptO:

2-20 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

TOP (128KB)
>
A
— o
USR APP PASSWORD
+10h
STARTUP
UAPP
— [
SR USR LDR PASSWORD
3| 4100
STARTUP USR APP START
ULDR
@ IVT IVT IVT
4 IVT VT VT
T 20h
o SYS PASSWORD
RESET/STARTUP | DEBUG LOCK | USR LDR START

0000

Figure 2-8. Overview of Memory Regions

Figure 2-8 shows the code memory with passwords and the location of the values that are programmed into the ULDR/
UAPP registers.

The user loader starting page address is located at OFh, one word before the system password. The user application
starting page address is stored one word before the user loader password (i.e., ULDR*Flash page size + OFh).

The startup sequence is as follows:

1)

The system resets at 8000h and starts running utility ROM code. On a 64KB part with flash pages of 512 bytes,
ULDR and UAPP are at their reset values of 80h (end of flash memory). The PRIV register is at its reset value of
high. The MPE (memory protection enable bit) is at its reset value of 1 (enable).

Utility ROM initialization code checks the system password and disables MPE if the password is empty.

After utility ROM initialization is complete, the utility ROM passes execution to system code memory at address
0000h.

System code starts executing and uses a CP of OFh to read the user loader starting page address and writes it into
the ULDR register.

After system initialization is complete, system code jumps to address ULDR*Flash page size + 0000h. This jump
automatically drops PRIV to medium.

The user-loader code starts executing and uses a CP of ULDR*Flash page size + OFh to read the user application
starting page address and writes it into the UAPP register.

After user loader initialization is complete, user-loader code jumps to address UAPP*Flash page size + 0000h. This
jump automatically drops PRIV to low.

Maxim Integrated 2-21

MAXQ612/MAXQ622 User’s Guide

2.6.7 Loader Access Control

As stated previously, the MAXQ612/MAXQ622 have three memory regions: system, user loader, and application. The
loader maintains a context register to determine which of the regions is to be the target of the loader commands. Family
0 and Family F commands have no context. They are global in scope. For details on the nonparty-specific loader com-
mands, refer to Application Note 4012: Implementing a JTAG Bootloader Master for the MAXQZ2000 Microcontroller.

There are two Family F loader commands specific to the MAXQ612/MAXQ622:
Command 0xFO: GetContext
Input : None
Output : Context Byte — 00x00, SystemContext; 0x01, LoaderContext; 0x2, ApplicationContext
Command 0xF1” SetContext
Input : Context Byte — 0x00, SystemContext; 0x01, LoaderContext; 0x02, ApplicationContext
Output : Sets Error Code (retrieved using Getstatus bootloader command)

The bootloader sets a default context based on the lowest privileged region that exists. The default context is selected
according to the following rules:

If all three regions exist:
The user application context (UAPP_CONTEXT).
If only system and user application regions exist:
The user application context.
If only system and user loader regions exist:
The user loader context (ULDR_CONTEXT).
If only the system region exists:

The system context (SYSTEM)CONTEXT). Only the default context will have its password tested and
corresponding PWL bit cleared. The context can be changed through the Family F commands shown above, but the
password for the new region is not tested after a context change and, therefore, a password match loader command
must be sent to clear the password lock bit of the associated region even if the password for that region is clear.

If the system password has not been set, memory protection is disabled by the ROM. If word address 000Eh in the
system code region is programmed (any value other than OxFFFF), the debug lockout condition is set by setting
SC.DBGLCK to 1 (all debug functions are disabled).

The “current context” is used by the loader to determine how to apply master erase and password-protected loader
commands. The master erase command erases pages starting at the base address of the current context and all
pages with addresses greater than the base address. Password-protected commands check the password lock bit of
the current region. The unlock password command uses the password from the current region (indicated by the current
context) to determine the state of the current region password lock.

The loader provides several commands that require a password and a master erase command that does not.

All password-protected commands check the following:

e System password match: Access to full memory

e | oader password match: Access to user memory

e Application password match: Access to user application memory

e No match: No access

Three PWL bits allow the loader to find out whether a password match was successful. The PWL bits for system and

Master erase does not require a password and defaults to erasing the user application only. Two Family F commands
are added that allow master erase of user loader and system code:

e Master erase system: Complete system erase.
e Master erase user loader: Erases user loader and user application.
2-22 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

2.6.8 Disabling MAXQ612/MAXQ622-Specific Memory Access Features

The MAXQ612/MAXQ622 memory-protection features are specific to the MAXQ612/MAXQ622 family of parts and can
cause some confusion in the way that they impact debugging and bootloader commands when compared to MAXQ
parts. To enable users to develop initial firmware as quickly as possible, the following code can be added to your
application code to disable the memory protection features and allow code loading and debugging in the same man-
ner as previous parts:

ORG O
Jump Start

ORG 000eh
Debug Lockout:
DW O0ffffh ; disable debug lockout
ORG 000fh
ULDR_PageNumber:
DW O0ffffh ; do not define a user loader page
ORG 0010h
System PassworD:
DW offffh,offffh, offffh,offffh, offffh,offffh, offffh,offffh
DW offffh,offffh, offffh,offffh, offffh,offffh, offffh,offffh
ORG 0020h
; interrupt vectors go here
ORG 0100h
Start:
; Your application code here

7o

END

Once the memory-protection features are fully understood, this code can be removed from the user’s application code
to enable memory access control.

2.7 Clock Generation

All functional modules in the MAXQ612/MAXQ622 are synchronized to a single system clock with the exception of the
wake-up timer. The internal clock circuitry generates the system clock from one of two possible sources:

e |nternal oscillator, using an external crystal or resonator
e External clock signal

The external clock and crystal are mutually exclusive since they are input through the same clock pin. Each time code
execution must start or restart (as can be the case when exiting stop mode) using the external clock source, the fol-
lowing sequence occurs:

e Reset the crystal warmup counter.
e Allow the required warmup delay: 8192 external clock cycles if exiting from stop mode.
e Code execution starts after the crystal warmup sequence.

2.7.1 External Clock (Crystal/Resonator)

An external quartz crystal or a ceramic resonator can be connected from HFXIN to HFXOUT determining the frequency,
as illustrated in Figure 2-10. The fundamental mode of the crystal operates as inductive reactance in parallel resonance
with external capacitance to the crystal.

Maxim Integrated 2-23

MAXQ612/MAXQ622 User’s Guide

POWER-ON -
RESET
S RESET RESET DOG
STOP —4 RESET
XDOG > WATCHDOG WATCHDOG RESET
>
STARTLP TER WATCHDOG INTERRUPT
TIMER 1 XDOG DONE >
—| CLK INPUT J
CRYSTAL KILL
] HF S
— CRYSTAL MAXQ612
T MAXQ622
s
POWER-ON
RESET
| CLOCK > ENABLE
DIIDER > CLOCK | sysTEM CLOCK
Tl &= ®1 GENERATION
= =
> &)
BkHZ 1 \yAKE-UP TIMER
RING .
- =
=====
OoOoOooOoo o
— sws
SELECTOR — INTERRUPT/SERIAL PORT
DEFAULT RESET

N

STOP

Figure 2-9. MAXQ612/MAXQ622 Clock Sources

HFXIN

VoD

x

~ AN, o » CLOCK CIRCUITRY
STOP
— e
HFXOUT
° MAXQ612
l Re = 1MQ £50% MAXQ622

i

Figure 2-10. On-Chip Crystal Oscillator

2-24

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Crystal specifications, operating temperature, operating voltage, and parasitic capacitance must be considered when
designing the internal oscillator. The MAXQ612/MAXQ622 are designed to operate at a 12MHz maximum frequency.
To further reduce the effects of external noise, a guard ring can be placed around the oscillator circuitry.

Pins HFXIN and HFXOUT are protected by clamping devices against on-chip electrostatic discharge. These clamping
devices are diodes parasitic to the feedback resistor RF in the oscillator’s inverter circuit. The inverter circuit is pre-
sented as a NAND gate that can disable clock generation in stop mode.

Noise at HFXIN and HFXOUT can adversely affect on-chip clock timing. It is good design practice to place the crystal
and capacitors near the oscillator circuitry and connect to HFXIN, HFXOUT, and ground with a direct shot trace. The
typical values of external capacitors vary with the type of crystal used and should be initially selected based on the
load capacitance as suggested by the crystal manufacturer.

For cost-sensitive applications, a ceramic resonator can be used instead of a crystal. Using the ceramic resonator can
require a different circuit configuration and capacitance value.

2.7.2 External Clock (Direct Input)

The MAXQ612/MAXQ622 CPU can also obtain the system clock signal directly from an external clock source. In this
configuration, the clock generation circuitry is driven directly by an external clock.

To operate the MAXQ612/MAXQ622 from an external clock, connect the clock source to HFXIN and connect HFEXOUT
to GND. The clock source should be driven through a CMOS driver. If the clock driver is a TTL gate, its output must
be connected to VDD through a pullup resistor to ensure a satisfactory logic level for active clock pulses. To minimize
system noise on the clock circuitry, the external clock source must meet the maximum rise and fall times and the mini-
mum high and low times specified for the clock source. The external noise can affect clock generation circuit if these
parameters do not meet the specification.

2.7.3 Internal System Clock Generation

The internal system clock is derived from the currently selected oscillator input. By default, one system clock cycle is
generated per oscillator cycle, but the number of oscillator cycles per system clock can also be increased by setting
the power-management mode enable (PMME) bit and the clock-divide control (CD[1:0]) register bits according to
Table 2-7.

Table 2-7. System Clock Rate Control Settings

PMME CD[1:0] CYCLES PER CLOCK
0 00 1 (default)
0 01 2
0 10 4
0 11 8
1 XX 256
2.8 Wake-Up Timer

The MAXQ612/MAXQ622 provide a simple wake-up timer that can trigger an interrupt after a user-definable number of
internal 8kHz ring cycles. Since the wake-up timer is running off the internal ring and keeps running even during stop
mode, it can be used to wake the MAXQ612/MAXQ622 up from stop mode at periodic intervals.

To use the wake-up timer, the WUT register should be written first (before the wake-up timer is started) to define the
countdown interval. Once the time interval has been defined, the wake-up timer can be started by setting the WTE bit
to 1. The time interval until the wake-up timer counts down to zero is defined by:

fNANO x WUT[15:0]
With the maximum possible time interval being:
fNANO x (216 - 1)

Maxim Integrated 2-25

MAXQ612/MAXQ622 User’s Guide

2.8.1 Using the Wake-Up Timer to Exit Stop Mode

To use the wake-up timer to exit stop mode after a predefined period of time, the following conditions must be met
before entering stop mode:

e The WUT register must be written to define the countdown interval value.
e The WTE bit must be written to 1 to start the wake-up timer.

e The IGE (IC.0) bit must be set to 1 to enable global interrupts. The wake-up timer cannot wake the MAXQ612/
MAXQ622 up from stop mode if its interrupt does not fire.

2.9 Interrupts

The MAXQ612/MAXQ622 provide a hardware interrupt handler with interrupt vector (IV) table base address register
and the interrupt control (IC) register. The IV register is fixed at 0020h and acts as the vector table base location.
Interrupts can be generated from system level sources (e.g., watchdog timer) or by sources associated the peripheral
modules. The interrupt vectors are preset at eight fixed memory address offsets from IV with hardware priority control
that can be programmed through the interrupt priority register zero (IPRO and IPR1).

2.9.1 Servicing Interrupts

For the MAXQ612/MAXQ622 to service an interrupt, interrupt handling must be enabled globally and locally. The IGE
bit located in the IC register acts as a global interrupt mask that affects all interrupts, with the exception of the power-
fail warning interrupt. This bit defaults to 0, and it must be set to 1 before any interrupt handling takes place.

The local interrupt-enable bit for a particular source is in one of the peripheral registers associated with that peripheral
module or in a system register for any system interrupt source. When an interrupt condition occurs, its individual flag
is set, even if the interrupt source is disabled at the local or global level. Interrupt flags must be cleared within the user
interrupt routine to avoid repeated interrupts from the same source.

The handler uses three levels of interrupt priorities that allow the user software to select a suitable priority for an inter-
rupt vector source. The interrupt handler (hardware) modifies the interrupt priority status bits (IPSn) when it is servicing
an interrupt. These bits are set to 11b by the interrupt handler when executing a RETI instruction.

2.9.2 Interrupt System Operation

The interrupt handler responds to any interrupt event when it is enabled. An interrupt event occurs when an interrupt
flag is set. All interrupt requests are sampled at the rising edge of the clock, and can be served by the processor one
clock cycle later, assuming the request does not hit the interrupt exception window. The one cycle stall between detec-
tion and acknowledgement/servicing is due to the fact that the current instruction could also be accessing the stack,
or that the current instruction could be a prefix register (PFX[n]) write. For this reason, the CPU must allow the current
instruction to complete before pushing the stack and vectoring to the proper interrupt vector table address. If an inter-
rupt exception window is generated by the currently executing instruction, the following instruction must be executed,
thus the interrupt service routine is delayed an additional cycle.

Interrupt operation in the MAXQ612/MAXQ622 CPU is essentially a state-machine-generated long CALL instruc-
tion. When the interrupt handler services an interrupt, it temporarily takes control of the CPU to perform the following
sequence of actions:

1) The next instruction fetch from program memory is cancelled.

2) The return address is pushed on to the stack.

3) The IPS bits are set to the current interrupt level to prevent recursive interrupt calls from interrupts of lower priority.
4) The instruction pointer is set to the location of the interrupt service routine as defined by the interrupt source.

5) The CPU begins executing the interrupt service routine.

Once the interrupt service routine completes, it should use the RETI instruction to return to the main program. Execution
of RETI involves the following sequence of actions:

1) The return address is popped off the stack.

2-26 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

2) The IPS bits are set to 11b to re-enable interrupt handling.
3) The instruction pointer is set to the return address that was popped off the stack.
4) The CPU continues execution of the main program.

Pending interrupt requests do not interrupt a RETI instruction; a new interrupt is serviced after first being acknowledged
in the execution cycle that follows the RETI instruction and then after the standard one stall cycle of interrupt latency.
This means there are at least two cycles between back-to-back interrupts.

2.9.3 Synchronous vs. Asynchronous Interrupt Sources

Interrupt sources can be classified as either asynchronous or synchronous. All internal interrupts are synchronous inter-
rupts. An internal interrupt is directly routed to the interrupt handler that can be recognized in one cycle. All external
interrupts are asynchronous interrupts by nature. Asynchronous interrupt sources are passed through a three-clock
sampling/glitch filter circuit before being routed to the interrupt handler. The sampling/glitch filter circuit is running on
the undivided source clock (i.e., before PMME, CD[1:0] controlled clock divide) such that the number of system clocks
required to recognize an asynchronous interrupt request depend upon the system clock divide ratio:

e |f the system clock-divide ratio is 1, the interrupt request is recognized after three system clocks.

e |f the system clock-divide ratio is 2, the interrupt request is recognized after two system clocks.

e |f the system clock divide ratio is 4 or greater, the interrupt request is recognized after one system clock.
An interrupt request with pulse width less than three undivided clock cycles is not recognized.

Note that the granularity of interrupt source is at module level. Synchronous interrupts and sampled asynchronous
interrupts assigned to the same module product a single interrupt to the interrupt handler.

External interrupts, when enabled, can be used as switchback sources from power-management mode. There is no
latency associated with the switchback because the circuit is being clocked by an undivided clock source vs. the
divide-by-256 system clock. For the same reason, there is no latency for other switchback sources that do not qualify
as interrupt sources.

2.9.4 Interrupt Prioritization by Software

There are three levels of interrupt priorities: level 0 to 2. Level O is the highest priority and level 2 is the lowest. All
interrupts have individual priority bits in the IPRO register to allow each interrupt to be assigned a priority level. All inter-
rupts have a natural priority or hierarchy. In this manner, when a set of interrupts has been assigned the same prior-
ity, this natural priority hierarchy determines which interrupt is allowed to take precedence if multiple interrupts occur
simultaneously. The natural hierarchy is determined by analyzing potential interrupts in a sequential manner with the
preferred order as listed in Table 2-8. Once an interrupt is being processed, only an interrupt with higher priority level
can preempt it. Therefore, the MAXQ612/MAXQ622 support a maximum of two levels of interrupt nesting.

For example, suppose three interrupts occur simultaneously and the assigned priorities (IVP bits) for each of the inter-
rupt sources are as follows:

e |R Timer: assigned priority level 1
e Serial Port O: assigned priority level 2
e Timer BO: assigned priority level 2

Because simultaneous interrupts are first evaluated according to assigned priority level, the IR timer interrupt is ser-
viced first. Once the IR timer interrupt source has been cleared, the serial port O and timer BO interrupt sources are
evaluated. Both of these interrupt sources have been assigned to the same priority level (level 2), so the natural prior-
ity of each source is used to determine which is serviced first. The serial port O interrupt is serviced first as its natural
priority is 4, whereas timer BO has natural priority 6. If two interrupts that are grouped under the same natural priority
occur simultaneously, the order in which handling of the interrupts occurs is left to the discretion of user code (i.e., user
code must decide what order to check the associated interrupt flags).

For an unhandled interrupt, the interrupt handler vectors to flash address 0x98 if the user disables any of the inter-
rupts when an interrupt is triggered or when a medium priority interrupt occurs while in stop mode. A simple “RETI” is
required to be placed at 0x98.

Maxim Integrated 2-27

MAXQ612/MAXQ622 User’s Guide

Table 2-8. Interrupt Priority

VECTOR
INTERRUPT ADDRESS NATURAL FLAG ENABLE* PRIORITY CONTROL
PRIORITY
(HEX)
Power Fail 20h 0 PFI (PWCN.2) PFIE (PWCN.1) IVPO[1:0] (IPRO[1:0])
PULRF (IC.4),
PULWEF (IC.5),] .
Memory Fault 28h 1 PSYRF (IC.6), MPE (SC.10) IVP1[1:0] (IPRO[3:2])
PSYWF (IC.7)
External INT[7:0] 30h 2 IE[7:0] (EIFO) EX[7:0] (EIEO) IVP2[1:0] (IPRO[5:4])
, IROV (IRCNB.0),] .
IR Timer 38h 3 IRIF (IRCNB. 1) IRIE (IRCNB.2) IVP3[1:0] (IPRO[7:6])
. RI (SCONO0.0),
Serial Port O TI (SCONO.1) ESI (SMDO0.2)
40h 4 Rl (SCONT0) IVP4[1:0] (IPRO[9:8])
Serial Port 1 TI (SCON1.1) ESI (SMD1.2)
MODF (SPICN0.3),
WCOL (SPICNO.4),
SPI O ESPII (SPICF.7
48h 5 ROVR (SPICNO.5), () IVP5[1:0] (IPRO[11:10])
SPIC (SPICN0.6)
External INT[15:8] IE[15:8] (EIF1) EX15[7:8] (EIE1)
, TFB (TBOCN.7),
Timer BO EXFB (TBOCN.6) ETB (TBOCN.1)
50h 6 B (TB1CN.7) IVP6[1:0] (IPRO[13:12])
Timer B1 EXFB (TB1CN.6) ETB (TB1CN.1)
Wake-Up Ti WTF (WUTC.1 WTE (WUTC.0
e |mer 58h 7 () () IVP7[1:0] (IPRO[15:14])
Watchdog Timer WDIF (WDCN.3) EWDI (WDCN.6)
USBINT.7:0,)))
USB 60h 8 EPINT. 7-0 USBIE.7:0, EPIEN.7:0 | IPR1[1:0]
12C 68h 9 [2CST.11:0 I2CIE[11:0] IPR1[3:2]
MODF (SPICN1.3),
WCOL (SPICN1.4),)
SPI 1 70h 10 ROVR (SPICN15), ESPII (SPICF.7) IPR1[5:4]
SPIC (SPICN1.6)
Reserved 78h 11 — — IPR1[7:6]
Reserved 80h 12 — — IPR1[9:8]
Reserved 88h 13 — — IPR1[11:10]
Reserved 90h 14 — — IPR1[13:12]
Reserved 98h 15 — — IPR1[15:14]

*With the exception of the power-fail interrupt, all interrupts require that the IGE bit be set to 1 to generate an interrupt request,
regardless of the individual interrupt enable listed. The power-fail interrupt is not governed by IGE (i.e., interrupt request genera-
tion is controlled solely by the PFIE enable bit).

2-28

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

2.9.5 Interrupt Exception Window

An interrupt exception window is a noninterruptible execution cycle. During this cycle, the interrupt handler does not
respond to any interrupt requests. All interrupts that would normally be serviced during an interrupt exception window
are delayed until the next execution cycle.

Interrupt exception windows are used when two or more instructions must be executed consecutively without any
delays in between. There are two conditions in the MAXQ612/MAXQ622 microcontrollers that cause an interrupt excep-
tion window:

e Activation of the prefix register (PFX[n])
e Code memory access using the code pointer (CP)

When the prefix register (PFX[n]) is activated by writing a value to it, it retains that value only for the next clock cycle.
For the prefix value to be used properly by the next instruction, the instruction that sets the prefix value and the instruc-
tion that uses it must always be executed back to back. Therefore, writing to the PFX[n] register causes an interrupt
exception window on the next cycle.

The one-cycle stall when using the code pointer is due to the fact that the current instruction could also be accessing
the stack.

If an interrupt occurs during an interrupt exception window, an additional latency of one cycle in the interrupt handling
is caused as the interrupt is not serviced until the next cycle.

2.10 Operating Modes

In addition to the standard program execution mode, the MAXQ612/MAXQ622 can also be in three other operating
modes. During reset mode, the processor is temporarily halted by an external or internal reset source. During power-
management mode, the processor executes instructions at a reduced clock rate in order to decrease power consump-
tion. Finally, stop mode halts execution and all internal clocks (with the exception of the wake-up timer if enabled) to
save power until an external stimulus indicates that processing should be resumed.

2.11 Reset Mode

When the MAXQ612/MAXQ622 microcontrollers are in reset mode, no instruction execution or other system or peripher-
al operations occur, and all input/output pins return to default states. Once the condition that caused the reset (whether
internal or external) is removed, the processor begins executing code from utility ROM at address 8000h.

There are four different sources that can cause the MAXQ612/MAXQ622 to enter reset mode:
e Power-on/power-fail reset

e External reset

e Watchdog timer reset

e |nternal system reset

2.11.1 Power-On/Power-Fail Reset

An on-chip power-on reset (POR) circuit is provided to ensure proper initialization on internal device states. The POR
circuit provides a minimum POR delay sufficient to accomplish this initialization. For fast VDD supply rise times, the
MAXQ612/MAXQ622 are, at a minimum, held in reset for the POR delay when initially powered up. For slow VDD supply
rise times, the MAXQ612/MAXQ622 are held in reset until VDD is above the POR voltage threshold.

Table 2-9. Power-Fail Reset Check Interval

PFRCK][1:0] POWER-FAIL MONITOR CHECK INTERVAL (NANOPOWER RING OSCILLATOR CYCLES)
00 No interval defined (Monitor on always as normal)
01 210 (~ 128ms for 8kHz nanopower ring oscillator frequency)
10 211 (~ 256ms for 8kHz nanopower ring oscillator frequency)
11 212 (~ 512ms for 8kHz nanopower ring oscillator frequency)

Maxim Integrated 2-29

MAXQ612/MAXQ622 User’s Guide

The MAXQ612/MAXQ622 support power-fail detection where an on-chip bandgap and reference comparator constant-
ly monitor the supply voltage VDD to ensure that it is within acceptable limits. If VDD is below the power-fail level warn-
ing level, an interrupt is generated to the CPU if enabled. If VDD falls further to below the operating condition, the power
monitor initiates a reset condition. This can occur either when the MAXQ612/MAXQ622 are first powered up when the
VDD supply is above the POR voltage threshold, or when VDD drops out of tolerance from an acceptable level.

In either case, the reset condition is maintained until VDD rises above the reset level VRST. Once (VDD > VRST), there
is a delay of 8192 oscillator cycles until execution resumes to ensure that the clock source has stabilized.

Rather than leaving the power-fail reset monitoring circuit always on once the VRST condition has occurred, it can be
advantageous to the application to conserve battery capacity during power-fail reset in order to extend the time until
POR is reached (and possibly retaining SRAM contents). While there is still no single bit indicator that can be used to
guarantee SRAM retention once power-fail reset has occurred, one possibility is that the user can perform a checksum
over the area for which retention is questioned to make this assessment. So, in order to reduce current consumption
during the power-fail reset state, two power-fail reset check time configuration bits (PFRCK[1:0]) are provided for the
user. These bits are used to enable duty cycling of the VRST power-monitoring circuitry during the time when VDD is
below the VRST threshold but has not reached the POR threshold. These bits are reset only by POR (not even VRST).
Table 2-9 provides the bit settings and corresponding duty cycling of the power monitor check when VPOR < VDD <
VRsT. Note that the VPOR state for the bits is 00b, which results in the monitor being on always.

During the power-fail reset condition, duty cycling of the VRST power-monitoring circuitry results in reduced current that
can be approximated by the following equation:

IPOWERFAIL = (3 x Is2 + (Check Interval Cycles - 3) x (IS1 + INANO))/Check Interval Cycles
where:
IS1 = stop-mode current with power-fail monitor off
Is2 = stop-mode current with power-fail monitor on
INANO = nanopower ring oscillator current

When the processor exits from the power-on/power-fail reset state, the POR bit in the watchdog control register
(WDCN) is set to 1 and can only be cleared by software. The user software can examine the POR bit following a reset
to determine whether the reset was caused by a power-on reset or by another source.

The power-fail monitor is always on during normal operation. However, it can be selectively disabled during stop
mode using the power-fail monitor disable (PFD) bit in the PWCN register if the regulator is also selectively disabled
(REGEN = 0) during stop mode. If the user opts to leave the regulator on during stop mode, the power-fail monitor is
automatically left enabled as well, regardless of the state of the PFD bit. The reset default state for the PFD bit is O,
which enables the power-fail monitor function during stop mode. If power-fail monitoring is disabled (PFD = 1) during
stop mode, the circuitry responsible for generating a power-fail warning or reset is shut down and neither condition is
detected. Thus, the VDD < VRST condition does not generate a reset. However, in the event that VpD falls below the
POR level, a POR is generated. The power-fail monitor is enabled prior to the stop mode exit and before code execu-
tion begins. If a power-fail warning condition (VDD < VPFW) is then detected, the power-fail interrupt flag is set on stop
mode exit. If a power-fail reset condition is detected (VDD < VRST), the CPU goes into reset.

2.11.2 External Reset

During normal operation, the MAXQ612/MAXQ622 are placed into external reset mode by holding the RESET pin low
for at least four clock cycles. If the MAXQ612/MAXQ622 are in the low-power stop mode (i.e., system clock is not
active), the RESET pin becomes an asynchronous source, forcing the reset state immediately after being taken low.
Once the MAXQ612/MAXQB22 enter reset mode, it remains in reset as long as the RESET pin is held low. After the
RESET pin returns to high, the processor exits the reset state within four clock cycles and begins program execution
from utility ROM at address 8000h.

The RESET pin is an output as well as an input. If a reset condition is caused by another source (such as a power-fail
reset or internal reset), an output reset pulse is generated at the RESET pin for as long as the MAXQ612/MAXQ622
remain in reset. If the RESET pin is connected to an RC reset circuit or a similar circuit, it may not be able to drive the
output reset signal; however, if this occurs, it does not affect the internal reset condition.

2-30 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

2.11.3 Watchdog Timer Reset

The watchdog timer is a programmable hardware timer that can be set to reset the processor in the case of a soft-
ware lockup or other unrecoverable error. Once the watchdog is enabled in this manner, the processor must reset the
watchdog timer periodically to avoid a reset. If the processor does not reset the watchdog timer before it elapses, the
watchdog initiates a reset state.

If the watchdog resets the processor, it remains in reset for four clock cycles. Once the reset condition is removed, the
processor begins executing program code from utility ROM at address 8000h. When a reset occurs due to a watch-
dog timeout, the watchdog timer reset flag in the WDCN register is set to 1 and can only be cleared by software. User
software can examine this bit following a reset to determine if that reset was caused by a watchdog timeout.

2.11.4 Internal System Reset

The MAXQ612/MAXQ622 can incorporate functions that logically warrant the ability to generate an internal system
reset. This reset generation capability is assessed by MAXQ612/MAXQ622 function based upon its expected use.
In-system programming is a prime example of functionality that benefits by having the ability to reset the device. The
exact in-system programming protocol is somewhat device- and interface-specific, however, it is expected that, upon
completion of in-system programming, many users will want the ability to reset the system. This internal (software-
triggered) reset generation capability is possible following in-system programming.

2.12 Power-Management Mode

There are two major sources of power dissipation in CMOS circuitry. The first is static dissipation caused by continu-
ous leakage current. The second is dynamic dissipation caused by transient switching current required to charge and
discharge load capacitors as well as short-circuit current produced by momentary connections between Vpp and
ground during gate switching.

Usually it is the dynamic switching power dissipation that dominates the total power consumption, and this power dis-
sipation (PD) for a CMOS circuit can be calculated in terms of load capacitance (CL), power-supply voltage (VDD),
and operating frequency (f) as:

PD = CL x VDD2 x f

Capacitance and supply voltage are technology dependent and relatively fixed. However, the operating frequency
determines the clock rate, and the required clock rate can be different from application to application depending on
the amount of processing power required.

If an external crystal or oscillator is being used, the operating frequency can be adjusted by changing external compo-
nents. However, it could be the case that a single application can require maximum processing power at some times
and very little at others. Power-management mode allows an application to reduce its clock frequency and, therefore,
its power consumption under software control.

Power-management mode is invoked by setting the PMME bit to 1. Once this bit has been set, one system clock cycle
occurs every 256 oscillator cycles. All operations continue as normal in this mode, but at the reduced clock rate. Power-
management mode can be deactivated by clearing the PMME bit to 0; the PMME bit is also cleared automatically to
0 by any reset condition.

To avoid data loss, the PMME bit cannot be set while the USART or SPI ports are either transmitting or receiving, or
while an external interrupt is waiting to be serviced. Attempts to set the PMME bit under these conditions result in a
no-op.

2.12.1 Switchback

When power-management mode is active, the MAXQ612/MAXQ622 operate at a reduced clock rate. Although execu-
tion continues as normal, peripherals that base their timing on the system clock such as the USART module and the SPI
module might be unable to operate normally or at a high enough speed for proper application response. Additionally,
interrupt latency is greatly increased.

The switchback feature is used to allow a processor running under power-management mode to switch back to normal
mode quickly under certain conditions that require rapid response. Switchback is enabled by setting the SWB bit to 1.

Maxim Integrated 2-31

MAXQ612/MAXQ622 User’s Guide

If switchback is enabled, a processor running under power-management mode automatically clears the PMME bit to
0 and returns to normal mode when any of the following conditions occur:

e An external interrupt condition occurs on an INTn pin and the corresponding external interrupt is enabled.

e An active-low transition occurs on the USART serial receive input line (modes 1, 2, and 3) and data reception is
enabled.

e The SBUF register is written to send an outgoing byte through the USART and transmission is enabled.

e The SPIB register is written in master mode (STBY = 1) to send an outgoing character through the SPI module and
transmission is enabled.

e The SPI module’s SSEL signal is asserted in slave mode.

e Active debug mode is entered either by breakpoint match or issuance of the debug command from background
mode.

e Power-fail interrupt if enabled (PFIE = 1).

2.13 Stop Mode

When the MAXQ612/MAXQ622 are in stop mode, the CPU system clock is stopped and all processing activity is halted.
All on-chip peripherals requiring the system clock are also stopped. Power consumption in the lowest power stop mode
is basically limited to static leakage current.

Stop mode is entered by setting the STOP bit to 1. The processor enters stop mode immediately once the instruction
that sets the STOP bit is executed.

Note: It is necessary to include a ‘nop’ immediately following the instruction to invoke stop mode for proper interrupt
operation. Example code is as follows:

move ckcn, #010h ; enter stop mode
nop ; No operation to cause a one cycle delay
The MAXQ612/MAXQB22 exit stop mode when any of the following conditions occur:

e An external interrupt condition occurs on one of the INTn pins and the corresponding external interrupt is enabled.
After the interrupt returns, execution resumes after the stop point.

e An external reset signal is applied to the RESET pin. After the reset signal is removed, execution resumes from utility
ROM at 8000h as it would after any reset state.

e A power-fail interrupt occurs, if enabled (PFIE = 1).
e A wake-up timer interrupt occurs, if enabled (WTE = 1).

Note that the voltage monitor and bandgap reference can be disabled during stop mode to conserve current con-
sumption. In this case, a power-fail condition does not cause a reset as it would under normal conditions. However,
the POR monitor remains enabled, and any voltage drop on VDD that goes below the POR level causes a POR to
occur. To continue to monitor supply voltage during stop mode, the power-fail monitor is left on if the regulator is left
on (REGEN = 1), or it can be explicitly enabled (if the regulator is disabled; REGEN = 0) by clearing the PWCN.PFD bit
to 0. The power-fail monitor is always enabled prior to stop mode exit and resumption of code execution.

Once the processor exits stop mode, it resumes execution as follows:

e |f the crystal oscillator is selected as the system clock source, the crystal oscillator is started and execution resumes
following an 8192-clock-cycle delay to allow the oscillator frequency to stabilize.

2-32 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 3: PROGRAMMING

This section contains the following information:

3.1 Addressing MOES.o 3-3
B2 Prefix Operations o 3-3
3.3 Reading and Writing Registers 3-4
3.3.1 Loading an 8-Bit Register with an Immediate Value 3-4
3.3.2 Loading a 16-Bit Register with a 16-Bit Immediate Value. 3-4
3.3.3 Moving Values Between Registers of the Same Size 3-4
3.3.4 Moving Values Between Registers of Different Sizes 3-5
3.3.5 8-Bit Destination «— Low Byte (16-Bit Source). 3-5
3.3.6 8-Bit Destination «— High Byte (16-Bit Source) 3-5
3.3.7 16-Bit Destination <- Concatenation (8-Bit Source, 8-Bit Source). 3-5
3.3.8 Low (16-Bit Destination) «— 8-Bit Source 3-6
3.3.9 High (16-Bit Destination) <= 8-Bit Source 3-6
3.4 Reading and Writing Register BitS. 3-6
3.5 Using the Arithmetic and Logic Unit 3-7
3.5.1 Selecting the Active ACCumuUIator 3-7
3.5.2 Enabling Autoincrement and Autodecrement 3-7
3.5.3 ALU Operations Using the Active Accumulator and a Source i 3-9
3.5.4 ALU Operations Using Only the Active Accumulator 3-9
3.5.5 ALU Bit Operations Using Only the Active Accumulator. 3-10
3.5.6 Example: Adding Two 4-Byte Numbers Using Autoincrement i 3-10
3.6 Processor Status Flag Operations 3-10
3.6.1 SIgN Flag . ..o 3-10
B.B.27Zero Flag . ..o 3-11
B.B8.3Equals Flag. 3-11
B.6.4 Carry Flag. . . oo 3-11
3.8.50verflow Flag o 3-12
3.7 Controlling Program FIOW. 3-12
3.7.1 Obtaining the Next Execution Address 3-12
3.7.2.Unconditional JUmMS. . .o 3-12
3.7.3 Conditional JUMPSo 3-13
3.7.4 Calling SUBIoUtiNESo 3-13
B.7.5 L00p Operations.o 3-13
3.7.6 Conditional Returns 3-14
3.7.7 Conditional Return from Interrupt. 3-15
3.8 Accessing the Stack 3-15
3.9 Accessing Data MemoOry 3-16
3.9.1 Word/Byte ACCeSS MOEo 3-16

Maxim Integrated 3-1

MAXQ612/MAXQ622 User’s Guide

3.9.2 Data Pointer ACtivation. 3-17
3.10 Using the Watchdog Timer 3-18

LIST OF FIGURES

Figure 3-1. Watchdog Timer Block Diagram 3-19

LIST OF TABLES

Table 3-1. Accumulator Pointer Control Register Settings 3-8
Table 3-2. Watchdog Timer Register Control Bits. 3-18
Table 3-3. Watchdog Timeout Period Selection 3-20

3-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 3: PROGRAMMING

This section provides a programming overview of the MAXQ612/MAXQ622. For full details on the instruction set as
well as the system register and peripheral register detailed bit descriptions, see the appropriate sections later in this
document.

3.1 Addressing Modes
The instruction set for the MAXQ612/MAXQ622 provides three different addressing modes: direct, indirect, and immediate.

System and peripheral registers are referenced by direct addressing only. This addressing mode is used to specify
both source and destination registers, such as:

move A[0], A[1l] ; copy accumulator 1 to accumulator O
push A[0] ; push accumulator 0 on the stack
add A[1l] ; add accumulator 1 to the active accumulator

Direct addressing is also used to specify addressable bits within registers.
move C, Acc.0 ; copy bit zero of the active accumulator
; to the carry flag
move PO0.3, #1 ; set bit three of port 0 Output register
Indirect addressing, in which a register contains a source or destination address, is used only in a few cases.
move @DP[O0], A[O] ; copy accumulator 0 to the data memory
; location pointed to by data pointer O
move A[0], @SP-- ; where (@SP-- is used to pop the data pointed to
; by the stack pointer register
Immediate addressing is used to provide values to be directly loaded into registers or used as operands.
move A[0], #10h ; set accumulator 1 to 10h/1l6d

3.2 Prefix Operations

All instructions on the MAXQ612/MAXQ622 are 16 bits long and execute in a single cycle. However, some operations
require more data than can be specified in a single cycle or require that high-order register index bits be set to achieve
the desired transfer. In these cases, the prefix register module, PFX[n], is loaded with temporary data and/or required
register index bits to be used by the following instruction. The PFX[n] module only holds loaded data for a single cycle
before it clears to zero.

Instruction prefixing is required for the following operations, which effectively makes them two-cycle operations.

e \When providing a 16-bit immediate value for an operation (e.g., loading a 16-bit register, ALU operation, supplying
an absolute program branch destination), the PFX[n] module must be loaded in the previous cycle with the high byte
of the 16-bit immediate value unless that high byte is zero. One exception to this rule is when supplying an absolute
branch destination to 00xxh. In this case, PFX[n] still must be written with 00h. Otherwise, the branch instruction
would be considered a relative one instead of the desired absolute branch.

e When selecting registers with indexes greater than 07h within a module as destinations for a transfer or registers
with indexes greater than OFh within a module as sources, the PFX[n] register must be loaded in the previous cycle.
This can be combined with the previous item.

Generally, prefixing operations are inserted automatically by the assembler as needed, so that (for example):
move DP[0], #1234h

actually assembles as:
move PFX[0], #12h
move DP[O0], #34h

Maxim Integrated 3-3

MAXQ612/MAXQ622 User’s Guide

However, the operation:
move DP[0], #0055h

does not require a prefixing operation even though the register DP[0] is 16 bits. This is because the prefix value
defaults to zero, so the following line is not required:

move PEX[0], #00h

3.3 Reading and Writing Registers

All functions in the MAXQ612/MAXQ622 are accessed through registers, either directly or indirectly. This section
discusses loading registers with immediate values and transferring values between registers of the same size and
different sizes.

3.3.1 Loading an 8-Bit Register with an Immediate Value

Any writable 8-bit register with a subindex from Oh to 7h within its module can be loaded with an immediate value in a
single cycle using the MOVE instruction.

move AP, #05h ; load accumulator pointer register with 5

Writable 8-bit registers with subindexes 8h and higher can be loaded with an immediate value using MOVE as well,
but an additional cycle is required to set the prefix value for the destination.

move WDCN, #33h ; assembles to: move PFX[2], #00h
; move (WDCN-80h), #33h

3.3.2 Loading a 16-Bit Register with a 16-Bit Inmediate Value

Any writable 16-bit register with a subindex from 0Oh to 7h can be loaded with an immediate value in a single cycle if
the high byte of that immediate value is zero.

move LC[0], #0010h ; prefix defaults to zero for high byte

If the high byte of that immediate value is not zero or if the 16-bit destination subindex is greater than 7h, an extra cycle
is required to load the prefix value for the high byte and/or the high-order register index bits.

; high byte <> #00h

move LC[0], #0110h ; assembles to: move PFX[2], #01h
; move LC[0], #10h
; destination sub-index > 7h

move A[8], #0034h ; assembles to: move PFX[2], #00h
; move (A[8]-80h), #34h

3.3.3 Moving Values Between Registers of the Same Size

Moving data between same-size registers can be done in a single-cycle MOVE if the destination register’s index is from
Oh to 7h and the source register index is between Oh and OFh.

move A[0], A[8] ; copy accumulator 8 to accumulator O
move LC[O0], LC[1] ; copy loop counter 1 to loop counter O

If the destination register’s index is greater than 7h or if the source register index is greater than OFh, prefixing is
required.

move A[15], A[O0] ; assembles to: move PFX[2], #00h
; move (A[15]1-80h), A[O0]

3-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

3.3.4 Moving Values Between Registers of Different Sizes

Before covering some transfer scenarios that might arise, a special register must be introduced that is used in many
of these cases. The 16-bit general register (GR) is expressly provided for performing byte singulation of 16-bit words.
The high and low bytes of GR are individually accessible in the GRH and GRL registers, respectively. A read-only GRS
register makes a byte-swapped version of GR accessible, and the GRXL register provides a sign-extended version of
GRL.

3.3.5 8-Bit Destination < Low Byte (16-Bit Source)

The simplest transfer possibility would be loading an 8-bit register with the low byte of a 16-bit register. This transfer
does not require use of GR and requires a prefix only if the destination or source register are outside the single-cycle
write or read regions, 0 to 7h and 0O to OFh, respectively.

move OFFS, LC[O0] ; copy the low byte of LC[0] to the OFFS

; register
move ULDR, @DP[1] ; copy the low byte @DP[1] to the ULDR register
move WDCN, LC[O0] ; assembles to: move PFX[2], #00h

; move (WDCON-80h), LC[O]

3.3.6 8-Bit Destination < High Byte (16-Bit Source)

If, however, we needed to load an 8-bit register with the high byte of a 16-bit source, it would be best to use the GR
register. Transferring the 16-bit source to the GR register adds a single cycle.

move GR, LC[O0] ; move LC[O] to the GR register
move IC, GRH ; copy the high byte into the IC register

3.3.7 16-Bit Destination < Concatenation (8-Bit Source, 8-Bit Source)

Two 8-bit source registers can be concatenated and stored into a 16-bit destination by using the prefix register to hold
the high-order byte for the concatenated transfer. An additional cycle could be required if either source byte register
index is greater than OFh or the 16-bit destination is greater than 07h.

move PFX[0], IC ; load high order source byte IC into PFX
move @++SP, AP ; store @DP[0] the concatenation of IC:AP
; 1l6-bit destination sub-index: dst=08h
; 8-bit source sub-indexes:
; high=10h, low=11lh
move PFX[1], #00h ;
move PFX[3], hig ; PEX=00:high
move dst, low ; dst=high:low

Maxim Integrated 3-5

MAXQ612/MAXQ622 User’s Guide

3.3.8 Low (16-Bit Destination) < 8-Bit Source

To modify only the low byte of a given 16-bit destination, the 16-bit register should be moved into the GR register such
that the high byte can be singulated and the low byte written exclusively. An additional cycle is required if the destina-
tion index is greater than OFh.

move GR, DP[O ; move DP[0] to the GR register
move PFX[0], GRH ; get the high byte of DP[0] wvia GRH
move DP[0], #20h ; store the new DP[0] value

; 1l6-bit destination sub-index: dst=10h
; 8-bit source sub-index: src=11lh

move PFX[1], #00h ;

move GR, dst ; read dst word to the GR register
move PFX[5], GRH ; get the high byte of dst via GRH
move dst, src ; store the new dst wvalue

3.3.9 High (16-Bit Destination) < 8-Bit Source

To modify only the high byte of a given 16-bit destination, the 16-bit register should be moved into the GR register such
that the low byte can be singulated and the high byte can be written exclusively. Additional cycles are required if the
destination index is greater than OFh or if the source index is greater than OFh.

move GR, DP[O ; move DP[0O] to the GR register
move PFX[0], #20h ; get the high byte of DP[0] via GRH
move DP[0], GRL ; store the new DP[0] wvalue

; 16-bit destination sub-index: dst=10h
; 8-bit source sub-index: src=11lh
move PFX[1], #00h ;
move GR, dst ; read dst word to the GR register
move PFX[1], #00h
move PFX[4], src ; get the new src byte
move dst, GRL ; store the new dst value

If the high byte needs to be cleared to 00h, the operation can be shortened by transferring only the GRL byte to the
16-bit destination (example follows):

move GR, DP[O ; move DP[0O] to the GR register
move DP[0], GRL ; store the new DP[0] wvalue, 00h used for high
; byte

3.4 Reading and Writing Register Bits

The MOVE instruction can also be used to directly set or clear any one of the lowest 8 bits of a peripheral register in
modules Oh to 5h or a system register in module 8h. The set or clear operation does not affect the upper byte of a 16-bit
register that is the target of the set or clear operation. If a set or clear instruction is used on a destination register that
does not support this type of operation, the register high byte is written with the prefix data and the low byte is written
with the bit mask (i.e., all zeros with a single one for the set bit operation or all ones with a single zero for the clear bit
operation).

3-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Register bits can be set or cleared individually using the MOVE instruction as follows:
move IGE, #1 ; set IGE (Interrupt Global Enable) bit
move APC.6, #0 ; clear IDS bit (APC.6)

As with other instructions, prefixing is required to select destination registers beyond index 07h. The MOVE instruction
can also be used to transfer any one of the lowest 8 bits from a register source or any active accumulator (Acc) bit to
the carry flag. There is no restriction on the source register module for the “MOVE C, src.bit” instruction.

move C, Acc.7 ; copy Acc.7 to Carry

Prefixing is required to select source registers beyond index 15h.

3.5 Using the Arithmetic and Logic Unit

The MAXQ612/MAXQ622 provides a 16-bit arithmetic and logic unit (ALU) that allows operations to be performed
between the active accumulator and any other register. The default ALU configuration provides 16 accumulator regis-
ters that are 16-bit wide, of which any one can be selected as the active accumulator.

3.5.1 Selecting the Active Accumulator

Any of the 16 accumulator registers A[0] to A[15] can be selected as the active accumulator by setting the low 4 bits
of the accumulator pointer register (AP) to the index of the accumulator register the users wants to select.

move AP, #01lh ; select A[l] as the active accumulator
move AP, #0Fh ; select A[15] as the active accumulator

The current active accumulator can be accessed as the Acc register, which is also the register used as the implicit
destination for all arithmetic and logical operations.

move A[0], #55h ; set A[O0] = 0055 hex
move AP, #00h ; select A[Q0] as active accumulator
move Acc, #55h ; set A[0] = 0055 hex

3.5.2 Enabling Autoincrement and Autodecrement

The accumulator pointer, AP, can be set to automatically increment or decrement after each arithmetic or logical
operation. This is useful for operations involving a number of accumulator registers, such as adding or subtracting two
multibyte integers.

If autoincrement/decrement is enabled, the AP register increments or decrements after any of the following operations:

ADD src

(Add source to active accumulator)

e ADDC src (Add source to active accumulator with carry)

e SUB src (Subtract source from active accumulator)

e SUBB src (Subtract source from active accumulator with borrow)
e AND src (Logical AND active accumulator with source)

e OR src (Logical OR active accumulator with source)

e XOR src (Logical XOR active accumulator with source)

e CPL (Bitwise complement active accumulator)

e NEG (Negate active accumulator)

e SLA (Arithmetic shift left on active accumulator)

e SLA2 (Arithmetic shift left active accumulator 2 bit positions)
e SLA4 (Arithmetic shift left active accumulator 4 bit positions)
e SRA (Arithmetic shift right on active accumulator)

e SRA2 (Arithmetic shift right active accumulator 2 bit positions)

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

e SRA4 Arithmetic shift right active accumulator 4 bit positions)
e RL Rotate active accumulator left)

e RLC Rotate active accumulator left through carry flag)

e RR Rotate active accumulator right)

e RRC Rotate active accumulator right through carry flag)

e SR Logical shift active accumulator right)

e MOVE Acc, src
e MOVE dst, Acc
e MOVE Acc, Acc
e XCHN

e XCH (Exchange active accumulator bytes)

Copy data from source to active accumulator)
Copy data from active accumulator to destination)
Recirculation of active accumulator contents)

(
(
(
(
(
(
(
(
(
(

Exchange nibbles within each byte of active accumulator)

The active accumulator cannot be the source in any instruction where it is also the implicit destination.

There is an additional notation that can be used to refer to the active accumulator for the instruction “MOVE dst, Acc.”
If the instruction is instead written as “MOVE dst, A[AP],” the source value is still the active accumulator, but no AP
autoincrement or autodecrement function takes place, even if this function is enabled. Note that the active accumulator
cannot be the destination for the MOVE dst, A[AP] instruction (i.e., MOVE Acc, A[AP] is prohibited).

So, the following two instructions are equivalent, except that the first instruction triggers autoincrement/decrement (if it
is enabled), while the second one would never do so.

move A[7], Acc
move A[7], A[AP]

The accumulator pointer control register (APC) is used to control the automatic increment/decrement mode as well as
select the range of bits (modulo) in the AP register that are to be incremented or decremented. There are 10 unique
settings for the APC register, as listed in Table 3-1.

Table 3-1. Accumulator Pointer Control Register Settings

APC.2 APC.1 APC.0 APC.6
(MOD2) (MOD1) (MODO) (IDS) APC AUTOINCREMENT/DECREMENT SETTING
0 0 0 0 00h No autoincrement/decrement (default mode)
0 0 1 0 01h Increment bit 0 of AP (modulo 2)
0 0 1 1 41h Decrement bit 0 of AP (modulo 2)
0 1 0 0 02h Increment bits [1:0] of AP (modulo 4)
0 1 0 1 42h Decrement bits [1:0] of AP (modulo 4)
0 1 1 0 03h Increment bits [2:0] of AP (modulo 8)
0 1 1 1 43h Decrement bits [2:0] of AP (modulo 8)
1 0 0 0 04h Increment all 4 bits of AP (modulo 16)
1 0 0 1 44h Decrement all 4 bits of AP (modulo 16)

For the modulo increment or decrement operation, the selected range of bits in AP are incremented or decremented.
However, if these bits roll over or under, they simply wrap around without affecting the remaining bits in the accumulator
pointer. So, the operations can be defined as follows:

e Increment modulo 2: AP = AP[3:1] + ((AP[0O] + 1) mod 2)

[(
e Decrement modulo 2: AP = AP[3:1] + ((AP[O] - 1) mod 2)
e Increment modulo 4: AP = AP[3:2] + ((AP[1:0] + 1) mod 4)
e Decrement modulo 4: AP = AP[3:2] + ((AP[1:0] - 1) mod 4)

3-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

e Increment modulo 8: AP = AP[3] + ((AP[2:0] + 1) mod 8)
e Decrement modulo 8: AP = AP[3] + ((AP[2:0] - 1) mod 8)
e |ncrement modulo 16: AP = (AP + 1) mod 16
e Decrement modulo 16: AP = (AP - 1) mod 16
For this example, assume that all 16 accumulator registers are initially set to zero.
move AP, #02h ; select A[2] as active accumulator
mov APC, #02h ; auto-increment AP[1:0] modulo 4
; AP A[Q] A[1l] A[2] AI[3]
; 02 0000 0000 0000 0000

add #01h ; 03 0000 0000 0001 0000
add #02h ; 00 0000 0000 0001 0002
add #03h ; 01 0003 0000 0001 0002
add #04h ; 02 0003 0004 0001 0002
add #05h ; 03 0003 0004 0006 0002

3.5.3 ALU Operations Using the Active Accumulator and a Source

The following arithmetic and logical operations can use any register or immediate value as a source. The active accu-
mulator, Acc, is always used as the second operand and the implicit destination. Also, Acc cannot be used as the
source for any of these operations.

add Al4] ; Acc = Acc + A[4]

addc #32h ; Acc = Acc + 0032h + Carry

sub A[15] ; Acc = Acc - A[l5]

subb A[l] ; Acc = Acc - A[l] - Carry

cmp #00h ; If (Acc == 0000h), set Equals flag
and A[0] ; Acc = Acc AND A[O0]

or #55h ; Acc = Acc OR #0055h

XOr All] ; Acc = Acc XOR A[1l]

3.5.4 ALU Operations Using Only the Active Accumulator

The following arithmetic and logical operations operate only on the active accumulator.

cpl ; Acc = NOT Acc

neg ; Acc = (NOT Acc) + 1

rl ; Rotate accumulator left (not using Carry)

rlc ; Rotate accumulator left through Carry

rr ; Rotate accumulator right (not using Carry)
rrc ; Rotate accumulator right through Carry

sla ; Shift accumulator left arithmetically once
sla2 ; Shift accumulator left arithmetically twice
sla4 ; Shift accumulator left arithmetically 4 times
sr ; Shift accumulator right, set Carry to Acc.O,

; set Acc.l5 to zero

Maxim Integrated 3-9

MAXQ612/MAXQ622 User’s Guide

sra
sra?2
srad
xchn

xch

’

’

Shift accumulator
Shift accumulator
Shift accumulator
Swap low and high
Swap low byte and

right arithmetically once
right arithmetically twice
right arithmetically 4 times
nibbles of each Acc byte
high byte of Acc

3.5.5 ALU Bit Operations Using Only the Active Accumulator

The following operations operate on single bits of the current active accumulator in conjunction with the carry flag. Any
of these operations can use an Acc bit from 0 to 7.

move
move
and
or

XOor

C, Acc.0
Acc.5, C
Acc.3
Acc.O0
Acc.1

’
’
’
’

’

copy bit 0 of accumulator to Carry

copy Carry to bit
Acc.3 = Acc.3 AND

5 of accumulator

Carry

Acc.0 = Acc.0 OR Carry
Acc.l = Acc.l OR Carry

None of the above bit operations cause the autoincrement, autodecrement, or modulo operations defined by the accu-
mulator pointer control (APC) register.

3.5.6 Example: Adding Two 4-Byte Numbers Using Autoincrement
First number - 12345678h

move

move

move

move

move

add
addc

A[O],
A[ll,

Alz2],
A[3],

APC,

Al2]
A[3]

#5678h
#1234h

#0AAAAQ
#0AAAQ

#81h

’

’

’

I

’

Second number - O0AAAAAAAh

Active Acc = A[O0],

A[O]

increment low bit = mod 2

5678h + AAAAh = 0122h + Carry

A[l] = 1234h + AAAh + 1 = 1CDFh
12345678h + OAAAAAAAh = 1CDF0122h

3.6 Processor Status Flag Operations
The processor status flag (PSF) register contains four flags that are used to indicate and store the results of arithmetic

and logical operations as well as control program branching.

3.6.1 Sign Flag

The sign flag (PSF.6) reflects the current state of the high bit of the active accumulator, Acc.15. If signed arithmetic is
being used, this flag indicates whether the value in the accumulator is positive or negative.

Because the sign flag is a dynamic reflection of the high bit of the active accumulator, any instruction that changes the
value in the active accumulator can potentially change the value of the sign flag. Also, any instruction that changes
which accumulator is the active one (including AP autoincrement/decrement) can also change the sign flag.

The following operation uses the sign flag:
e JUMP S, src

(jump if sign flag is set)

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

3.6.2 Zero Flag

The zero flag (PSF.7) is a dynamic flag that reflects the current state of the active accumulator Acc. If all bits in the
active accumulator are zero, the zero flag equals 1. Otherwise, it equals 0.

Because the zero flag is a dynamic reflection of (Acc = 0), any instruction that changes the value in the active accu-
mulator can potentially change the value of the zero flag. Any instruction that changes which accumulator is the active
one (including AP autoincrement/decrement) can also change the zero flag.

The following operations use the zero flag:
e JUMP Z, src (jump if zero flag is set)
e JUMP NZ, src (jump if zero flag is cleared)

3.6.3 Equals Flag

The equals flag (PSF.0) is a static flag set by the CMP instruction. When the source given to the CMP instruction is
equal to the active accumulator, the equals flag is set to 1. When the source is different from the active accumulator,
the equals flag is cleared to 0.

The following instructions use the value of the equals flag. Note that the ‘src’ for the JUMP E/NE instructions must be
immediate.

e JUMP E, src (jump if equals flag is set)
e JUMP NE, src (jump if equals flag is cleared)
In addition to the CMP instruction, any instruction using PSF as the destination can alter the equals flag.

3.6.4 Carry Flag

The carry flag (PSF.1) is a static flag indicating that a carry or borrow bit resulted from the last ADD/ADDC or SUB/
SUBB operation. Unlike the other status flags, it can be set or cleared explicitly, and is also used as a generic bit
operand by many other instructions.

The following instructions can alter the carry flag:
e ADD src
e ADDC src
e SUB src
e SUBB src
e SLA, SLA2, SLA4 Arithmetic shift left active accumulator)

(Add source to active accumulator)
(
(
(
(
e SRA, SRA2, SRA4 (Arithmetic shift right active accumulator)
(
(
(
(
(

Add source and carry to active accumulator)
Subtract source from active accumulator)
Subtract source and carry from active accumulator)

e SR

e RLC/RRC

e MOVE C, Acc.
e MOVE C, #i

e CPLC

e MOVE C, src. (Copy bit addressable register bit to carry)

Shift active accumulator right)

Rotate active accumulator left/right through carry)
Set Carry to selected active accumulator bit)
Explicitly set, i = 1, or clear, i = 0, the carry flag)
Complement carry)

e any instruction using PSF as the destination
The following instructions use the value of the carry flag:

e ADDC src (Add source and carry to active accumulator)

e SUBB src (Subtract source and carry from active accumulator)
e RLC/RRC (Rotate active accumulator left/right through carry)

e CPLC (Complement carry)

Maxim Integrated 3-11

MAXQ612/MAXQ622 User’s Guide

e MOVE Acc., C
e AND Acc.

Set selected active accumulator bit to carry)
Carry = carry AND selected active accumulator bit)

e OR Acc. Carry = carry OR selected active accumulator bit)
e XOR Acc. Carry = carry XOR selected active accumulator bit)
e JUMP C, src Jump if carry flag is set)

o~ o~ o~~~ —~

e JUMP NC, src

3.6.5 Overflow Flag

The overflow flag (PSF.2) is a static flag indicating that the carry or borrow bit (carry status flag) resulting from the last
ADD/ADDC or SUB/SUBB operation, but did not match the carry or borrow of the high order bit of the active accumula-
tor. The overflow flag is useful when performing signed arithmetic operations.

Jump if carry flag is cleared)

The following instructions can alter the overflow flag:

e ADD src (Add source to active accumulator)

e ADDC src (Add source and carry to active accumulator)

e SUB src (Subtract source from active accumulator)

e SUBB src (Subtract source and carry from active accumulator)

3.7 Controlling Program Flow

The MAXQ612/MAXQ622 provides several options to control program flow and branching. Jumps can be uncondition-
al, conditional, relative, or absolute. Subroutine calls store the return address on the soft stack for later return. Built-in
counters and address registers are provided to control looping operations.

3.7.1 Obtaining the Next Execution Address

The address of the next instruction to be executed can be read at any time by reading the IP register. This can be
particularly useful for initializing loops, as shown in the following sections. Note that the value returned is actually the
address of the current instruction plus 1, so this is the address of the next instruction executed as long as the current
instruction does not cause a jump.

3.7.2 Unconditional jumps

An unconditional jump can be relative (IP +127/-128 words) or absolute (to anywhere in program space). Relative
jumps must use an 8-bit immediate operand, such as:

Labell: ; must be within +127/-128 words of the JUMP

jump Labell
Absolute jumps can use either a 16-bit immediate operand, a 16-bit register, or an 8-bit register.
jump LongJump ; assembles to: move PFX[0], #high (LongJump)
; Jjump #low (LongJump)
jump DP[O0] ; absolute jump to the address in DP[O0]

If an 8-bit register is used as the jump destination, the prefix value is used as the high byte of the address and the
register is used as the low byte.

3-12 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

3.7.3 Conditional Jumps

Conditional jumps transfer program execution based on the value of one of the status flags (C, E, Z, S). Except where
noted for JUMP E and JUMP NE, the absolute and relative operands allowed are the same as for the unconditional
JUMP command.

Jjump c, Labell ; jump to Labell if Carry is set
jump nc, LongJump ; jump to LongJump if Carry is not set
Jump z, LCI[O] ; jump to 1l6-bit register destination if

; Zero 1s set

Jjump nz, Labell ; jump to Labell if Zero is not set (Acc<>0)
jump s, A[2] ; Jump to A[2] if Sign flag is set

Jjump e, Labell ; jump to Labell if Equal is set

jump ne, Labell ; jump to Labell if Equal is cleared

JUMP E and JUMP NE can only use immediate destinations.

3.7.4 Calling Subroutines

The CALL instruction works the same as the unconditional JUMP, except that the next execution address is pushed on
the stack before the jump is made. The RET instruction is used to return from a normal call, and RETI is used to return
from an interrupt handler routine.

call Labell ; 1f Labell is relative,

; assembles to: call #immediate

call LongCall ; assembles to: move PFX[0], #high(LongCall)
; call #low(LongCall)
call LC[O0] ; call to address in LC[O0]
LongCall:
ret ; return from subroutine

3.7.5 Loop Operations

Looping over a section of code can, of course, be performed by using the conditional jump instructions. However,
there is built-in functionality in the form of the “DJNZ LC[n], src” instruction to support faster, more compact looping
code with separate loop counters. The 16-bit registers LC[0] and LC[1] are used to store these loop counts. The “DJNZ
LC[n], src” instruction automatically decrements the associated loop counter register and jumps to the loop address
specified by src if the loop counter has not reached 0.

To initialize a loop, set the LC[n] register to the desired count before entering the loop’s main body.

The desired loop address should be supplied in the src operand of the “DJNZ LC[n], src” instruction. When the sup-
plied loop address is relative (+127/-128 words) to the DJNZ LC[n] instruction, as is typically the case, the assembler
automatically calculates the relative offset and inserts this immediate value in the object code.

move LC[1], #10h ; loop 16 times

LoopTop: ; loop addr relative to djnz LC[n],src
call LoopSub
djnz LC[1], LoopTop ; decrement LC[1l] and jump if nonzero

Maxim Integrated 3-13

MAXQ612/MAXQ622 User’s Guide

When the supplied loop address is outside the relative jump range, the prefix register (PFX[0]) is used to supply the
high byte of the loop address as required.

move LC[1], #10h ; loop 16 times
LoopTop: ; loop addr not relative to dijnz LC[n],src
call LoopSub

djnz LC[1l], LoopTop ; decrement LC[1l] and Jjump if nonzero
; assembles to: move PFX[0], #high (LoopTop)
; djnz LC[1l], #low(LoopTop)

If loop execution speed is critical and a relative jump cannot be used, one might consider preloading an internal 16-bit
register with the src loop address for the “DJNZ LC[n], src” loop. This ensures that the prefix register does not need to
supply the loop address and always yields the fastest execution of the DJNZ instruction.

move LC[0], #LoopTop ; using LC[0] as address holding register
; assembles to: move PFX[0], #high (LoopTop)
; move LC[O0], #low(LoopTop)

move LC[1], #10h ; loop 16 times

LoopTop: ; loop address not relative to djnz LC[n],src

call LoopSub

djnz LC[1l], LCI[O] ; decrement LC[1l] and Jjump if nonzero

If opting to preload the loop address to an internal 16-bit register, the most time and code efficient means is by per-
forming the load in the instruction just prior to the top of the loop:

move LC[1l], #10h ; Set loop counter to 16
move LC[O0], IP ; Set loop address to the next address
LoopTop: ; loop addr not relative to djnz LC[n],src

3.7.6 Conditional Returns

Similar to the conditional jumps, the MAXQ612/MAXQ622 microcontrollers also support a set of conditional return
operations. Based upon the value of one of the status flags, the CPU can conditionally pop the stack and begin execu-
tion at the address popped from the stack. If the condition is not true, the conditional return instruction does not pop
the stack and does not change the instruction pointer. The following conditional return operations are supported:

RET C ; if C=1, a RET is executed
RET NC ; if C=0, a RET is executed
RET Z ; if Z=1 (Acc=00h), a RET is executed
RET NZ ; 1f Z=0 (Acc<>00h), a RET is executed
RET S ; 1f S=1, a RET 1is executed

3-14 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

3.7.7 Conditional Return from Interrupt

Similar to the conditional returns, the MAXQ612/MAXQ622 microcontrollers also support a set of conditional return
from interrupt operation. Based upon the value of one of the status flags, the CPU can conditionally pop the stack, set
the IPS bits to 11b, and begin execution at the address popped from the stack. If the condition is not true, the condi-
tional return from interrupt instruction leaves the IPS bits unchanged, does not pop the stack and does not change the
instruction pointer. The following conditional return from interrupt operations are supported:

RETI C ; 1f C=1, a RETI is executed
RETI NC ; 1if C=0, a RETI is executed
RETI Z ; if Z=1 (Acc=00h), a RETI is executed
RETI NZ ; if Z=0 (Acc<>00h), a RETI is executed
RETI S ; if S=1, a RETI is executed

3.8 Accessing the Stack

The soft stack is used automatically by the CALL, RET, and RETI instructions, but it can also be used explicitly to store
and retrieve data. All values stored on the stack are 16 bits wide.

The PUSH instruction increases the stack depth (by decrementing the stack pointer SP) and then stores a value on the
stack. When pushing a 16-bit value onto the stack, the entire value is stored. However, when pushing an 8-bit value
onto the stack, the high byte stored on the stack comes from the prefix register. The @++SP stack access mnemonic
is the associated destination specifier that generates this push behavior, thus the following two instruction sequences
are equivalent:

move PFX[0], IC
push PSF ; stored on stack: IC:PSF
move PFX[0], IC
move @++SP, PSF ; stored on stack: IC:PSF

The POP instruction removes a value from the stack and then decreases the stack depth (by incrementing the stack
pointer). The @SP-- stack access mnemonic is the associated source specifier that generates this behavior, thus, the
following two instructions are equivalent:

pop PSF
move PSF, @SP--

The POPI instruction is equivalent to the POP instruction, but additionally sets the IPS bits to 11b’. Thus, the following
two instructions would be equivalent:

popi IP
reti

The @SP-- mnemonic can be used by the MAXQ612/MAXQ622 so that stack values can be used directly by ALU
operations (e.g., ADD src, XOR src, etc.) without requiring that the value be first popped into an intermediate register
or accumulator.

add @spP-- ; sum the last three words pushed onto the
add @spP-- ; with Acc, disregarding overflow
add @sp--

The stack pointer SP can be set explicitly, however, only the least significant bits needed to represent the stack depth
are used. The MAXQ612/MAXQ622 have a stack depth constrained only by the size of the SRAM, and the lowest 10
bits of SP are used. Setting SP to 03FOh returns it to its reset state.

On the MAXQ612/MAXQ622, the stack naturally grows downward from the top of the SRAM. A push operation
(move @++SP, ...) increases the depth of the stack, but decreases the numeric value in the stack pointer. A pop
(move ..., @SP--) decreases the depth of the stack, but decreases the numeric value in the stack pointer.

Maxim Integrated 3-15

MAXQ612/MAXQ622 User’s Guide

Because the stack is 16 bits wide, it is possible to store two 8-bit register values on it in a single location. This allows
more efficient use of the stack if it is being used to save and restore registers at the start and end of a subroutine.

SubOne:
move PFX[0], IC

push PSF ; Store IC:PSF on the stack
pop GR ; 1l6-bit register

move IC, GRH ; IC was stored as high byte
move PSF, GRL ; PSF was stored as low byte
ret

3.9 Accessing Data Memory

Data memory is accessed through the data pointer registers DP[0] and DP[1] or the frame pointer BP[OFFS]. Once
one of these registers is set to a location in data memory, that location can be read or written as follows, using the
mnemonic @DP[0], @DP[1], or @BP[OFFS] as a source or destination.

move DP[0], #0000h ; set pointer to location 0000h
move A[Q], @DP[O] ; read from data memory
move @DP[0], #55h ; write to data memory

Either of the data pointers can be postincremented or postdecremented following any read, or can be preincremented
or predecremented before any write access by using the following syntax.

move A[0], @DP[O]++ ; increment DP[0] after read
move @++DP[0], A[1l] ; increment DP[0] before write
move A[5], @DP[1]-- ; decrement DP[1] after read
move @--DP[1], #00h ; decrement DP[1] before write

The frame pointer (BP[OFFS]) is actually composed of a base pointer (BP) and an offset from the base pointer (OFFS).
For the frame pointer, the offset register (OFFS) is the target of any increment or decrement operation. The base pointer
(BP) is unaffected by increment and decrement operations on the frame pointer. Similar to DP[n], the OFFS register
can be preincremented/decremented when writing to data memory, and can be postincremented/decremented when
reading from data memory.

move A[Q], @BP[OFFS--] ; decrement OFFS after read
move @BP[++0FFS], A[1l] ; increment OFFS before write

3.9.1 Word/Byte Access Mode

All three data pointers support both byte and word access to data memory. Each data pointer has its own word/byte
select (WBSn) special function register bit to control the access mode associated with the data pointer. These three
register bits (WBS2, which controls BP[OFFS] access; WBS1, which controls DP[1] access; and WBSO, which controls
DP[0] access) reside in the data pointer control register (DPC). When a given WBSn control bit is configured to 1, the
associated pointer is operated in the word-access mode. When the WBSn bit is configured to 0, the pointer is operated
in the byte-access mode. Word access mode allows addressing of 64KWords of memory, while byte-access mode
allows addressing of 64KB of memory.

Each data pointer and frame pointer base (BP) register is actually implemented internally as a 17-bit register (e.g.,
16:0). The frame pointer offset register (OFFS) is implemented internally as a 9-bit register (e.g., 8:0). The WBSn bit
for the respective pointer controls whether the highest 16 bits (16:1) of the pointer are in use, as is the case for word
mode (WBSn = 1) or whether the lowest 16 bits (15:0) are in use, as is the case for byte mode (WBSn = 0). The WBS2
bit also controls whether the high 8 bits (8:1) of the offset register are in use (WBS2 = 1) or the low 8 bits (7:0) are
used (WBS2 = 0). All data pointer register reads, writes, autoincrement/decrement operations occur with respect to

3-16 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

the current WBSn selection. Data pointer increment and decrement operations only affect those bits specific to the
current word- or byte-addressing mode (e.g., incrementing a byte-mode data pointer from FFFFh does not carry into
the internal high-order bit that is used only for word-mode data-pointer access). Switching from byte- to word-access
mode or vice versa does not alter the data pointer contents. Therefore, it is important to maintain the consistency of
data-pointer address value within the given access mode.

move DPC, #0 ; DP[0] in byte mode
move DP[0], #2345h ; DP[0]=2345h (byte mode)
; internal bits 15:0 loaded
move DPC, #4 ; DP[0] in word mode
move DP[0], #2345h ; DP[0]=2345h (word mode)
; internal bits 16:1 loaded
move DPC, #0 ; DP[0] in byte mode
move GR, DP[O0] ; GR = 468Bh (looking at bits 15:0)

3.9.2 Data Pointer Activation

The three pointers share a single read/write port on the data memory and, thus, the user must knowingly activate
a desired pointer before using it for data memory read operations. This can be done explicitly using the data-
pointer select bits (SDPS[1:]0; DPC[1:0]) or implicitly by writing to the DP[n], BP, or OFFS register, as shown below.
Additionally, any write operation sets the SDPS bits, thereby activating the write pointer as the active source pointer.

move DPC, #2 ; (explicit) selection of FP as the pointer

move DP[O0], src ; (implicit) selection of DP[0]; set SDPS1:0=00Db
move DP[1], DP[1] ; (implicit) selection of DP[1]; set SDPS1:0=01b
move OFFS, src ; (implicit) selection of FP; set SDPS1=1

Once the pointer selection has been made, it remains in effect until:

e The source data-pointer select bits are changed through the explicit or implicit methods described above (i.e.,
another data pointer is selected for use)

e The memory to which the active source data pointer is addressing is enabled for code fetching using the instruction
pointer, or

e A data-memory write operation sets the SDPS and activates the pointer used for writing as the active source pointer.

move DP[1], DP[1] ; select DP[1l] as the active pointer
move dst, @DP[1] ; read from pointer
move @DP[1], src ; write using a data pointer

; DP[0] is needed
move DP[0], DP[O] ; select DP[0] as the active pointer

To simplify data pointer increment/decrement operations without disturbing register data, a virtual NUL destination has
been assigned to system module 6, subindex 7 to serve as a “bit bucket.” Data-pointer increment/decrement opera-
tions can be done as follows without altering the contents of any other register:

move NUL, @DP[O0]++ ; increment DP[O0]

move NUL, @DP[0]-- ; decrement DP[0]
The following data-pointer-related instructions are invalid:

move @++DP[0], Q@DP[O]++

move @++DP[1], @DP[1]++

move @BP[++0ffs], @BP[Offs++]

move @--DP[0], @DP[O]--

Maxim Integrated 3-17

MAXQ612/MAXQ622 User’s Guide

move @--DP[1], @DP[1]--
move @BP[--0Offs], @BP[Offs--]
move @++DP[0], @DP[0]--
move @++DP[1], @DP[1]--
move (@BP[++0ffs], @BP[Offs--]
move @--DP[0], @DP[O]++
move @--DP[1], @DP[1]++

move @BP[--Offs], @BP[Offs++]
move @DP[0], Q@DP[O]++

move @DP[1], @DP[1]++

move @BP[Offs], @BP[Offs++]
move @DP[0], @DP[O0]--

move @DP[1], Q@DP[1]--

move @BP[Offs], @BP[Offs--]
move DP[0], @DP[O]++

move DP[0], @DP[O]--

move DP[1], @DP[1]++

move DP[1], @DP[1]--

move Offs, @BP[Offs--]
move Offs, @BP[Offs++]

3.10 Using the Watchdog Timer

The watchdog timer is a user-programmable clock counter that can serve as a time-base generator, an event timer,
or a system supervisor. As shown in Figure 3-1, the main system clock drives the timer, which is supplied to a series
of dividers. If the watchdog interrupt and the watchdog reset are disabled (EWDI = 0 and EWT = 0), the watchdog
timer and its input clock are disabled. Whenever the watchdog timer is disabled, the watchdog interval timer (through
the WDJ[1:0] bits) and the 512-clock reset counter are reset if either the interrupt or reset function is enabled. When
the watchdog timer is initially enabled, there is a one- to three-clock-cycle delay before it starts. The divider output is
selectable and determines the interval between timeouts. When the timeout is reached, an interrupt flag is set, and,
if enabled, an interrupt occurs. A watchdog-reset function is also provided in addition to the watchdog interrupt. The
reset and interrupt are completely discrete functions that can be acknowledged or ignored, together or separately, for
various applications.

The watchdog timer reset function works as follows: After initializing the correct timeout interval (discussed below),
software can enable, if desired, the reset function by setting the enable watchdog timer reset (EWT = WDCN.1) bit.
Setting the EWT bit resets/restarts the watchdog timer if the watchdog interrupt is not already enabled. At any time
prior to reaching its user-selected terminal value, software can set the reset watchdog timer (RWT = WDCN.0) bit. If

Table 3-2. Watchdog Timer Register Control Bits

BIT NAME DESCRIPTION REGISTER LOCATION BIT POSITION
EWDI Enable Watchdog Timer Interrupt WDCN.6
WD[1:0] Watchdog Interval Control Bits WDCN[5:4]
WDIF Watchdog Itherrupt Flag WDCN (OFh. 8h) WDCN.3
WTRF Watchdog Timer Reset Flag WDCN.2
EWT Enable Watchdog Timer Reset WDCN.1
RWT Reset Watchdog Timer WDCN.0

3-18 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

HFXIN RWT (WDCN.0)
(RESET WATCHDOG)
-
HEXOUT \ \/ \ \
SYSTEM CLOCK DIVIDE BY DIVIDE BY DIVIDE BY DIVIDE BY
MODE 215 2 23 3 _‘
215 218 221 924
WD1 —— TIMEOUT TIMEOUT
WD0 ——| SELECTOR
(W‘g’gﬁ) WATCHDOG
i INTERRUPT
EWDI (WDCN.6)
MAXQ612 (ENABLE WATCHDOG INTERRUPT)
MAXQ622
512 SYSCLK
DELAY :)—0— RESET
EWT (WDCN.1) WTRF
(ENABLE WATCHDOG TIMER RESET) (WDCN.2)

Figure 3-1. Watchdog Timer Block Diagram

the watchdog timer is reset (RWT bit written to 1) before the timeout period expires, the timer starts over. Hardware
automatically clears RWT after software sets it.

If the timeout is reached without RWT being set, hardware generates a watchdog interrupt if the interrupt source has
been enabled. If no further action is taken to prevent a watchdog reset, in the 512 system clock cycles following the
timeout, hardware can reset the CPU if EWT = 1. When the reset occurs, the watchdog timer reset flag (WTRF =
WDCN.2) is automatically set to indicate the cause of the reset, however, software must clear this bit manually.

The watchdog interrupt is also available for applications that do not need a true watchdog reset, but simply a very
long timer. The interrupt is enabled using the enable watchdog timer interrupt (EWDI = WDCN.6) bit. When the timeout
occurs, the watchdog timer sets the WDIF bit (WDCN.3), and an interrupt occurs if the interrupt global enable (IGE
= IC.0) is set and either 1) the interrupt priority status (IPS[1:0]) bits are set to 11b (idle), or 2) the watchdog timer
interrupt is configured to higher priority than an interrupt currently being serviced. Note that WDIF is set 512 system
clocks before a potential watchdog reset. The watchdog interrupt flag indicates the source of the interrupt, and must
be cleared by software.

Using the watchdog interrupt during software development can allow the user to select ideal watchdog reset locations.
Code is first developed without enabling the watchdog interrupt or reset functions. Once the program is complete,
the watchdog interrupt function is enabled to identify the required locations in code to set the RWT (WDCN.0) bit.
Incrementally adding instructions to reset the watchdog timer prior to each address location (identified by the watch-
dog interrupt) allows the code to eventually run without receiving a watchdog interrupt. At this point the watchdog timer
reset can be enabled without the potential of generating unwanted resets. At the same time the watchdog interrupt can
also be disabled. Proper use of the watchdog interrupt with the watchdog reset allows interrupt software to survey the
system for errant conditions.

When using the watchdog timer as a system monitor, the watchdog reset function should be used. If the interrupt func-
tion were solely used, the purpose of the watchdog would be defeated. For example, assume the system is execut-
ing errant code prior to the watchdog interrupt. The interrupt would temporarily force the system back into control by
vectoring the CPU to the interrupt service routine. Restarting the watchdog and exiting by an RETI or RET would return

Maxim Integrated 3-19

MAXQ612/MAXQ622 User’s Guide

the processor to the lost position prior to the interrupt. By using the watchdog reset function, the processor is restarted
from the beginning of the program and therefore placed into a known state.

The watchdog timeout selection is made using bits WD1 (WDCN.5) and WDO (WDCN.4). The watchdog has four time-
out selections based on the system clock frequency as shown Figure 3-1. Because the timeout is a function of the
system clock, the actual timeout interval is dependent on both the crystal frequency and the system clock mode selec-
tion. Table 3-3 shows a summary of the selectable watchdog timeout intervals for the various system clock modes and
WD[1:0] control bit settings. If enabled, the watchdog reset is always scheduled to occur 512 system clocks following
the timeout. Watchdog-generated resets last for eight system clock cycles.

Table 3-3. Watchdog Timeout Period Selection

SYSTEM CLOCK

SYSTEM CLOCK SELECT BITS

WATCHDOG TIMEOUT

(IN NUMBER OF OSCILLATOR CLOCKS)

MODE PMME CD1 CDO WDJ[1:0] = 00b | WD[1:0] =01b | WD[1:0] =10b | WD[1:0] = 11b
Divide by 1 (default) 0 0 0 215 218 221 224
Divide by 2 0 0 1 216 219 022 225
Divide by 4 0 1 0 217 220 223 226
Divide by 8 0 1 1 218 221 224 227
Power-Man men
Mode (Di?/ic?g iy zste) ! X X 223 220 229 2%2

3-20

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 4: SYSTEM REGISTER DESCRIPTION

This section contains the following information:

4.1 System Register Descriptionso 4-5

Table 4-1. System Register Map 4-2
Table 4-2. System Register Bit Map 4-3
Table 4-3. System Register Bit Reset Values 4-4

Maxim Integrated 4-1

MAXQ612/MAXQ622 User’s Guide

SECTION 4: SYSTEM REGISTER DESCRIPTION

Registers currently defined in the MAXQ612/MAXQ622 system register map are described in Tables 4-1, 4-2, and 4-3.

Table 4-1. System Register Map

MODULE SPECIFIER
REGISTER
INDEX WITHIN | 06h | 07h 08h 09h 0Ah 0Bh 0Ch 0Dh OEh OFh
MODULE

00h — — AP A[0] Acc PFX[0] IP — — —
01h — — APC A[1] A[AP] | PFX[] — SP — —
02h — — PRIV A[2] — PFX[2] — v — —

03h — — PRIVTO A[3] — PFX[3] — — OFFS DP[0]
04h — — PSF A[4] — PFX[4] — — DPC —
05h — — IC A[5] — PFX[5] — — GR —
06h — — PRIVT1 A[6] — PFX[6] — LC[0] GRL —

07h — — — A[7] — PFX[7] — LC[1] BP DP[1]
08h — — sC A[8] — — — — GRS —
09h — — IPRO A[9] — — — — GRH —
0Ah — — IPR1 A[10] — — — — GRXL —
0Bh — — PRIVF A[11] — — — — FP cp
0Ch — — ULDR A[12] — — — — — —
0Dh — — UAPP A[13] — — — — — —
OEh — — CKCN A[14] — — — — — —
OFh — — WDCN A[15] — — — — — —
10h — — — — — — — — — —
11h — — — — — — — — — —
12h — — — — — — — — — —
13h — — — — — — — — — —
14h — — — — — — — — — —
15h — — — — — — — — — —
16h — — — — — — — — — —
17h — — — — — — — — — —
18h — — — — — — — — — —
19h — — — — — — — — — —
1Ah — — — — — — — — — —
1Bh — — — — — — — — — —
1Ch — — — — — — — — — —
1Dh — — — — — — — — — —
1Eh — — — — — — — — — —
1Fh — — — — — — — — — —

Note 1: Register names that appear in italics indicate read-only registers. Register names that appear in bold indicate 16-bit registers.

Note 2: Registers with indexes 8h and higher can only be accessed as destinations by using the prefix register. Similarly, registers
with indexes 10h and higher can only be accessed as sources through the prefix register.

Note 3: All undefined or unused indexes (indicated by a “—”) are either used for op-code implementation or reserved for future
expansion, and should not be accessed explicitly. Accessing these locations as registers can have deterministic effects, but the
effects are probably not the intended ones.

4-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Table 4-2. System Register Bit Map

Maxim Integrated

REG el
15 [14 | 13 [12 | 11 [10 | 9 8 7 6 5 4 3] 2] 1] o
AP — | -] =] = AP (4 bits)
APC ClR| DS | — | — | — [mobp2|moDb1[moDo
PRIV — | — [— | — [psyw|PsyRr|[PuLwW|PULR
PRIVTO — | -] =1 = PRIVTO (4 bits)
PSF z | s | — |apri]|GPro] ov | C E
IC — | — [=] —=1wst]wpso| — [IGE
PRIVT1 — | [=1 = PRIVT1 (4 bits)
sc | — | — | —] — | — [wmpPe|pwiL|Pwis| TAP | — [cDA1|cDA0| UPA | ROD | PWL | —
IPRO | IVP7[1:0] | IvPe[1:0] | IvP5[1:0] | IVP4[1:0] | IVP3[1:0] [IVP2[1:0] IVP1[1:0] IVPO[1:0]
IPR1 | IVP15[1:0] | IVP14[1:0] | IVP13[1:0] | IVP12[1:0] | IVP11[1:0] | IVP10[1:0] | IVP9[1:0] IVP8[1:0]
PRIVF PSYWF| PSYRF [PUWF|PURF| — | — | — | —
UDR| — | — | — | = [= | = | = ULDR (9 bits)
uap [— | — | — [= = —=1-— UAPP (9 bits)
CKCN — | — | — [stor[sws [pPvme] cD1 | cDo
WDCN POR | EWDI| wD1 | wDo | WDIF [WTRF | EWT | RWT
A[0:15] A[0:15] (16 bits)
PFX[07] PFX[0:7] (16 bits)
P IP (16 bits)
sp | — | — [=] =] =1 —] SP (10 bits)
IV IV (16 bits)
LC[0] LCI[O0] (16 bits)
LC[1] LC[1] (16 bits)
OFFS OFFS (8 bits)
opc | — | — | — | —] — [=] —1—1 — [cwss| — |wss2|wBs1t|wBso|SDPSt|SDPsO
GR GR (16 bits)
GRL | | | | | | | | GRL (8 bits)
BP BP (16 bits)
GRS GRS (16 bits) = (GRL, GRH)
GRH | | | | | | | | GRH (8 bits)
GRXL GRXL (16 bits) = (GRL.7, 8 bits):(GRL, 8 bits)
FP FP = BP[OFFS] (16 bits)
DP[0] DP[0] (16 bits)
DP[1] DP[1] (16 bits)
cp CP (16 bits)
4-3

MAXQ612/MAXQ622 User’s Guide

Table 4-3. System Register Bit Reset Values

BIT

10

11

12

13

14

15

0
0

0
0

0
0

0

REG

AP

APC
PRIV
PRIVTO

PSF
ic
PRIVT1

SC

IPRO
IPR1
PRIVF
ULDR
UAPP

CKCN
WDCN

A[0:15]

PFX[07]

IP
SP

%
LC[0]

LC[1]

OFFS

DPC
GR

GRL
BP

GRS
GRH
GRXL

FP
DP[O]

DP[1]

CP
Note 1: Bits marked as “s” are static across some or all resets.

Note 2: ULDR/UAPP reset values shown are for parts with 64KB/512B per page of program space. The reset value is the first

page address past the available program memory on all resets.

Maxim Integrated

4-4

MAXQ612/MAXQ622 User’s Guide

4.1 System Register Descriptions

The addresses for each register are given in the format module[index], where module is the module specifier from 08h
to OFh and index is the register subindex from 00h to OFh.

REGISTER

DESCRIPTION

AP, 08h[00h]
Initialization

Access
AP.3 to AP.O

AP.7 to AP.4

Accumulator Pointer Register (8 bits)

This register is cleared to 00h on all forms of reset.

Unrestricted direct read/write access.

Active Accumulator Select. These bits select which of the 16 accumulator registers are
used for arithmetic and logical operations. If the APC register has been set to perform
automatic increment/decrement of the active accumulator, this setting is automatically
changed after each arithmetic or logical operation. If a ‘MOVE AP, Acc’ instruction is exe-
cuted, any enabled AP inc/dec/modulo control takes precedence over the transfer of Acc
data into AP.

Reserved. All reads return 0.

APC, 08h[01h]
Initialization

Access
APC.2 to APC.0

(MOD2 to MODO)

APC.5 to APC.3
APC.6 (IDS)

APC.7 (CLR)

Accumulator Pointer Control Register (8 bits)

This register is cleared to 00h on all forms of reset.

Unrestricted direct read/write access.

Accumulator Pointer Auto Increment/Decrement Modulus. If these bits are set to a non-
zero value, the accumulator pointer (AP[3:0]) is automatically incremented or decremented
following each arithmetic or logical operation.

The mode for the autoincrement/decrement is determined as follows:

MODI[2:0] AUTOINCREMENT/DECREMENT MODE
000 No autoincrement/decrement (default)
001 Increment/decrement AP[0] modulo 2
010 Increment/decrement AP[1:0] modulo 4
011 Increment/decrement AP[2:0] modulo 8
100 Increment/decrement AP modulo 16
101 to 111 Reserved (modulo 16 when set)

Reserved. All reads return 0.

Increment/Decrement Select. If this bit is set to 0, the accumulator pointer, AP, is incre-
mented following each arithmetic or logical operation according to MOD[2:0].

If this bit is set to 1, the accumulator pointer, AP, is decremented following each arithmetic
or logical operation according to MOD[2:0].

If MOD[2:0] is set to 000, the setting of this bit is ignored.

AP Clear. Writing this bit to 1 clears the accumulator pointer, AP, to zero. If a ‘MOVE APC,
Acc’ instruction is executed requesting that AP be set to zero (i.e., CLR = 1), the AP clear
function overrides any enabled inc/dec/modulo control. All reads from this bit return 0.

Maxim Integrated

4-5

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

PRIV, 08h[02h]
Initialization

Access

PRIV.0 (PULR)

PRIV.1 (PULW)

PRIV.2 (PSYR)

PRIV.3 (PSYW)

PRIV.7 to PRIV.4

Privilege Register (8 bits)

This register is reset to 00001111b on all resets.

Bits 3 and 2 are cleared by hardware when the current IP is not in utility ROM code, nor
system code.

Bits 1 and 0 are cleared by hardware when the current IP is not in utility ROM, system, nor
user loader code.

Bits 3 and 2 can only be modified by utility ROM code, or system code. Bits 1 and 0 can
only be modified by utility ROM code, system code, or user loader code. Unrestricted read
access.

Writing this register clears the PRIVTO register.

User Loader Read Privilege. This bit defaults to 1 on a power-on reset. When this bit

is 1, code can read the user loader memory area. Clearing this bit to 0 disables reading
from user loader memory and any read attempt generates a protection-fault interrupt. Note
that this bit is automatically cleared when the current IP is not in utility ROM code, system
memory, or user loader memory.

User Loader Write Privilege. This bit defaults to 1 on a power-on reset. This bit defaults
to 1 on a power-on reset. When this bit is 1, code can write (program) the user loader
memory area. Clearing this bit to O disables writing to user loader memory and any write
attempt generates a protection-fault interrupt. Note that this bit is automatically cleared
when the current IP is not in utility ROM code, system memory, or user loader memory.

System Read Privilege. This bit defaults to 1 on a power-on reset. When this bit is 1, code
can read the system memory area. Clearing this bit to O disables reading from system
memory and any read attempt generates a protection-fault interrupt. Note that this bit is
automatically cleared when the current IP is not in utility ROM code or system memory.

System Write Privilege. This bit defaults to 1 on a power-on reset. This bit defaults to 1 on
a power-on reset. When this bit is 1, code can write (program) the system memory area.
Clearing this bit to 0 disables writing to system memory and any write attempt generates

a protection-fault interrupt. Note that this bit is automatically cleared when the current IP is
not in utility ROM code or system memory.

Reserved. Reads return 0.

PRIVTO, 08h[03h]
Initialization

Access

PRIVTO.3 to PRIVTO.0

PRIVTO.7 to PRIVTO.4

Privilege Register Atomic 0 (8 bits)
This register is reset to 00h on all resets, and on any write to the PRIV register, or the

PRIVT1 destination.

Bits 3 and 2 are cleared by hardware when the current IP is not in utility ROM code, nor
system code.

Bits 1 and 0 are cleared by hardware when the current IP is not in utility ROM, system, nor
user loader code.

Bits 3 and 2 can only be modified by utility ROM code, or system code. Bits 1 and 0 can
only be modified by utility ROM code, system code, or user loader code. Unrestricted read
access.

Privilege Atomic 0 Bits. These bits default to 0 on a power-on reset. The bits are used as
a logical AND bit mask when writing to PRIVT.

Reserved. Reads return 0.

4-6

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

PSF, 08h[04h]
Initialization
Access

PSF.0 (E)

PSF.1(C)

PSF.2 (OV)

PSF.3 (GPFO)
PSF.4 (GPF1)

PSF.5
PSF.6 (S)

PSF.7 (2)

Processor Status Flags Register (8 bits)

This register is cleared to 80h on all forms of reset.

Bit 7 (Z) and bit 6 (S) are read-only.

Bits 4, 3 (GPF1, GPF0), bit 2 (OV), bit 1 (C) and bit 0 (E) are unrestricted read/write.
Equals Flag. This bit flag is set to 1 whenever a compare operation (CMP) returns an
equal result. If a CMP operation returns not equal, this bit is cleared.

Carry Flag. This bit flag is set to 1 whenever an addition or subtraction operation (ADD,
ADDC, SUB, SUBB) returns a carry or borrow.

This bit flag is cleared to 0 whenever an addition or subtraction operation does not return a
carry or borrow.

Overflow Flag. This flag is set to 1 if there is a carry out of bit 14 but not out of bit 15, or

a carry out of bit 15 but not out of bit 14 from the last arithmetic operation, otherwise, the
OV flag remains as 0. OV indicates a negative number resulted as the sum of two positive
operands, or a positive sum resulted from two negative operands.

General-Purpose Flag 0

General-Purpose Flag 1. General-purpose flag bits are provided for user software control.

Reserved. Reads return 0.

Sign Flag. This bit flag mirrors the current value of the high bit of the active accumulator
(Acc.15).

Zero Flag. The value of this bit flag equals 1 whenever the active accumulator is equal to
zero, and it equals O otherwise.

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER DESCRIPTION
IC, 8h[5h] Interrupt and Control Register (8 bits)
Initialization This register is cleared to OCh on all forms of reset.
Access Unrestricted direct read. Write access to bits 0, 4, 5, 6, 7 only. See bit descriptions for
details.
IC.0 (IGE) Interrupt Global Enable
If this bit is set to 1, interrupts can be enabled individually.
If this bit is set to 0, all interrupts are disabled (except the power-fail warning interrupt,
which is enabled solely by its interrupt enable (PFIE)).
IC.1 Reserved. Reads return 0.
IC.2 (IPSO) Interrupt Priority Status 0
IC.3 (IPS1) Interrupt Priority Status 1. These read-only bits are set to 11b if the processor is not
serving an interrupt. These bits are updated by the interrupt handler in response to an
interrupt request. Any value other than 11b indicates that the processor is currently execut-
ing an interrupt service routine with the specified priority. These bits are set to 11b when
the processor executes the corresponding RETI instruction.
IPS1 IPSO FUNCTION
0 0 Serving a level 0 (highest priority) interrupt
0 1 Serving a level 1 interrupt
1 0 Serving a level 2 (lowest priority) interrupt
1 1 Not serving any interrupt
IC.7to IC.4 Reserved. Reads return 0.

PRIVT1, 08h[06h]
Initialization

Access

PRIVT1.3 to PRIVT1.0

PRIVT1.7 to PRIVT1.4

Privilege Register Atomic 1 (8 bits)
This register is reset to 00h on all resets.

Bits 3 and 2 are cleared by hardware when the current IP is not in utility ROM code, nor
system code.

Bits 1 and O are cleared by hardware when the current IP is not in utility ROM, system, nor
user loader code.

Bits 3 and 2 can only be written by utility ROM code, or system code. Bits 1 and 0 can
only be written by utility ROM code, system code, or user loader code. No read access.

Privilege Atomic 1 Bits. These bits default to O on a power-on reset. The bits are used as
a logical AND bit mask. Writing these bits sets the corresponding bits in the PRIV register
using the PRIVTO register as a logical AND bit mask:

PRIV = (PRIVTO) AND (PRIVT1).

Writing to PRIVT1 clears the PRIVTO register.

Reserved. Reads return 0.

4-8

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

SC, 08h[08h]
Initialization

Access

SC.0
SC.1 (PWL)

SC.2 (ROD)

SC.3 (UPA)

SC.510 SC.4
(CDA1, CDAO)

sc.6
SC.7 (TAP)

SC.8 (PWLS)

System Control Register (16 bits)
This register is reset to 000001ss100000s0b on all resets. Bits 1, 8, and 9 (PWL, PWLS,
PWLL) are set to 1 on power-fail and power-on reset only.

Bits 8, 9, and 10 have write restrictions (see bit descriptions). All other bits: unrestricted
read/write access.

Reserved. All reads return O.

Password Lock Application. This bit defaults to 1 on power-fail and power-on reset.
When this bit is 1, it requires a 32-byte password to be matched with the password in the
user application program space before allowing access to the user-application password
protected in-circuit debug or bootstrap loader utility ROM routines. Clearing this bit to

0 disables the password protection for these utility ROM routines. ROM-assisted active
debug commands are always disallowed if the value at flash word address 000Eh is pro-
grammed (i.e., #FFFFh).

Utility ROM Operation Done. This bit is used to signify completion of a utility ROM opera-
tion sequence to the control units. This allows the debug engine to determine the status
of a utility ROM sequence. Setting this bit to 1 causes an internal system reset if the JTAG
SPE bit is also set. Setting the ROD bit clears the JTAG SPE bit if it is set, and the ROD bit
is automatically cleared by hardware once the control unit acknowledges the done indica-
tion.

Upper Program Access. The physical program memory is logically divided into four
pages; PO and P1 occupy the lower 32KWords while P2 and P3 occupy the upper
32KWords. PO and P1 are assigned to the lower half of the program space and are always
active. However, P2 and P3 must be implicitly activated in the upper half of the program
space by setting the UPA bit to 1 for normal program execution. When UPA bit is cleared
to 0, the upper program memory space is occupied by the utility ROM and the physical
data to be accessible as program memory. This bit is reserved and reads return 0 on all
parts with 64KB program memory or less.

Code Data Access Bits 1:0. The CDA bits are used to logically map physical program
memory page to the data space for read/write access:

BYTE MODE WORD MODE
CDA[1:0] ACTIVE PAGE ACTIVE PAGE
00 PO PO and P1
01 P1 PO and P1
10 p2 P2 and P3
11 P3 P2 and P3

The logical addresses are depending on which memory segment is executing.

CDA1 is reserved and reads return 0 on all parts with 64KB program memory or less.
CDAQ is reserved and reads return 0 on all parts with 32KB program memory or less.
Reserved. All reads return 0.

Test Access (JTAG) Port Enable. This bit controls whether the test access port special
function pins are enabled. The TAP defaults to being enabled. Clearing this bit to O dis-
ables the TAP special function pins.

Password Lock System. This bit defaults to 1 on power-fail and power-on reset. When
this bit is 1, it requires a 32-byte password to be matched with the password in the system
program space before allowing access to the system password-protected in-circuit debug
or bootstrap loader utility ROM routines. Clearing this bit to O disables the password pro-
tection for these utility ROM routines. This register bit can only be written by utility ROM
code when PRIV = HIGH. ROM assisted active debug commands are always disallowed if
the value at flash word address 000Eh is programmed (i.e., #FFFFh).

Maxim Integrated

4-9

MAXQ612/MAXQ622 User’s Guide

REGISTER DESCRIPTION

SC.9 (PWLL) Password Lock User Loader. This bit defaults to 1 on power-fail and power-on reset.
When this bit is 1, it requires a 32-byte password to be matched with the password in the
user loader program space before allowing access to the user loader password-protected
in-circuit debug or bootstrap loader utility ROM routines. Clearing this bit to O disables the
password protection for these utility ROM routines. This register bit can only be written

by utility ROM code when PRIV > MEDIUM. ROM-assisted active debug commands are
always disallowed if the value at flash word address 000Eh is programmed (i.e., #FFFFh).

SC. 10 (MPE) Memory Protection Enable. This bit defaults to 1 on any reset. When this bit is 1, it
enables memory protection and access control. When this bit is 0, no protection-fault
interrupts are generated and any code can access the protected resources. This register
bit can only be changed from 1 to 0 (thereby disabling memory protection) when PRIV =
HIGH. Note that the ability to read utility ROM is always allowed (independent of the MPE
bit state).

SC.15to SC. 11 Reserved. Reads return 0.

IPRO, 08h[09h] Interrupt Priority Register Zero (16 bits)
Initialization This register is cleared to 0000h on all forms of reset.

Access Unrestricted direct read/write.
IPRO[1:0] (IVPO[1:0]) Interrupt Vector 0 Priority Bits 1:0. These bits are used to specify the priority level of

interrupt vector O.

IVP[1:0] PRIORITY

00 Level O (the highest)

01 Level 1

10 Level 2 (the lowest)

11 Reserved (interrupt disabled)

IPRO[3:2] (IVP1[1:0]) Interrupt Vector 1 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 1.
IPRO[5:4] (IVP2[1:0]) Interrupt Vector 2 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 2.
IPRO[7:6] (IVP3[1:0]) Interrupt Vector 3 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 3.
IPRO[9:8] (IVP4[1:0]) Interrupt Vector 4 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 4.
IPRO[11:10] (IVP5[1:0]) Interrupt Vector 5 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 5.
IPRO[13:12] (IVP6[1:0]) Interrupt Vector 6 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 6.
IPRO[15:14] (IVP7[1:0]) Interrupt Vector 7 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 7.

4-10 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

IPR1, 08h[0Ah]
Initialization

Access
IPR1[1:0] (IVP8[1:0])

IPR1[3:2] (IVP9[1:0])

IPR1[5:4] (IVP10[1:0])

IPR1[7:6] (IVP11[1:0])

IPR1[9:8] (IVP12[1:0])

IPR1[11:10] (IVP13[1:0])

IPR1[13:12] (IVP14[1:0])

IPR1[15:14] (IVP15[1:0])

Interrupt Priority Register One (16 bits)
This register is cleared to 0000h on all forms of reset.

Unrestricted direct read/write.
Interrupt Vector 8 Priority Bits 1:0. These bits are used to specify the priority level of

interrupt vector 8.

IVP[1:0] PRIORITY
00 Level O (the highest)
01 Level 1
10 Level 2 (the lowest)
11 Reserved (interrupt disabled)
Interrupt Vector 9 Priority Bits 1:0. These Dbits are used to specify the priority Tevel of

interrupt vector 9.

Interrupt Vector 10 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 10.

Interrupt Vector 11 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 11.

Interrupt Vector 12 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 12.

Interrupt Vector 13 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 13.

Interrupt Vector 14 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 14.

Interrupt Vector 15 Priority Bits 1:0. These bits are used to specify the priority level of
interrupt vector 15.

PRIVF, 08h[0Bh]
Initialization
Access

PRIVF.3 to PRIVF.O
PRIVF.4 (PULRF)

PRIVF.5 (PULWF)

PRIVF.6 (PSYRF)

PRIVF.7 (PSYWF)

Privilege Flag Register (8 bits)

This register is cleared to 00h on all forms of reset.

Unrestricted direct read/write.

Reserved. All reads return 0.

Protected User Loader Read Interrupt Flag. The interrupt flag is set to 1 if code
attempts/requests to read user loader memory when PULR = 0. Once set, this flag can
only be cleared by software or by reset.

Protected User Loader Write Interrupt Flag. The interrupt flag is set to 1 if code
attempts/requests to write user loader memory when PULW = 0. Once set, this flag can
only be cleared by software or by reset.

Protected System Read Interrupt Flag. The interrupt flag is set to 1 if code attempts/
requests to read system memory when PSYR = 0. Once set, this flag can only be cleared
by software or by reset.

Protected System Write Interrupt Flag. The interrupt flag is set to 1 if code attempts/
requests to write system memory when PSYW = 0. Once set, this flag can only be cleared
by software or by reset.

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

ULDR, 08h[0Ch]
Initialization

Access
ULDR.8 to ULDR.O

ULDR. 15 to ULDR.9

User Loader Starting Page Address (16 bits)
This register is reset to the first page address past the available flash program memory on

all resets. On a part with 64KB of program memory with 512-byte pages, this register is
reset to 0080h.
This register can only be modified when PRIV = HIGH. Unrestricted read access.

User Loader Starting Page Address. These bits define the starting page address of the
user loader memory area.

Reserved. Reads return 0.

UAPP, 08h[0Dh]
Initialization

Access
UAPP.8 to UAPP.O

UAPP. 15 to UAPP.9

User Application Starting Page Address (16 bits)
This register is reset to the first page address past the available flash program memory on

all resets. On a part with 64KB of program memory with 512-byte pages, this register is
reset to 0080h.
This register can only be modified when PRIV > MEDIUM. Unrestricted read access.

User Application Starting Page Address. These bits define the starting page address of
the user application memory area.

Reserved. Reads return 0.

CKCN, 08h[OEh]

Initialization
Access

CKCN.0 (CDO)
CKCN.1 (CD1)

CKCN.2 (PMME)

CKCN.3 (SWB)

CKCN.4 (STOP)

CKCN.7 to CKCN.5

System Clock Control Register (8 bits)

Bits 4:0 are cleared to zero on all forms of reset. See bit description for bits 7:5.
Unrestricted read/write, except there is a locking mechanism for the PMME, CD1, and CDO

bits when changing their bits values; bit 5 is read-only.

Clock Divide Bit 0

Clock Divide Bit 1. If the PMME bit is cleared, the CDO and CD1 bits control the number
of oscillator clocks required to generate one system clock as follows:

OSCILLATOR CLOCK CYCLES PER SYSTEM CLOCK
CD1 CDo
CYCLE
0 0 1 (default)
0 1 2
1 0 4
1 1 8

If the PMME bit is set to 1, the values of CDO and CD1 cannot be altered and do not affect
the system clock frequency.

Power-Management Mode Enable. If the PMME bit is cleared to 0, the values of CDO and
CD1 determine the number of oscillator clock cycles per system clock cycle. If the PMME
bit is set to 1, the values of CD0O and CD1 are ignored and the system clock operates in a
fixed mode of 1 cycle per 256 oscillator cycles (divide by 256).

If the PMME bit is set to 1, switchback mode has been enabled by setting the SWB bit and
a switchback source (such as an enabled external interrupt) is currently active, PMME is
cleared to 0 and cannot be set to 1 unless all switchback sources are inactive.
Switchback Enable. If the SWB bit is cleared to 0, switchback mode is not active. If the
SWB bit is set to 1, switchback mode is active.

Switchback mode has no effect if power management mode is not active (PMME = 0).

If power management mode is active and switchback mode is enabled, the PMME bit is
cleared to 0 when one of the qualifying events occurs. For details, refer to the switchback
description.

When any of these conditions cause switchback to clear PMME to O, the system clock rate
is then determined by the settings of CDO and CD1. After PMME is cleared to 0 by switch-
back, it cannot be set back to 1 as long as any of the above conditions are true.

Stop Mode Select. Setting this bit to 1 causes the MAXQ612/MAXQ622 to enter stop
mode. This does not change the currently selected clock divide ratio (CDO, CD1, PMME).

Reserved. Reads return 0.

4-12

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

WDCN, 08h[0Fh]
Initialization

Access
WDCN.0 (RWT)

WDCN.1 (EWT)

WDCN.2 (WTRF)

WDCN.3 (WDIF)

WDCN.4 (WD0)
WDCN.5 (WD1)

Watchdog Control Register (8 bits)
Bits 5, 4, 3, and 0 are cleared to 0 on all forms of reset; for others, see individual bit
descriptions.

Unrestricted direct read/write access.

Reset Watchdog Timer. Setting this bit to 1 resets the watchdog timer count. If watchdog
interrupt and/or reset modes are enabled, the software must set this bit to 1 before the
watchdog timer elapses to prevent an interrupt or reset from occurring.

This bit always returns 0 when read.

Enable Watchdog Timer Reset. If this bit is set to 1 when the watchdog timer elapses,
the watchdog resets the processor 512 system clock cycles later unless action is taken to
disable the reset event. Clearing this bit to O prevents a watchdog reset from occurring but
does not stop the watchdog timer or prevent watchdog interrupts from occurring if EWDI
= 1. If EWT = 0 and EWDI = 0, the watchdog timer is stopped. If the watchdog timer is
stopped (EWT = 0 and EWDI = 0), setting the EWT bit resets the watchdog interval and
resets counter, and enables the watchdog timer.

This bit is cleared on power-fail and power-on reset and is unaffected by other forms of
reset.

Watchdog Timer Reset Flag. This bit is set to 1 when the watchdog resets the processor.
Software can check this bit following a reset to determine if the watchdog was the source
of the reset.

Setting this bit to 1 in software does not cause a watchdog reset. This bit is cleared by
power-fail and power-on reset only and is unaffected by other forms of reset. It should also
be cleared by software following any reset so that the source of the next reset can be cor-
rectly determined by software.

This bit is only set to 1 when a watchdog reset actually occurs, so if EWT is cleared to O
when the watchdog timer elapses, this bit is not set.

Watchdog Interrupt Flag. This bit is set to 1 when the watchdog timer interval has
elapsed or can be set to 1 by user software. When WDIF = 1, an interrupt request occurs
if the watchdog interrupt has been enabled (EWDI = 1) and not otherwise masked or
prevented by a higher priority interrupt already in service (i.e., IGE = 1, and IPS = 11b

or lower priority interrupt in service in order for the interrupt to occur). This bit should be
cleared by software before exiting the interrupt service routine to avoid repeated inter-
rupts. Furthermore, if the watchdog reset has been enabled (EWT = 1), a reset is sched-
uled to occur 512 system clock cycles following setting of the WDIF bit.

Watchdog Timer Mode Select Bit 0

Watchdog Timer Mode Select Bit 1. These bits determine the watchdog interval or the
length of time between resetting of watchdog timer and the watchdog generated interrupt
in terms of system clocks. Modifying the watchdog interval through the WD[1:0] bits auto-
matically resets the watchdog timer unless the 512 system clock reset counter is already in
progress, in which case, changing the WD[1:0] bits does not affect the watchdog timer or
reset counter.

CLOCKS UNTIL
WD1 WDO INTERRUPT CLOCKS UNTIL RESET
0 0 215 215 4 512
0 1 218 218 4 512
1 0 221 221 4 512
1 1 224 224 4 512
Maxim Integrated 4-13

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

WDCN.6 (EWDI)

WDCN.7 (POR)

Watchdog Interrupt Enabile. If this bit is set to 1, an interrupt request can be generated
when the WDIF bit is set to 1 by any means. If this bit is cleared to 0, no interrupt occurs
when WDIF is set to 1, however, it does not stop the watchdog timer or prevent watch-
dog resets from occurring if EWT = 1. If EWT = 0 and EWDI = 0, the watchdog timer is
stopped. If the watchdog timer is stopped (EWT = 0 and EWDI = 0), setting the EWDI bit
resets the watchdog interval and reset counter, and enables the watchdog timer.

This bit is cleared to 0 by power-fail and power-on reset and is unaffected by other forms
of reset.

Power-on Reset Flag. This bit is set to 1 anytime when Vpp is below the VPOR threshold.
This bit must be cleared by software. This bit is unaffected by resets and is set to 1 by
hardware only by POR (VpD < VPOR).

A[n], 09h[nh]
Initialization

Access
Aln]. 15 to Al[n].0

Accumulator n Register (16 bits)
This register is cleared to 0000h on all forms of reset.

Unrestricted direct read/write access.

This register acts as the accumulator for all ALU arithmetic and logical operations when
selected by the accumulator pointer (AP). It can also be used as a general-purpose work-
ing register.

PEX[n], 0Bh
Initialization

Access
PFX[n]. 15 to PFX[n].0

Prefix Register (16 bits)

This register is cleared to 0000h on all forms of reset.

Unrestricted direct read/write access.

The prefix register provides a means of supplying an additional 8 bits of high-order data
for use by the succeeding instruction as well as providing additional indexing capabilities.
This register only holds any data written to it for one execution cycle, after which it reverts
to 0000h. Although this is a 16-bit register, only the lower 8 bits are actually used for pre-
fixing purposes by the next instruction.

Writing to or reading from any index in the prefix module selects the same 16-bit register.
However, when the prefix register is written, the index n used for the PFX[n] write also
determines the high-order bits for the register source and destination specified in the fol-
lowing instruction.

SOURCE, DESTINATION INDEX SELECTION

SOURCE REGISTER DESTINATION REGISTER
WRITE TO RANGE RANGE
PFX[0] 00h to OFh 00h to 07h
PFX[1] 10h to 1Fh 00h to 07h
PFX[2] 00h to OFh 08h to OFh
PFX[3] 10h to 1Fh 08h to OFh
PFX[4] 00h to OFh 10h to 17h
PFX[5] 10h to 1Fh 10h to 17h
PFX[6] 00h to OFh 18h to 1Fh
PFX[7] 10h to 1Fh 18h to 1Fh

The index selection reverts to 0 (default mode allowing selection of registers Oh to 7h for
destinations) after one cycle in the same manner as the contents of the prefix register.

4-14

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER DESCRIPTION
IP, 0Ch[00h] Instruction Pointer Register (16 bits)
Initialization This register is cleared to 8000h on all forms of reset.
Access Unrestricted direct read/write access.
IP.15 to IP.O0 This register contains the address of the next instruction to be executed and is automati-

cally incremented by 1 after each program fetch.
Writing an address value to this register causes program flow to jump to that address.
Reading from this register does not affect program flow.

SP, ODh[01h]
Initialization

Access
SP.9 to SP.0

SP.15 to SP.10

Stack Pointer Register (16 bits)
This register is cleared to 03FOh on all forms of reset.

Unrestricted direct read/write access.

These 10 bits indicate the current top (equals the lowest address used) of the soft stack.
This pointer is decremented before a value is pushed on the stack (increasing the stack
depth, MOVE @++SP, ...) and incremented after a value is popped from the stack
(decreasing the stack depth, MOVE ..., @SP--).

Reserved. Reads return 0.

|V, 0Dh[02h]
Initialization

Access
V.15 to IV.0

Interrupt Vector Register (16 bits)
This register is cleared to 0020h on all forms of reset.

Unrestricted direct read-only.

This register contains the address of the interrupt service routine. The interrupt handler
generates a CALL to an offset from this address whenever the corresponding interrupt is
acknowledged.

LC[0], 0Dh[06h]
Initialization

Access
LC[0].15 to LC[0].0

Loop Counter 0 Register (16 bits)
This register is cleared to 0000h on all forms of reset.

Unrestricted direct read/write access.
This register is used as the loop counter for the DJNZ LC[0], src operation. This operation
decrements LC[0] by one and then jumps to the address specified in the instruction by src.

LC[1], ODh[07h]
Initialization

Access
LC[1].15 to LC[1].0

Loop Counter 1 Register (16 bits)
This register is cleared to 0000h on all forms of reset.

Unrestricted direct read/write access.
This register is used as the loop counter for the DJNZ LC[1], src operation. This operation

decrements LC[1] by one and then jumps to the address specified in the instruction by src.

OFFS, OEh[03h]
Initialization

Access
OFFS.7 to OFFS.0

Frame Pointer Offset Register (8 bits)

This register is cleared to 00h on all forms of reset.

Unrestricted direct read/write access.

This 8-bit register provides the frame pointer (FP) offset from the base pointer (BP). The
frame pointer is formed by unsigned addition of frame pointer base register (BP) and
frame pointer offset register (OFFS). The contents of this register can be postincremented
or postdecremented when using the frame pointer for read operations and can be prein-
cremented or predecremented when using the frame pointer for write operations. A carry
out or borrow resulting from an increment/decrement operation has no effect on the frame
pointer base register (BP).

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

DPC, OEN[04h]
Initialization

Access
DPC.1 to DPC.0

(SDPS1, SDPS0)

DPC.2 (WBS0)

DPC.3 (WBST)

DPC.4 (WBS2)

DPC.5
DPC.6 (CWBS)

DPC. 15 to DPC.7

Data Pointer Control Register (16 bits)
This register is cleared to 005Ch on all forms of reset.

Unrestricted direct read/write access.

Source Data Pointer Select Bits 1:0. These bits select one of the three data pointers
as the active source pointer for the load operation. A new data pointer must be selected
before being used to read data memory:

SDPS1 SDPS0 SOURCE POINTER SELECTION
0 0 DP[0]
0 1 DP[1]
1 0 FP (BP[OFFS])
1 1 Reserved (select FP if set)

These bits default to 00b but do not activate DP[0] as an active source pointer until the
SDPS bits are explicitly cleared to 00b or the DP[0] register is written by an instruction. Also,
modifying the register contents of a data/frame pointer register (DP[0], DP[1], BP or OFFS)
changes the setting of the SDPS bits to reflect the active source pointer selection.
Word/Byte Select 0. This bit selects access mode for DP[0]. When WBSO is set to 1, the
DP[0] is operated in word mode for data memory access; when WBSO is cleared to O,
DPI[O] is operated in byte mode for data memory access.

Word/Byte Select 1. This bit selects access mode for DP[1]. When WBS1 is set to 1, the
DP[1] is operated in word mode for data memory access; when WBSH1 is cleared to O,
DP[1] is operated in byte mode for data memory access.

Word/Byte Select 2. This bit selects access mode for BP[OFFS]. When WBS2 is set to 1,
the BP[OFFS] is operated in word mode for data memory access; when WBS2 is cleared
to 0, BP[OFFS] is operated in byte mode for data memory access.

Reserved. Reads return 0.

Code Pointer Word/Byte Select. This bit selects access mode for the code pointer, CP.
When CWBS is set to 1, the CP is operated in word mode for data memory access; when
CWBS is cleared to 0, CP is operated in byte mode for data memory access.

Reserved. Read returns 0.

GR, OEh[05h]
Initialization

Access
GR.15 to GR.O

General Register (16 bits)
This register is cleared to 0000h on all forms of reset.

Unrestricted direct read/write access.

This register is intended primarily for supporting byte operations on 16-bit data. The 16-bit
register is byte-readable, byte-writable through the corresponding GRL and GRH 8-bit reg-
isters and byte-swappable through the GRS 16-bit register

GRL, OEh[06h]
Initialization

Access
GRL.7 to GRL.0

General Register Low Byte (8 bits)
This register is cleared to 00h on all forms of reset.

Unrestricted direct read/write access.

This register reflects the low byte of the GR register and is intended primarily for support-
ing byte operations on 16-bit data. Any data written to the GRL register is also stored in
the low byte of the GR register.

BP, OEN[07h]
Initialization

Frame Pointer Base Register (16 bits)
This register is cleared to 0000h on all forms of reset.

Access Unrestricted direct read/write access.

BP.15 to BP.O This register serves as the base pointer for the frame pointer (FP). The frame pointer is
formed by unsigned addition of frame pointer base register (BP) and frame pointer offset
register (OFFS). The content of this base pointer register is not affected by increment/dec-
rement operations performed on the offset (OFFS) register.

4-16 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

GRS, OEN[08h]
Initialization

Access
GRS.15 to GRS.0

General Register Byte-Swapped (16 bits)
This register is cleared to 0000h on all forms of reset

Unrestricted read-only access.
This register is intended primarily for supporting byte operations on 16-bit data. This 16-bit

read-only register returns the byte-swapped value for the data contained in the GR register.

GRH, OENh[09h]
Initialization

Access
GRH.7 to GRH.O

General Register High Byte (8 bits)
This register is cleared to 00h on all forms of reset.

Unrestricted direct read/write access.

This register reflects the high byte of the GR register and is intended primarily for support-
ing byte operations on 16-bit data. Any data written to the GRH register is also stored in
the high byte of the GR register.

GRXL, OEh[OAhR]
Initialization

Access

GRXL.15 to GRXL.0

General Register Sign Extended Low Byte (16 bits)

This register is cleared to 0000h on all forms of reset.

Unrestricted direct read-only access.

This register provides the sign extended low byte of GR as a 16-bit source.

FP, OEh[OBh]
Initialization
Access
FP.15 to FP.O

Frame Pointer Register (16 bits)

This register is cleared to 0000h on all forms of reset.

Unrestricted direct read-only access.

This register provides the current value of the frame pointer (BP[OFFS]).

DP[0], OFh[03h]
Initialization

Access
DP[0].15 to DP[0].0

Data Pointer 0 Register (16 bits)
This register is cleared to 0000h on all forms of reset.

Unrestricted direct read/write access.

This register is used as a pointer to access data memory. DP[0] can be automatically
incremented or decremented following each read operation or can be automatically incre-
mented or decremented before each write operation.

DP[1], OFh[07h]
Initialization

Access
DP[1].15 to DP[1].0

Data Pointer 1 Register (16 bits)
This register is cleared to 0000h on all forms of reset.

Unrestricted direct read/write access.

This register is used as a pointer to access data memory. DP[1] can be automatically
incremented or decremented following each read operation or can be automatically incre-
mented or decremented before each write operation.

CP, OFh[0Bh]
Initialization

Access
CP.15to CP.0

Code Pointer Address Register (16 bits)
This register is cleared to 0000h on all forms of reset.

Unrestricted direct read/write access.
This register is used as a pointer to access program code memory. CP can be automati-
cally incremented or decremented following each read operation.

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 5: PERIPHERAL REGISTER MODULES

This section contains the following information:

5.1 Peripheral Register Bit DesCriplions 5-6

Table 5-1. Peripheral Register Map. 5-2
Table 5-2. Peripheral Register Bit Function. 5-2
Table 5-3. Peripheral Register Reset Values. 5-4

Maxim Integrated 5-1

MAXQ612/MAXQ622 User’s Guide

SECTION 5: PERIPHERAL REGISTER MODULES

The MAXQ612/MAXQ622 microcontroller uses peripheral registers to control and monitor peripheral modules. These
registers reside in modules Oh to 3h, with subindex values Oh to 1Fh.

Table 5-1. Peripheral Register Map

MODULE INDEX OF SPECIAL FUNCTION REGISTER (SECTIONS | AND II)
MODULE | SPECIFIER | 00000 | 00001 | 00010 | 00011 | 00100 | 00101 | 00110 | 00111 | 01000 | 01001 | 01010 | 01011 | 01100 | 01101 | 01110 | 01111
MO 00000 POO PO1 PO2 PO3 EIFO | EIEO | EIF1 EIE1 PIO PI1 P12 PI3 | EIESO | EIEST
M1 00001 PO4 PO5 | PO6* WUTC | WUT P14 P15 Pl6* PWCN
M2 00010 TBOR [TBOCN| TB1R [TB1CN| IRCN | IRCA | IRMT |IRCNB| TBOC | TBOV | TB1C | TB1V IRV
M3 00011 |SCONO|SBUFO [SCON1|SBUF1 | SPIBO |SPICNO| SPIB1 |[SPICN1| PRO | SMDO | PR1 | SMD1 |SPICFO|SPICKO|SPICF1|SPICK1
M4 00100 |I2CCN | I12CST [I2CBUF| 12CIE |UADDR™ | UDATA™ 12CCK | 12CTO |I2CSLA
M5 00101
MODULE INDEX OF SPECIAL FUNCTION REGISTER (SECTION IlI)
MODULE | SPECIFIER | 10000 | 10001 | 10010 | 10011 | 10100 | 10101 | 10110 | 10111 | 11000 | 11001 | 11010 | 11011 | 11100 | 11101 | 11110 | 11111
MO 00000 PDO | PD1 | PD2 | PD3 CHPREV
M1 00001 PD4 | PD5 | PD6*
M2 00010
M3 00011
M4 00100
M5 00101
*Port € is only available in the bare die configuration.
**UADDR and UDATA are applicable only for the MAXQ622.
Table 5-2. Peripheral Register Bit Function
REG il
15 14 13 12 1 10 | 9 | 8 [7 [e | 5 | 4 | 3| 2] 1] o0
POO POO[7:0]
PO1 PO1[7:0]
PO2 PO2[7:0]
PO3 PO3[7:0]
EIFO IE[7:0]
EIEO EX[7:0]
EIF1 IE[15:8]
EIE1 EX[15:8]
PIO PI0[7:0]
PI1 PI1[7:0]
PI2 PI2[7:0]
PI3 PI3[7:0]
EIESO IT[7:0]
EIEST IT[15:8]
PDO PDO[7:0]
PD1 PD1[7:0]
PD2 PD2[7:0]
PD3 PD3[7:0]

5-2

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Table 5-2. Peripheral Register Bit Function (continued)

REG =l
15 [14 | 13 [12 11] 1w0] o | 8 [7|6 | 5[a]] 2] 1] o

CHPREV CHPREV[7:0]

PO4 PO4[7:0]

POS POS[7:0]

POS POBI7:0]

wuTC — -l =1 =1 =1 = [wr] we
WUT WUTT50]

Pl4 PI4[7:0]

PI5 PI5[7:0]

PI6 PIB[7:0]

PWCN [PFWARNCN[1:0] | CKRY CT™M CTMS [FRCVDD| PFRCK1 | PFRCKO PFRST||RRXWP||RTXOUT||RTXOE|REGEN| PFI | PFIE | PFD
PD4 PD4[7:0]

PD5 PD5[7:0]

PD6 PD6[7:0]

TBOR TBOR[15:0]

mocN | cme | — | — | TBcs | tBom | 1ees2 | tePs1 | terso | Tre | Exrs | TBOE | pcen | Bene | TRB | ETB | cPmB
TBIR TBIR[15:0]

meicn | cme | — | — [TBes [BeR [TPs2 [tePst [TePso | Tre [Exes | tBOE [pcEn [pew | TRe | ETB [cPms
RN | — | — | — IRDIV[2.0] IRENV[10] | IRXRL | RCRVE | IRRXSEL[1:0] | RDATA | RDPOL | IRVODE | IREN
IRCA IRCAH[7:0] IRCAL[7:0]

IRMT IRMT[15:0]

IRCNB | | | | | — | — | = | — I|peont| me | wmiF | mrov
TBOC TBOC[15:0]

TBOV TBOV[15:0]

TBIC TB1C[15:0]

TBIV TB1V[15:0]

IRV IRV[15:0]

SCONO svore | svi [sm2 | ren | TB8 [RBs | T [w
SBUFO SBUFO[7:0]

SCON1 svore | smi [sme | mren [TB8 [RBs | T [wm
SBUF1 SBUFA[7:0]

SPIBO SPIBO[15:0]

SPICNO | | | | | stav | spic | rovr | weol | moor | moore | mstm | spiEn
SPIBH SPIB1[15:0]

SPICN1 | | | | | stBY | spic | rovr | woot | mopr | moore | msTm | spiEn
PRO PRO[15:0]

SMDO | | | | — | — | — | — | — | esio | svom] repeo
PRI PR1[15:0]

SMD1 - — — — — | ES | sviopit | FEDET
SPICFO ESPII SAS — — — CHR | CKPHA | CKPOL
SPICKO CKR[7:0

SPICF1 espl [sas | — | — | — [cHr [oxea [okeoL
SPICKH CKRI7:0

ecen Jiecrst| — | — | — [— | — lecsmen|roacen] ecsror [ecstart] ecack [ecsms [— ieavione] eavst | ecen
12CST | I2CBUS | I2CBUSY — — [2CSPI | 12CSCL | 12CROI | 12CGCI [I2CNACKI| [2CALI | I2CAMI | 12CTOI | I2CSTRI | 12CRXI [2CTX [2CSRI

Maxim Integrated

5-3

MAXQ612/MAXQ622 User’s Guide

Table 5-2. Peripheral Register Bit Function (continued)

REG BT
15 14 13 12 11 10 9 8 7 6 5 | 4 | 3 | 2 | 1] o
12CBUF 12CBUF([7:0]
I2CIE | — — — — | ecsre | — | iecroE | ieoaoE [ronace] 12CALE | 12CAME | 12CTOE | 12CSTRE | 120RXE | 12CTXE | IecSRE
UADDR USBRW | UBUSY | — UADDR[4:0]
UDATA UDATA[7:0]
12CCK I2CCKH[7:0] 12CCKL[7:0]
12CTO 12CTO[7:0]
I2CSLA I2CLSA[9:0]
Table 5-3. Peripheral Register Reset Values
REG BIT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
POO 0 0 0 0 0 0 0 0
PO1 0 0 0 0 0 0 0 0
PO2 0 0 0 0 0 0 0 0
PO3 0 0 0 0 0 0 0 0
EIFO 0 0 0 0 0 0 0 0
EIEO 0 0 0 0 0 0 0 0
EIF1 0 0 0 0 0 0 0 0
EIE1 0 0 0 0 0 0 0 0
PIO S S S S S S S S
PI1 S S S S S S S S
PI2 S s S s S S s S
PI3 S s S s s S s S
EIESO 0 0 0 0 0 0 0 0
EIESH 0 0 0 0 0 0 0 0
PDO S s S s s S s S
PD1 S s S s s S s S
PD2 S s S s s s s S
PD3 S s S s s s s S
CHPREV s S s S s S s S
PO4 0 0 0 0 0 0 0 0
PO5 0 0 0 0 0 0 0 0
PO6 0 0 0 0 0 0 0 0
WUTC 0 0 0 0 0 0 0 0
WUT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pl4 S s S s s s s s
PI5 s s S s s S s S
Pl6 s s S s s s s S
PWCN 0 0 0 0 0 0 S S S 1 1 0 0 0 0 0
PD4 s s s s s s s S
PD5 S s S S s s s S
PD6 S s s s s S s s
TBOR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Table 5-3. Peripheral Register Reset Values (continued)

O|Oj|O|O|O|O|O|O|O|O
OO0 O0O|O
N([O|~ |~ |—|—|O
MM OO|jO|O|O|O|O|O|O|O
< |o
NI OO0 |O|lO|O|O|O|O|O|O|O|O|O|O|O|O|OCO|O|O|O|O|O|O|O|O|O|O|O|jO|O|O|O|O|O|O|O
OO|lO|O
NO|IO|O
E
m
O|lOo|OoO|lOo|O|O|O|O|O|O|O|O o o o o oo (@] (@] (@]
OO |O|O|O|O|O|O|O|O|O|O|O o o (@] o oo (@] — o
WOOOOOOOOOOOO o o o o oo (@] (@]
T|lo|lo|o|o|o|o|o|o|o|o|o|o o o o o olo o o
mV_OOOOOOOOOOOO (@) o o o oo (@] (@]
wOOOOOOOOOOOO o o o (@] oo (@] (@]
MOOOOOOOOOOOO o o o o oo (@] (@]
wOOOOOOOOOOOO o o o o oo (@] (@]
Olo|— o — OO~ |— L oC | <C <
o |6l=|6|z|<|22|elz|ez]=|2I2|2|L|8(Z|a|z|e|8] =5 |E|X |k |X%|E|m 2w s = |S|2]
EOm1CCMCBBWBROUOUHPIUMPIVRMRMBPIVBBCCBCDACCS
£ Do Fg|lE|FlE|lFl—lo|ao|alS|alS|lalrglragla|aln|a|«CQYN<8a|&|8
[[= D|ND{DH|D n n D|n|n|n|=|— YN O|D(—=|= Y

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

5.1 Peripheral Register Bit Descriptions

REGISTER

DESCRIPTION

POO0 (00h, 00h)
Initialization:

Read/Write Access:
POO0.7 to POO.0

Port 0 Output Register (8-bit register)
This register is set to 00h on all forms of reset.

Unrestricted read/write.

Port 0 Output Register Bits 7:0. The POO register stores output data for port 0 when it is
defined as an output port and controls whether the internal weak p-channel pullup transistor
is enabled/disabled if a port pin is defined as an input. The contents of this register can be
modified by a write access. Reading from the register returns the contents of the register.
Changing the direction of port 0 does not change the data contents of the register.

PO1 (01h, 00h)
Initialization:

Read/Write Access:
PO1.7 to PO1.0

Port 1 Output Register (8-bit register)
This register is set to 00h on all forms of reset.

Unrestricted read/write.

Port 1 Output Register Bits 7:0. The PO1 register stores output data for port 1 when it is
defined as an output port and controls whether the internal weak p-channel pullup transistor
is enabled/disabled if a port pin is defined as an input. The contents of this register can be
modified by a write access. Reading from the register returns the contents of the register.
Changing the direction of port 1 does not change the data contents of the register.

PO2 (02h, 00h)
Initialization:

Read/Write Access:
PO2.7 to PO2.0

Port 2 Output Register (8-bit register)
This register is set to 00h on all forms of reset.

Unrestricted read/write.

Port 2 Output Register Bits 7:0. The PO2 register stores output data for port 2 when it is
defined as an output port and controls whether the internal weak p-channel pullup transistor
is enabled/disabled if a port pin is defined as an input. The contents of this register can be
modified by a write access. Reading from the register returns the contents of the register.
Changing the direction of port 2 does not change the data contents of the register.

PO3 (03h, 00h)
Initialization:

Read/Write Access:
PO3.7 to PO3.0

Port 3 Output Register (8-bit register)
This register is set to 00h on all forms of reset.

Unrestricted read/write.

Port 3 Output Register Bits 7:0. The PO3 register stores output data for port 3 when it is
defined as an output port and controls whether the internal weak p-channel pullup transistor
is enabled/disabled if a port pin is defined as an input. The contents of this register can be
modified by a write access. Reading from the register returns the contents of the register.
Changing the direction of port 3 does not change the data contents of the register.

EIFO (04h, 00h)
Initialization:

Read/Write Access:
EIF0.7 to EIF0.0 (IE[7:0])

External Interrupt Flag 0 Register
EIFO is cleared to 00h on all forms of reset.

Unrestricted read/write.

Interrupt Edge Detect Bits 7:0. These bits are set when a negative edge (ITn = 1) or

a positive edge (ITn = 0) is detected on the interrupt pin n. Setting any of the bits to 1
generates an interrupt to the CPU if the corresponding interrupt is enabled. The bit remains
set until cleared by software or a reset. It must be cleared by software before exiting the
interrupt source routine or another interrupt is generated as long as the bit remains set.

EIEO (05h, 00h)
Initialization:

Read/Write Access:
EIEQ.7 to EIEQ.0 (EX[7:0])

External Interrupt Enable 0 Register

EIEO is cleared to 00h on all forms of reset.

Unrestricted read/write.

Enable External Interrupt Bits 7:0. Setting any of these bits to 1 enables the

corresponding external interrupt. Clearing any of the bits to O disables the corresponding
interrupt function.

5-6

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

EIF1 (06h, 00h)
Initialization:

Read/Write Access:

EIF1.7 to EIF1.0 (IE[15:8])

External Interrupt Flag 1 Register
EIF1 is cleared to 00h on all forms of reset.

Unrestricted read/write.

Interrupt Edge Detect Bits 15:8. These bits are set when a negative edge (ITn = 1) or

a positive edge (ITn = 0) is detected on the interrupt n pin. Setting any of the bits to 1
generates an interrupt to the CPU if the corresponding interrupt is enabled. The bit remains
set until cleared by software or a reset. It must be cleared by software before exiting the
interrupt source routine or another interrupt is generated as long as the bit remains set.

Note: For the 32-pin package, the INT8 to INT15 functions are not present on external pins,
however, the associated interrupt registers (EIE1, EIF1, EIES1) are still present. Software
should not write to the EIF1 register as this could trigger an unplanned interrupt condition if
EIE1 and EIES1 are used for general purpose.

EIE1 (07h, 00h)
Initialization:

Read/Write Access:

EIF1.7 to EIE1.0 (EX[15:8])

External Interrupt Enable 1 Register
EIE1 is cleared to 00h on all forms of reset.

Unrestricted read/write.
Enable External Interrupt Bits 15:8. Setting any of these bits to 1 enables the

corresponding external interrupt. Clearing any of the bits to 0 disables the corresponding
interrupt function.

Note: For the 32-pin package, the INT8 to INT15 functions are not present on external pins.
This register can be used as a general-purpose register as long as the user software does
not write to the EIF1 flag register since this could trigger an unplanned interrupt condition.

PIO (08h, 00h)
Initialization:

Read/Write Access:
PI0.7 to PI0.O

Port 0 Input Register
The reset value for this register is dependent on the logical states of the pins.

Unrestricted read-only.

Port 0 Input Register Bits 7:0. The PIO register always reflects the logic state of its pins
when read. Note that each port pin has a weak pullup circuit when functioning as an input
and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the
port pin into three-state.

PI1 (09h, 00h)
Initialization:

Read/Write Access:
PI1.7 to PI1.0

Port 1 Input Register
The reset value for this register is dependent on the logical states of the pins.

Unrestricted read.

Port 1 Input Register Bits 7:0. The Pl1 register always reflects the logic state of its pins
when read. Note that each port pin has a weak pullup circuit when functioning as an input
and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the
port pin into three-state.

PI2 (0Ah, 00h)
Initialization:

Read/Write Access:
PI2.7 to PI2.0

Port 2 Input Register
The reset value for this register is dependent on the logical states of the pins.

Unrestricted read.

Port 2 Input Register Bits 7:0. The PI2 register always reflects the logic state of its pins
when read. Note that each port pin has a weak pullup circuit when functioning as an input
and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the
port pin into three-state.

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

PI3 (0Bh, 00h)
Initialization:

Read/Write Access:
PI3.7 to PI3.0

Port 3 Input Register
The reset value for this register is dependent on the logical states of the pins.

Unrestricted read.

Port 3 Input Register Bits 7:0. The PI3 register always reflects the logic state of its pins
when read. Note that each port pin has a weak pullup circuit when functioning as an input
and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set
to 1, the weak pullup is on, if the PO bit is cleared to O, the weak pullup is off and forces the
port pin into three-state.

EIESO (0Ch, 00h)
Initialization:

Read/Write Access:
EIESQ.7 to EIESO.0 (IT[7:0])

External Interrupt Edge Select 0 Register

EIESO is cleared to 00h on all forms of reset.
Unrestricted read/write.

Edge Select for External Interrupt Bits 7:0

ITn = O: External Interrupt n is positive edge triggered.
ITn = 1: External Interrupt n is negative edge triggered.

EIES1 (ODh, 00h)
Initialization:

Read/Write Access:
EIES1.7 to EIES1.0 (IT[15:8])

External Interrupt Edge Select 1 Register
EIES1 is cleared to 00h on all forms of reset.

Unrestricted read/write.
External Interrupt Edge Select Bits 15:8

ITx = 0: External interrupt x is positive edge triggered.
ITx = 1: External interrupt x is negative edge triggered.

Note: For the 32-pin package, the INT8 to INT15 functions are not present on external pins.
This register can be used as a general-purpose register as long as the user software does
not write to the EIF1 flag register since this could trigger an unplanned interrupt condition.

PDO (10h, 00h)
Initialization:

Read/Write Access:
PDO.7 to PD0.0

Port 0 Direction Register
This register is cleared to 00h on all resets except power-fail reset. This register is
unaffected by power-fail reset.

Unrestricted read/write.

Port 0 Direction Register Bits 7:0. PDO is used to determine the direction of the port O
function. The port pins are independently controlled by their direction bits. When a bit is set
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin.
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external
signal to drive the pin. Note that each port pins has a weak pullup circuit when functioning
as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to O, the weak pullup is off
and forces the port pin into three-state.

PD1 (11h, 00h)
Initialization:

Read/Write Access:
PD1.7 to PD1.0

Port 1 Direction Register
This register is cleared to 00h on all resets except power-fail reset. This register is
unaffected by power-fail reset.

Unrestricted read/write.

Port 1 Direction Register Bits 7:0. PD1 is used to determine the direction of the port 1
function. The port pins are independently controlled by their direction bit. When a bit is set
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin.
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external
signal to drive the pin. Note that each port pin has a weak pullup circuit when functioning
as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to O, the weak pullup is off
and forces the port pin into three-state.

5-8

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

PD2 (12h, 00h)
Initialization:

Read/Write Access:
PD2.7 to PD2.0

Port 2 Direction Register

This register is cleared to 00h on all resets except power-fail reset. This register is
unaffected by power-fail reset.

Unrestricted read/write.

Port 2 Direction Register Bits 7:0. PD2 is used to determine the direction of the port 2
function. The port pins are independently controlled by their direction bit. When a bit is set
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin.
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external
signal to drive the pin. Note that each port pin has a weak pullup circuit when functioning
as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off
and forces the port pin into three-state.

PD3 (13h, 00h)
Initialization:

Read/Write Access:
PD3.7 to PD3.0

Port 3 Direction Register
This register is cleared to 00h on all resets except power-fail reset. This register is
unaffected by power-fail reset.

Unrestricted read/write.

Port 3 Direction Register Bits 7:0. PD3 is used to determine the direction of the port 3
function. The port pins are independently controlled by their direction bit. When a bit is set
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin.
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external
signal to drive the pin. Note that each port pin has a weak pullup circuit when functioning
as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off
and forces the port pin into three-state.

CHPREV (13h, 00h)
Initialization:

Read/Write Access:
CHPREV.7 to CHPREV.O

Chip Revision Register (16-bit register)

The reset value of this register is dependent on the revision of the chip.

Unrestricted read-only.

Chip Revision ID Register Bits 7:0. The register is used to provide chip revision
information. Read accesses return the chip revision in the lower byte and 00h in the upper
byte (e.g., 00A1h).

PO4 (00h, 01h)
Initialization:

Read/Write Access:
PO4.7 to PO4.0

Port 4 Output Register (8-bit register)
This register is set to 00h on all forms of reset.

Unrestricted read/write.

Port 4 Output Register Bits 7:0. The PO4 register stores output data for port 4 when it is
defined as an output port and controls whether the internal weak p-channel pullup transistor
is enabled/disabled if a port pin is defined as an input. The contents of this register can be
modified by a write access. Reading from the register returns the contents of the register.
Changing the direction of port 4 does not change the data contents of the register.

PO5 (01h, 01h)
Initialization:

Read/Write Access:
PO5.7 to PO5.0

Port 5 Output Register (8-bit register)
This register is set to 00h on all forms of reset.

Unrestricted read/write.

Port 5 Output Register Bits 7:0. The PO5 register stores output data for port 5 when it is
defined as an output port and controls whether the internal weak p-channel pullup transistor
is enabled/disabled if a port pin is defined as an input. The contents of this register can be
modified by a write access. Reading from the register returns the contents of the register.
Changing the direction of port 5 does not change the data contents of the register.

Maxim Integrated

5-9

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

PO6 (02h, 01h)
Initialization:

Read/Write Access:
PO6.7 to PO6.0

Port 6 Output Register (8-bit register)
This register is set to 00h on all forms of reset.

Unrestricted read/write.

Port 6 Output Register Bits 7:0. The POG register stores output data for port 64 when it is
defined as an output port and controls whether the internal weak p-channel pullup transistor
is enabled/disabled if a port pin is defined as an input. The contents of this register can be
modified by a write access. Reading from the register returns the contents of the register.
Changing the direction of port 6 does not change the data contents of the register.

WUTC (04h, 01h)
Initialization:

Read/Write Access:
WUTC.0 (WTE)

WUTC. 1 (WTF)

WUTC.7 to WUT.2

Wake-Up Timer Control Register (8-bit register)
This register is cleared to 00h on all resets.

Unrestricted read/write access except that bit 1 is read-only.

Wake-Up Timer Enable. This control bit enables down counting of the 16-bit wake-up
timer. Clearing this bit resets the internal wake-up timer down counter and resets WTF =

0. When WTE = 0, the initial down-counter starting value written into the WUT register is
accessed on WUT register reads. Setting this bit from 0 to 1 loads the internal down counter
with the initial value written to the WUT register, and enables down counting of the wake-up
timer using the ring oscillator. When WTE = 1, the internal down counter value is accessed
on WUT register reads. When WTE = 1, hardware setting of the WTF bit can generate an
interrupt request to the CPU if also enabled globally.

Wake-Up Timer Flag. This bit serves as a status bit/interrupt flag to denote when the wake-
up timer down count has reached Oh. Hardware sets this bit whenever the wake-up down
counter reaches Oh. The WTF bit is cleared by hardware any time the WTE bit is changed
from 1 to O.

Reserved. Reads return 0.

WUT (05h, 01h)
Initialization:

Read/Write Access:

WUT. 15 to WUT.O

Wake-Up Timer Register (16-bit register)

This register is cleared to 0000h on all resets.

Unrestricted write access.

When WTE = 0, reads access the initial starting value written to WUT. When WTE = 1, reads
access the internal down counter, thus multiple reads should be made to attain a stable
value

Wake-Up Timer Value Register Bits 15:0. These bits reflect the 16 bit value of the Wake-
Up Timer. When WTE = 0, the initial wake-up timer starting value may be accessed by
reads and writes of the WUT register. This initial starting value is retained internally so that
triggering another wake-up timer interval requires only toggling of the WTE bit 1 > 0> 1.
When WTE = 1, the internal down-counter value is accessed by reads of WUT, however,
write access is still directed to the initial starting value (that is loaded to the down counter
each time WTE is changed 0 > 1). The 16-bit wake-up timer counts downward until reaching
Oh unless disabled. The internal down counter is asynchronously reset to 0 anytime the
wake-up timer is disabled by clearing WTE = 0. Once started, the WTF flag is set by
hardware when the down count reaches Oh. The OFFFFh starting state for the WUT[15:0]
bits yield the maximum possible down-count range. Writing the WUT[15:0] bits establishes
the down-count starting values shown below:

WUT[15:0] DOWN-COUNT START VALUE
0001h 1
0002h 2
0003h 3
0004h 4
--Other-- (WUT[15:0])
OFFFEh (216 - 2) = 65,534
OFFFFh (216 - 1) = 65,535

5-10

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

PI4 (08h, 01h)
Initialization:

Pl4.7 to PI4.0

Read/Write Access:

Port 4 Input Register
The reset value for this register is dependent on the logical states of the pins.

Unrestricted read.

Port 4 Input Register Bits 7:0. The Pl4 register always reflects the logic state of its pins
when read. Note that each port pin has a weak pullup circuit when functioning as an input
and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the
port pin into three-state.

PI5 (09h, 01h)
Initialization:

PI5.7 to PI5.0

Read/Write Access:

Port 5 Input Register
The reset value for this register is dependent on the logical states of the pins.

Unrestricted read.

Port 5 Input Register Bits 7:0. The PI5 register always reflects the logic state of its pins
when read. Note that each port pin has a weak pullup circuit when functioning as an input
and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the
port pin into three-state.

P16 (0Ah, 01h)
Initialization:

PI6.7 to PI6.0

Reaa/Write Access:

Port 6 Input Register
The reset value for this register is dependent on the logical states of the pins.

Unrestricted read.

Port 6 Input Register Bits 7:0. The PI6 register always reflects the logic state of its pins
when read. Note that each port pin has a weak pullup circuit when functioning as an input
and the p-channel pullup transistor is controlled by its respective PO bits. If the PO bit is set
to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off and forces the
port pin into three-state.

PWCN (0Ch, 01h)
Initialization:

PWCN.0 (PFD)

PWCN. 1 (PFIE)

PWCN.2 (PFl)

PWCN.3 (REGEN)

Read/Write Access:

Power Control Register (16-bit register)
This register is set to 000000sss1100000b on all forms of reset.

Unrestricted read/write.

Power-Fail Monitor Disable. This bit determines whether the power-fail monitoring is
enabled in stop mode when the regulator is off (REGEN = 0). When the regulator is enabled
(as in normal operation or when REGEN = 1 in stop mode), the power-fail monitoring is
always enabled, independent of the PFD bit setting. Otherwise, when set to 1, the power-
fail reset detection for DVDD is disabled when the device is placed into stop mode. When
placed into stop mode with PFD = 1 and REGEN = 0, the power-fail reset comparator shuts
down. When configured to 0 with REGEN = 0, the power-fail monitoring function is enabled
for detecting the condition DVDD < VRST during stop mode.

Power-Fail Monitor Interrupt Enable. Setting this bit to 1 generates an interrupt to the CPU
when PFl is set to 1. Clearing this bit to 0 disables the interrupt from generating. The power-
fail monitor interrupt is not masked by the global interrupt enable (IGE) and is controlled
solely by the PFIE bit.

Power-Fail Monitor Interrupt. This bit is set to 1 when the supply voltage falls below the
power-fail warning threshold. Clearing this bit to O clears the interrupt flag. However, if the
supply voltage is still below the threshold, this flag is set again. Setting this bit to 1 causes
an interrupt to the CPU when PFIE = 1. The power-fail monitor interrupt is not masked by
the global interrupt enable (IGE) and is controlled solely by the PFIE bit.

It is not recommended to write to flash when the supply voltage drops below the power-fail
warning level as there is uncertainty in the duration of continuous power supply. The user
application should check the status of the PFI flag before initiating a flash program/erase
operation.

Regulator Enable. When set to 1, the internal regulator remains powered on when the
device is placed in stop mode. When cleared to O, the internal regulator is shut down to
conserve power. The regulator is always enabled outside of stop mode, independent of the
REGEN bit setting.

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

PWCN.4 (IRTXOE)

PWCN.5 (IRTXOUT)

PWCN.6 (IRRXWP)

PWCN.7 (PFRST)

PWCN.9 to PWCN.8 (PFRCK[1:0])

PWCN. 10 (FRCVDD)

PWCN.11 (CTMS)

IRTX Output Enable. The IRTXOE bit is used in conjunction with the IRTXOUT bit to
determine the state of the IRTX pin when the IR timer is not enabled (i.e., IREN = 0). When
the bit is set to 1, the IRTX pin is used as an output; data in the IRTXOUT bit is driven on
the pin. When the bit is cleared to 0, the IRTX pin is three-stated (if IRTXOUT = 0) or weakly
pulled up (if IRTXOUT = 1).

IRTXOE IRTXOUT IREN IRTX PIN STATE
0 0 0 High-Z
0 1 0 Weak Pullup
1 0 0 Strong 0
1 1 0 Strong 1
X X 1 IR Timer Tx Control

IRTX Output Pin Control. This bit controls the output drive state for the IRTX pin when the
IR timer is not enabled (i.e., IREN = 0) and when the IRTX pin has been enabled for output
by IRTXOE = 1. When IREN = 0 and IRTXOE = 1, setting this bit to 1 enables a strong
output high drive on the IRTX pin. Clearing this bit to 0 enables a strong output low drive on
the IRTX pin. When IRTXOE = 0 and the IR timer is not enabled (IREN = 0), this bit controls
the input mode for the IRTX pin. When IRTXOE = 0, the IRTX pin is three-state. When
IRTXOE = 1, the pin is weakly pulled up.

IRRX Weak Pullup Enable. This bit controls the input mode of the IRRX pin. When this bit
is set to 1, the internal weak pullup is enabled. When this bit is cleared to 0, the internal
weak pullup is turned off, resulting in the three-state input mode.

Power-Fail Reset Flag. This bit is set to 1 whenever a power-fail reset occurs. It is
unaffected by other forms of reset. This bit can be checked by software following a reset to
determine if it was a power-fail reset that occurred. It should always be cleared by software
following a reset to ensure that the source of any future reset can be determined correctly.
Note that this bit is set anytime Vpp < VRsT. The WDCN.POR bit can be examined to
determine whether Vpp was below the VpOR threshold.

Power-Fail Reset Check Time Bits 1:0. These bits are used to enable duty cycling of the
VRST power-monitoring circuitry during the time when Vpp is below the VRST threshold, but
has not reached the POR threshold. The duty cycling of the power-fail monitor during the
VRST condition is provided to reduce the time-averaged current consumption and extend
the SRAM data-retention time when the battery voltage is low, but still provide adequate
response time to exit the VRST state if the battery source is replaced. These bits are reset
only by POR (not even VRST). The table below provides the bit settings and corresponding
duty cycling of the power monitor check when VPOR < VDD < VRST.

PFRCKI1:0] POWER-FAIL MONITOR CHECK INTERVAL (NANOPOWER RING
OSCILLATOR CYCLES)
00 No interval defined (Monitor on always as normal)
01 210 (~128ms for 8kHz nanopower ring oscillator frequency)
10 211 (~256ms for 8kHz nanopower ring oscillator frequency)
11 212 (~512ms for 8kHz nanopower ring oscillator frequency)

Force Vpp Power Supply. When set to 1, VDDB power switching is disabled, and Vpp is
always used as the core 3V power supply. When this bit is cleared to 0, VppB is used as
the core 3V supply if VBUS is present. This bit is cleared on all reset.

System Clock Multiplier Select. When set to 1, this bit selects the output of the USB clock
multiplier PLL as the source of the system clock (the switchover occurs when CKRY is
high). The USB PLL is enabled whenever the USB is enabled or when this bit is set. The
output of the PLL is 48MHz (12MHz crystal input x 4), which is then automatically divided
by 4 to provide the system clock with a 12MHz clock, synchronous to the USB clock. When
cleared, the USB PLL is enabled or disabled by the USB enable.

5-12

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

PWCN. 12 (CTM)

PWCN. 13 (CKRY)

PWCN.[14.:15] (PFWARNCNJ[1:0])

Crystal Multiplier Enable. The CTM bit is used to enable the crystal clock multiplier.
When programmed to 0, the CTM bit disables the crystal clock multiplier to save energy.
When programmed to 1, the CTM bit enables the crystal clock multiplier. The crystal

clock multiplier requires a startup stabilization period. Clearing the CTM to 0 automatically
clears the CKRY and CTMS bits. Setting CTM to 1 starts the crystal clock multiplier startup
counter. During the startup count, the CKRY bit remains cleared.

Clock Ready. The CKRY bit indicates the status of the startup period delay for the USB
clock multiplier PLL warmup period of certain clock cycles. When the CKRY = 0, the counter
for the startup delay is still counting. When the CKRY = 1, the count has been completed.
The CKRY bit is cleared each time the CTMS bit is cleared to 0 and the USB enable is low.
This bit is also cleared by STOP mode.

Power-Fail Warning Trip Point Control [1:0]. These bits are used to change the trip point
voltage for indicating that a power warning has occurred. These two bits are reset only by POR.

PFWARNCN[1:0] NOMINAL VOLTAGE TRIP POINT (V)
00 1.8
01 1.9
10 2.55
11 2.75

PD4 (10h, 01h)
Initialization:

Read/Write Access:

PD4.7 to PD4.0

Port 4 Direction Register

This register is cleared to 00h on all resets except power-fail reset. This register is
unaffected by power-fail reset.

Unrestricted read/write.

Port 4 Direction Register Bits 7:0. PD4 is used to determine the direction of the port 4
function. The port pins are independently controlled by their direction bit. When a bit is set
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin.
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external
signal to drive the pin. Note that each port pin has a weak pullup circuit when functioning
as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off
and forces the port pin into three-state.

PD5 (11h, 01h)
Initialization:

Read/Write Access:

PD5.7 to PD5.0

Port 5 Direction Register
This register is cleared to 00h on all resets except power-fail reset. This register is
unaffected by power-fail reset.

Unrestricted read/write.

Port 5 Direction Register Bits 7:0. PD5 is used to determine the direction of the port 5
function. The port pins are independently controlled by their direction bit. When a bit is set
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin.
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external
signal to drive the pin. Note that each port pin has a weak pullup circuit when functioning
as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to 0, the weak pullup is off
and forces the port pin into three-state.

PD6 (12h, 01h)
Initialization:

Read/Write Access:

PD6.7 to PD6.0

Port 6 Direction Register
This register is cleared to 00h on all resets except power-fail reset. This register is

unaffected by power-fail reset.

Unrestricted read/write.

Port 6 Direction Register Bits 7:0. PD65 is used to determine the direction of the port 6
function. The port pins are independently controlled by their direction bit. When a bit is set
to 1, its corresponding pin is used as an output; data in the PO register is driven on the pin.
When a bit is cleared to 0, its corresponding pin is used as an input, and allows an external
signal to drive the pin. Note that each port pin has a weak pullup circuit when functioning
as an input and the p-channel pullup transistor is controlled by its respective PO bits. If the
PO bit is set to 1, the weak pullup is on, if the PO bit is cleared to O, the weak pullup is off
and forces the port pin into three-state.

Maxim Integrated

5-13

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

TBOR (00h, 02h)
Initialization:

Read/Write Access:
TBOR. 15 to TBOR.O

Timer B0 Capture/Reload Value Register (16-bit register)
This register is cleared to 0000h on all forms of reset.

Unrestricted read/write.

Timer B0 Capture/Reload Bits 15:0. This register is used to capture the TBV value when
Timer BO is configured in capture mode. This register is also used as the 16-bit reload value
when Timer B0 is configured in autoreload mode.

TBOCN (01h, 02h)
Initialization:

Read/Write Access:
TBOCN.O (CP/RLB)

TBOCN.1 (ETB)

TBOCN.2 (TRB)

TBOCN.3 (EXENB)

TBOCN.4 (DCEN)

Timer BO Control Register (16-bit register)
This register is cleared to 0000h on all forms of reset.

Unrestricted read/write.

Capture/Reload Select. This bit determines whether the capture or reload function is used
for Timer B. Timer B functions in an autoreload mode following each overflow/underflow.
See the TFB bit description for overflow/underflow condition. Setting this bit to 1 causes a
Timer B capture to occur when a falling edge is detected on TBB if EXENB is 1. Clearing
this bit to 0 causes an autoreload to occur when Timer B overflow or a falling edge is
detected on TBB if EXENB is 1. It is not intended that the Timer B compare functionality
should be used when operating in capture mode.

Enable Timer B Interrupt. Setting this bit to 1 enables the interrupt from the Timer B TFB
and EXFB flags in TBCN. In Timer B clock output mode (TBOE = 1), the timer overflow flag
(TFB) is still set on an overflow, however, the TBOE = 1 condition prevents this flag from
causing an interrupt when ETB = 1.

Timer B Run Control. This bit enables Timer B operation when set to 1. Clearing this bit to
0 halts Timer B operation and preserves the current count in TBV.

Timer B External Enable. Setting this bit to 1 enables the capture/reload function on the
TBB pin for a negative transition (in up-counting mode). A reload results in TBV being

reset to 0000h. Clearing this bit to 0 causes Timer B to ignore all external events on TBB
pin. When operating in autoreload mode (CP/RLB = 0) with the PWM output functionality
enabled, enabling the TBB input function (EXENB = 1) allows PWM output negative
transitions to set the EXFB flag, however, no reload occurs as a result of the external
negative edge detection.

Down-Count Enable. This bit in conjunction with the TBB pin controls the direction that
Timer B counts in 16-bit autoreload mode. Clearing this bit to O causes Timer B to count

up only. Setting this bit to 1 enables the up/down-counting mode (i.e., it causes Timer B

to count up if the TBB pin is 1 and to count down if the TBB pin is 0). When Timer B PWM
output mode functionality is enabled along with up/down counting (DCEN = 1), the up/
down-count control of Timer B is controlled internally based upon the count in relation to the
register settings. In the compare modes, the DCEN bit controls whether the timer counts up
and resets (DCEN = 0), or counts up and down (DCEN = 1).

5-14

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

TBOCN.5 (TBOE)

TBOCN.6 (EXFB)

TBOCN.7 (TFB)

TBOCN. 10 to TBOCN.8 (TBPS[2:0])

TBOCN.11 (TBCR)
TBOCN. 12 (TBCS)

TBOCN. 14 to TBCN. 13
TBOCN. 15 (C/TB)

Timer B Output Enable. Setting this bit to 1 enables the clock output function on the TBA
pin if C/TB = 0. Timer B rollovers do not cause interrupts. Clearing this bit to 0 allows the
TBA pin to function as either a standard port pin or a counter input for Timer B. Timer B O
and Timer B1 share the TBA pin. If both timers are configured to generate clock output, the
Timer BO clock output special function takes priority over the Timer B1 clock output.

External Timer B Trigger Flag. When configured as a Timer (C/TB = 0), a negative
transition on the TBB pin causes this flag to be set if (CP/RLB = EXENB = 1) or (CP/RLB

= DCEN = 0 and EXENB = 1) or (CP/RLB = 0 and DCEN = EXENB = 1 and TBCS:TBCR #
00b). When CP/RLB = 0 and DCEN = 1 and TBCS:TBCR = 00b, EXFB toggles whenever
Timer B underflows or overflows. Overflow/underflow condition is the same as described for
the TFB bit. In this mode, EXFB can be used as the 17th timer bit and does not cause an
interrupt. If set by a negative transition, this flag must be cleared by software. Setting this bit
to 1 forces a timer interrupt if enabled.

Timer B Overflow Flag. This bit is set when Timer B overflows from TBR or the count is
equal to 0000h in down count mode. It must be cleared by software.

Timer B Clock Prescaler Bits 2:0. The TBPS[2:0] bits select the clock prescaler applied
to the system clock input to Timer B. The TBPS[2:0] bits should be configured by the

user when the timer is stopped (TRB = 0). While hardware does not prevent changing the
TBPS[2:0] bits when the timer is running, the resulting behavior is indeterministic.

Timer B Clock = System Clock/2(2xTBPS[2:0])

TBPS[2:0] TIMER B INPUT CLOCK

000 Sysclk/1

001 Sysclk/4

010 Sysclk/16

011 Sysclk/64

100 Sysclk/256

101 Sysclk/1024

11x Sysclk/1

TBB Pin Output Reset Mode

TBB Pin Output Set Mode. These mode bits define whether the PWM mode output function
is enabled on the TBB pin, the initial output starting state, and what compare mode output
function is in effect. Note that the TBB pin still has certain input functionality when the PWM
output function is enabled. Reference the PWM Output Function section for details on this
mode.

Reserved. Reads return 0.

Counter/Timer Select. This bit determines whether Timer B functions as a timer or counter.
Setting this bit to 1 causes Timer B to count negative transitions on the TBA pin. Clearing
this bit to 0 causes Timer B to function as a timer. The speed of Timer B is determined by
the TBPS[2:0] bits of TBCN.

TB1R (02h, 02h)

Timer B Capture/Reload Value Register (see the TBOR register bit description)

TB1CN (03h, 02h)

Timer B Control Register (see the TBOCN register bit description)

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

IRCN (04h, 02h)
Initialization:

Read/Write Access:
IRCN.O (IREN)

IRCN. 1 (IRMODE)

IRCN.2 (IRTXPOL)

IRCN.3 (IRDATA)

IRCN.5 to IRCN.4 (IRRXSEL[1:0])

IRCN.6 (IRCFME)

IRCN.7 (IRXRL)

IRCN.9 to IRCN.8 (IRENV[1:0])

Infrared Control Register (16-bit register)
This register is cleared to 0000h on all forms of reset.

Unrestricted read/write.

IR Enable. This register bit enables the IR module. Setting this bit to 1 starts the operating
mode as defined by IRMODE bit. Clearing this bit to 0 terminates IR operation.
IR Mode. This register bit controls the IR module operation mode.

IRMODE IR OPERATION MODE
0 Receive Mode
1 Transmit Mode

IR TX Polarity Select. When the IR timer is enabled (IREN = 1), this bit selects the starting/
idle logic state, and the carrier polarity for the IRTX transmit output. This bit also impacts the
polarity of the IRTXM envelope when the independent modulator transmit output mode is
enabled (IRENV[1:0] = 01b or 10b). When IRENV[1:0] = 01b or 10b, the latched IRDATA bit
is directly output to the IRTXM pin as the envelope when IRTXPOL = 0. When IRTXPOL = 1,
the complement of the latched IRDATA bit is output.

IR Data. This register bit defines how the carrier is modulated in transmit mode and in
receive mode, it contains the state of IRRX when a qualified capture event happens. When
IR transmit mode is in effect, setting IRDATA = 1 enables the output of the carrier module
(as affected by IRTXPOL) to be visible on the IRTX pin. When IRDATA = 0, the IR module
is put in the idle state and IRTXPOL is output onto IRTX. In receive mode, the IRDATA bit
contains the latched state of the IRRX pin each time a capture event occurs.

IR Receive Edge Select Bits. These bits define which edge of the input signal trigger a
receive capture function when enabled.

IRRXSEL[1:0] IR RECEIVE MODE
00 Trigger on falling edge
01 Trigger on rising edge
10 Trigger on both rising and falling edge
1 Reserved (disables edge detection)

IR Clock Frequency Mux Enable. In receive mode, setting this bit to 1 enables direct
clocking of the IRV register using the defined IRCLK during the IR receive operation.
Clearing this bit to 0 results in IRV counting of the IRCA-defined carrier during the receive
operation. Using IRCFME = 1 allows IRCLK clock resolution when capturing whereas
IRCFME = 0 allows only (IRCLK/2) resolution when IRCA = 0000h. In transmit mode,
setting this bit to 1 enables direct clocking of the IRV register down counter with IRCLK
so that intervals can be generated with IRCLK resolution. When this bit is cleared to 0, the
IRV down counter is clocked with the IRCA-defined carrier clock, resulting in IRV interval
generation according to the defined carrier frequency.

IR Receive Reload Enable. Setting this bit to 1 enables automatic reload of the IRV register
with 0000h whenever a qualified edge event capture occurs during the IR receive operation.
If IRXRL = 0, the IRV register is not reloaded with 0000h, but continues running during the
IR receive operation.

IR Envelope Mode Bits 1:0. Setting either of these bits (but not both) to 1 enables the
envelope modulation signal (based upon the IRDATA and IRTXPOL bits) to be output
separately to the IRTXM pin during transmit mode. When the bits are both cleared to O or
set to 1, the standard internal modulation is performed during IR transmit mode and the
envelope signal is not output to the IRTXM pin. When the envelope mode is enabled, it is
possible to output either the modulated or unmodulated carrier to the IRTX pin (see table).

IRENV[1:0] IRTX OUTPUT
00 or 11 Envelope mode disable_d.
Standard IRTX modulation (default).
01 Standard IRTX modulation.
10 Constant IRTX carrier (unmodulated).

5-16

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

IRCN.15 to IRCN.13

REGISTER DESCRIPTION
IRCN. 12 to IRCN.10 (IRDIV[2:0]) IR Clock Divide Bits. These two bits select the divide ratio for the IR input clock.
IRDIV[2:0] IR INPUT CLOCK-DIVIDE RATIO
000 fSYSCLK/1
001 fSYSCLK/2
010 fSYSCLK/4
011 fSYSCLK/8
100 fSYSCLK/16
101 fSYSCLK/32
110 fsyscLk/64
111 fsyscLk/128

Reserved. Reads return 0.

IRCA (05h, 02h)
Initialization:

Read/Write Access:
IRCA.7 to IRCA.O (IRCAL[7:0])

IRCA. 15 to IRCA.8 (IRCAH[7:0])

IR Carrier Register (16-bit register)
This register is cleared to 0000h on all forms of reset.

Unrestricted read/write.

IR Carrier Low Byte Bits 7:0. The IRCAL byte defines the number of IR input clocks during
carrier low time. The carrier low time = IRCAL[7:0] + 1.

IR Carrier High Byte Bits 7:0. The IRCAH byte defines the number of IR input clocks
during carrier high time. The carrier high time = IRCAH[7:0] + 1.

IRMT (06h, 02h)
Initialization:

Read/Write Access:
IRMT. 15 to IRMT.O

IR Modulator Time (16-bit register)
This register is cleared to 0000h on all forms of reset.

Unrestricted read/write.

IR Modulator Time Bits 15:0. The IRMT register is a 16-bit register that defines the IRDATA
active time during transmit mode. In receive mode (when RXBCNT = 0), it is used to
capture the IRV value on qualified IRRXSEL edges. In receive mode (when RXBCNT = 1),
the IRMT register increments on detection of selected IRRXSEL edge(s). When RXBCNT is
changed from 0 to 1, the IRMT register is set to 0001h by hardware.

IRCNB (07h, 02h)
Initialization:

Read/Write Access:
IRCNB.O (IROV)

IRCNB. 1 (IRIF)

IRCNB.2 (IRIE)

IRCNB.3 (RXBCNT)

IRCNB.7 to IRCNB.4

Infrared Control Register B (8-bit register)
This register is cleared to 00h on all forms of reset.

Unrestricted read/write.

IR Timer Overflow Flag. This flag is set to 1 when the IR timer overflows from OFFFFh to
0000h in receive mode. This bit must be cleared to 0 by software once it is set.

IR Interrupt Flag. This flag is set to 1 during transmit when the IR timer reloads its value
and in receive mode (if RXBCNT = 0), when a capture occurs. In receive mode (when
RXBCNT = 1), this flag is set whenever the IRCA*2 interval timer expires. This bit must be
cleared to O by software once it is set.

IR Interrupt Enable. Setting this bit to 1 enables an interrupt be generated to the CPU
when the IR timer overflow (IROV) or IR interrupt flag is set (IRIF). Clearing this bit to 0
disables IR timer interrupt generation.

Receive Carrier Burst-Count Enable. Setting this bit to 1 enables the carrier burst
counting mode for the IR timer when operating in receive mode. This bit is not meaningful
for the transmit mode. Whenever software changes RXBCNT from 0 to 1, the IRMT register
is set to 0001h by hardware. When RXBCNT = 1, the IR timer receive mode is modified in
the following ways: 1) The IRV register is not captured to the IRMT register on detection of
the IRRXSEL[1:0] selected edge(s); 2) The IRMT register is incremented on detection of the
IRRXSEL[1:0] selected edge(s); 3) The IRIF flag is no longer set on capture edge detection;
4) An IRCA x 2 interval timer is enabled and upon expiration the IRIF flag is set. When
RXBCNT = 0, the receive carrier burst-count mode is disabled and normal receive capture
functionality can be used.

Reserved. Reads return 0.

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

TBOC (08h, 02h)
Initialization:

Read/Write Access:
TBOC. 15 to TBOC.0

Timer BO Compare Register (16-bit register)
This register is cleared to 0000h on all forms of reset.

Unrestricted read/write.

Timer B0 Compare Bits 15:0. This register is used for comparison versus the TBV value
when Timer B is operated in compare mode.

TBOV (09h, 02h)
Initialization:

Read/Write Access:
TBOV.15 to TBOV.O

Timer BO Value Register (16-bit register)
The Timer BO Value is cleared to 0000h on all forms of reset.

Unrestricted read/write.
Timer B0 Value Bits 15:0. This register is used to load and read the 16-bit Timer B value.

TB1C (0Ah, 02h)

Timer B1 Compare Register (see the TBOC register bit description)

TB1V (0Bh, 02h)

Timer B1 Value Register (see the TBOV register bit description)

IRV (0Ch, 02h)
Initialization:

Read/Write Access:
IRV.15 to IRV.0

IR Value Register (16-bit register)
This register is cleared to 0000h on all forms of reset.

Unrestricted read/write.

IR Value Register Bits 15:0. The IRV register is a 16-bit register that holds the current
IR timer value. The IR timer value starts counting when the IREN bit is set to 1. It stops
counting when the IREN bit is cleared to 0 and retains the current timer value.

SCONO (00h, 03h)
Initialization:

Read/Write Access:
SCONO.0 (RI)

SCONO.1 (TI)

SCONO.2 (RBS)

SCONO.3 (TB8)

SCONO.4 (REN)

SCONO.5 (SM2)

Serial Port 0 Control Register
The serial port control is cleared to 00h on all forms of reset.

Unrestricted read/write.

Receive Interrupt Flag. This bit indicates that a data byte has been received in the serial
port buffer. The bit is set at the end of the 8th bit for mode 0, after the last sample of the
incoming stop bit for mode 1 subject to the value of the SM2 bit, or after the last sample of
RB8 for modes 2 and 3. This bit must be cleared by software once set.

Transmit Interrupt Flag. This bit indicates that the data in the serial port data buffer has
been completely shifted out. It is set at the end of the last data bit for all modes of operation
and must be cleared by software once set.

9th Received Bit State. This bit identifies the state of the 9th bit of received data in serial
port modes 2 and 3. When SM2 is 0, it is the state of the stop bit in mode 1. This bit has no
meaning in mode 0.

9th Transmission Bit State. This bit defines the state of the 9th transmission bit in serial
port modes 2 and 3.

Receive Enable.

REN_O = 0: Serial port O receiver disabled.

REN_O = 1: Serial port O receiver enabled for modes 1, 2, and 3. Initiate synchronous
reception for mode 0.

Serial Port Mode Bit 2. Setting this bit in mode 1 ignores reception if an invalid stop

bit is detected. Setting this bit in mode 2 or 3 enables multiprocessor communications,
and prevents the Rl bit from being set and the interrupt from being asserted if the 9th bit
received is 0. This bit also used to support mode 0 for clock selection:

SM2 = 0: Clock is divided by 12.

SM2 = 1: Clock is divided by 4.

5-18

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

SCONO.6 (SM1)
SCONO.7 (SMO/FE)

Serial Port 0 Mode Bits 1:0 (when FEDE is 0). When FEDE is set to 1, this bit is the
Framing Error Flag that is set upon detection of an invalid stop bit. It must be cleared by
software. Modification of this bit when FEDE is set has no effect on the serial mode.

MODE | SM2 SM1 SMO FUNCTION LENGTH PERIOD
(BITS)
0 0 0 0 Synchronous 8 12 system clocks
0 1 0 0 Synchronous 8 4 system clocks
64/16 baud clocks
1 X 1 0 Asynchronous 10 (SMOD = 0/1)
64/32 system
2 0 0 1 Asynchronous 11 clocks (SMOD =
0/1)
64/32 system
2 1 0 1 Asynchronous (MP) 11 clocks (SMOD =
0/1)
64/16 baud clocks
3 0 1 1 Asynchronous 11 (SMOD = 0/1)
64/16 baud clocks
3 1 1 1 Asynchronous (MP) 11 (SMOD = 0/1)

SBUFO (01h, 03h)
Initialization:

Read/Write Access:
SBUFO0.7 to SBUF0.0

Serial Data Buffer 0

This buffer is cleared to 00h on all forms of reset.

Unrestricted read/write.

Serial Data Buffer 0 Bits 7:0. Data for serial port 0 is read from or written to this location.
The serial transmit and receive buffers are separate but both are addressed at this location.

Maxim Integrated

5-19

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

SCON?1 (02h, 03h)
Initialization:

Read/Write Access:
SCON1.0 (Ri)

SCON1.1 (Tl)

SCON1.2 (RBS)

SCON1.3 (TB8)

SCON1.4 (REN)

SCON1.5 (SM2)

SCON1.6 (SM1)
SCON1.7 (SMO/FE)

Serial Port 1 Control Register
The serial port control is cleared to 00h on all forms of reset.

Unrestricted read/write.

Receive Interrupt Flag. This bit indicates that a data byte has been received in the serial
port buffer. The bit is set at the end of the 8th bit for mode 0, after the last sample of the
incoming stop bit for mode 1 subject to the value of the SM2 bit, or after the last sample of
RB8 for modes 2 and 3. This bit must be cleared by software once set.

Transmit Interrupt Flag. This bit indicates that the data in the serial port data buffer has
been completely shifted out. It is set at the end of the last data bit for all modes of operation
and must be cleared by software once set.

9th Received Bit State. This bit identifies the state of the 9th bit of received data in serial
port modes 2 and 3. When SM2 is 0, it is the state of the stop bit in mode 1. This bit has no
meaning in mode 0.

9th Transmission Bit State. This bit defines the state of the 9th transmission bit in serial
port modes 2 and 3.

Receive Enable

REN_O = 0: Serial port O receiver disabled.

REN_O = 1: Serial port O receiver enabled for modes 1, 2, and 3. Initiate synchronous
reception for mode O.

Serial Port 1 Mode Bit 2. Setting this bit in mode 1 ignores reception if an invalid stop

bit is detected. Setting this bit in mode 2 or 3 enables multiprocessor communications,

and prevents the Rl bit from being set and the interrupt from being asserted if the 9th bit
received is 0. This bit also used to support mode 0 for clock selection:

SM2 = 0: Clock is divided by 12.

SM2 = 1: Clock is divided by 4.

Serial Port 1 Mode Bits 1:0 (when FEDE is 0). When FEDE is set to 1, this bit is the Framing
Error Flag that is set upon detection of an invalid stop bit. It must be cleared by software.
Modification of this bit when FEDE is set has no effect on the serial mode.

MODE | SM2 SM1 SMo FUNCTION LENGTH PERIOD
(BITS)

0 0 0 0 Synchronous 8 12 system clocks

0 1 0 0 Synchronous 8 4 system clocks
64/16 baud clocks

1 X 1 0 Asynchronous 10 (SMOD = 0/1)
64/32 system

2 0 0 1 Asynchronous 11 clocks (SMOD =
0/1)
64/32 system

2 1 0 1 Asynchronous (MP) 11 clocks (SMOD =
0/1)

3 0 1 1 Asynchronous 11 64/16 baud clocks

(SMOD = 0/1)

64/16 baud clocks

3 1 1 1 Asynchronous (MP) 11 (SMOD = 0/1)

5-20

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

SBUF1 (03h, 03h)
Initialization:

Read/Write Access:

SBUF1.7 to SBUF1.0

Serial Data Buffer 1
This buffer is cleared to 00h on all forms of reset.

Unrestricted read/write.

Serial Data Buffer 1 Bit 7:0. Data for serial port O is read from or written to this location.
The serial transmit and receive buffers are separate but both are addressed at this location.

SPIBO (04h, 03h)
Initialization:

Read/Write Access:

SPIBO.15 to SPIB0.0

SPI Data Buffer 0 (16-bit register)

This buffer is cleared to 0000h on all forms of reset.

Unrestricted read, write is allowed outside of a transfer cycle; when the STBY bit is set, write
is blocked and causes write collision error.

SPI Data Buffer 0 Bits 15:0. Data for SPI is read from or written to this location. The serial
transmit and receive buffers are separate but both are addressed at this location.

SPICNO (05h, 03h)
Initialization:

Read/Write Access:
SPICNO.0 (SPIEN)

SPICNO.1 (MSTM)

SPICNO.2 (MODFE)

SPICNO.3 (MODF)

SPICNO.4 (WCOL)

SPICNO.5 (ROVR)

SPICNO.6 (SPIC)

SPICNO.7 (STBY)

SPI Control Register 0
This buffer is cleared to 00h on all forms of reset.

Unrestricted read/write except bit 7 is read-only.

SPI Enable. Setting this bit to 1 enables the SPI module and its baud-rate generator for SPI
operation. Clearing this bit to O disables the SPI module and its baud-rate generator.
Master Mode Enable. MSTM functions as a master mode enable bit for the SPI module.
When MSTM is set to 1, the SPI operates as a master. When MSTM is cleared to 0, the

SPI module operates in slave mode. Note that this bit can be set from 0 to 1 only when the
SSEL signal is deasserted.

Mode Fault Enable. When set to 1 in master mode, this bit enables the use of SSEL input
as a mode fault signal; when cleared to 0, the SSEL has no function and its port pin can be
used for other purposes. In slave mode, the SSEL pin always functions as a slave select
input signal to the SPI module, independent of the setting of the MODFE bit.

Mode Fault Flag. This bit is the mode fault flag when the SPI is operating as a master.
When mode fault detection is enabled as MODFE = 1 in master mode, a detection of a
high to low transition on the SSEL pin signifies a mode fault and sets the MODF to 1. This
bit must be cleared to 0 by software once set. Setting this bit to 1 by software causes an
interrupt if enabled. This flag has no meaning in slave mode.

Write Collision Flag. This bit indicates a write collision when set to 1. This is caused by
attempting to write to the SPIB while a transfer cycle is in progress. This bit must be cleared
to 0 by software once set. Setting this bit to 1 by software causes an interrupt if enabled.
Receive Overrun Flag. This bit indicates a receive overrun when set to 1. This is caused
by two or more characters have been received since the last read by the processor. The
newer data is lost. This bit must be cleared to 0 by software once set. Setting this bit to 1 by
software causes an interrupt if enabled.

SPI Transfer Complete Flag. This bit indicates the completion of a transfer cycle when
set to 1. This bit must be cleared to 0 by software once set. Setting this bit to 1 by software
causes an interrupt if enabled.

SPI Transfer Busy Flag. This bit is used to indicate the current status of the SPI module.
STBY is set to 1 when starting a SPI transfer cycle and is cleared to O when the transfer
cycle is completed. This bit is controlled by hardware and is read-only for user software.

SPIB1 (06h, 03h)
Initialization:

Read/Write Access:

SPIB1.15 to SPIB1.0

SPI Data Buffer 1 (16-bit register)
This buffer is cleared to 0000h on all forms of reset.

Unrestricted read, write is allowed outside of a transfer cycle; when the STBY bit is set, write
is blocked and causes write collision error.

SPI Data Buffer 1 Bits 15:0. Data for SPI is read from or written to this location. The serial
transmit and receive buffers are separate but both are addressed at this location.

Maxim Integrated

5-21

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

SPICN1 (07h, 03h)
Initialization:

Read/Write Access:
SPICN1.0 (SPIEN)

SPICN1.1 (MSTM)

SPICN1.2 (MODFE)

SPICN1.3 (MODF)

SPICN1.4 (WCOL)

SPICN1.5 (ROVR)

SPICN1.6 (SPIC)

SPICN1.7 (STBY)

SPI Control Register 1
This buffer is cleared to 00h on all forms of reset.

Unrestricted read/write except bit 7 is read-only.

SPI Enable. Setting this bit to 1 enables the SPI module and its baud-rate generator for SPI
operation. Clearing this bit to 0 disables the SPI module and its baud-rate generator.

Master Mode Enable. MSTM functions as a master mode enable bit for the SPI module.
When MSTM s set to 1, the SPI operates as a master. When MSTM is cleared to O, the
SPI module operates in slave mode. Note that this bit can be set from 0 to 1 only when the
SSEL signal is deasserted.

Mode Fault Enable. When set to 1 in master mode, this bit enables the use of SSEL input
as a mode fault signal; when cleared to 0, the SSEL has no function and its port pin can be
used for other purposes. In slave mode, the SSEL pin always functions as a slave select
input signal to the SPI module, independent of the setting of the MODFE bit.

Mode Fault Flag. This bit is the mode fault flag when the SPI is operating as a master.
When mode fault detection is enabled as MODFE = 1 in master mode, a detection of a
high to low transition on the SSEL pin signifies a mode fault and sets the MODF to 1. This
bit must be cleared to 0 by software once set. Setting this bit to 1 by software causes an
interrupt if enabled. This flag has no meaning in slave mode.

Write Collision Flag. This bit indicates a write collision when set to 1. This is caused by
attempting to write to the SPIB while a transfer cycle is in progress. This bit must be cleared
to 0 by software once set. Setting this bit to 1 by software causes an interrupt if enabled.
Receive Overrun Flag. This bit indicates a receive overrun when set to 1. This is caused
by two or more characters have been received since the last read by the processor. The
newer data is lost. This bit must be cleared to 0 by software once set. Setting this bit to 1 by
software causes an interrupt if enabled.

SPI Transfer Complete Flag. This bit indicates the completion of a transfer cycle when
set to 1. This bit must be cleared to 0 by software once set. Setting this bit to 1 by software
causes an interrupt if enabled.

SPI Transfer Busy Flag. This bit is used to indicate the current status of the SPI module.
STBY is set to 1 when starting a SPI transfer cycle and is cleared to 0 when the transfer
cycle is completed. This bit is controlled by hardware and is read-only for user software.

PRO (08h, 03h)
Initialization:

Read/Write Access:
PRO. 15 to PRO.O

Phase Register 0
The phase register is cleared to 0000h on all forms of reset.

Unrestricted read/write.

Phase Register Bits 15:0. This register is used to load and read the 16-bit value in the
phase register that determines the baud rate for the serial port O.

SMDO (09h, 03h)
Initialization:

Read/Write Access:
SMDO.0 (FEDED)

SMDO. 1 (SMODO)

SMDO.2 (ESI0)

SMDO.7 to SMDO.3

Serial Port Mode Register 0
This register is cleared to 00h on all forms of reset.

Unrestricted read/write.

Framing Error-Detection Enable. This bit selects the function of SMO (SCONO.7):
FEDE = 0: SCONO.7 functions as SMO for serial port mode selection.

FEDE = 1: SCONO.7 is converted to the framing error (FE) flag.

Serial Port 0 Baud-Rate Select. The SMOD selects the final baud rate for the
asynchronous mode:

SMOD = 1: 16 times the baud clock for mode 1 and 3,

32 times the system clock for mode 2.

SMOD = 0: 64 times the baud clock for mode 1 and 3,

64 times the system clock for mode 2.

Enable Serial Port 0 Interrupt. Setting this bit to 1 enables interrupt requests generated by
the Rl or Tl flags in SCONO. Clearing this bit to O disables the serial port interrupt.
Reserved. Reads return 0.

5-22

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

PRT1 (0Ah, 03h)
Initialization:
Read/Write Access:
PR1.15 to PR1.0

Phase Register 1
The phase register is cleared to 0000h on all forms of reset.
Unrestricted read/write.

Phase Register 1 Bits 15:0. This register is used to load and read the 16-bit value in the
phase register that determines the baud rate for the serial port 1.

SMD1 (0Bh, 03h)
Initialization:
Read/Write Access:
SMD1.0 (FEDET)

SMD1.1 (SMOD1)

SMD1.2 (ESIT)

SMD1.7 to SMD1.3

Serial Port Mode Register 1

This register is cleared to 00h on all forms of reset.

Unrestricted read/write.

Framing Error-Detection Enable. This bit selects the function of SMO (SCON1.7):

FEDE = 0: SCON1.7 functions as SMO for serial port mode selection.

FEDE = 1: SCON1.7 is converted to the framing error (FE) flag.

Serial Port 1 Baud-Rate Select. The SMOD selects the final baud rate for the asynchronous
mode:

SMOD = 1: 16 times the baud clock for mode 1 and 3, 32 times the system clock for mode 2.
SMOD = 0: 64 times the baud clock for mode 1 and 3, 64 times the system clock for mode 2.
Enable Serial Port 1 Interrupt. Setting this bit to 1 enables interrupt requests generated by
the Rl or Tl flags in SCON1. Clearing this bit to O disables the serial port interrupt.
Reserved, read returns 0.

SPICFO0 (0Ch, 03h)
Initialization:

Read/Write Access:
SPICF0.0 (CKPOL)

SPICFO0.1 (CKPHA)

SPICF0.2 (CHR)

SPICF0.5 to SPICFO0.3
SPICF0.6 (SAS)

SPICFO.7 (ESPII)

SPI Configuration Register 0
This buffer is cleared to 00h on all forms of reset.

Unrestricted read/write.

Clock Polarity Select. This bit is used with the CKPHA bit to determine the SPI transfer
format. When the CKPOL is set to 1, the SPI uses the clock falling edge as an active edge.
When the CKPOL is cleared to 0, the SPI selects the clock rising edge as an active edge.
Clock Phase Select. This bit is used with the CKPOL bit to determine the SPI transfer
format. When the CKPHA is set to 1, the SPI samples input data at an inactive edge. When
the CKPHA is cleared to 0O, the SPI samples input data at an active edge.

Character Length Bit. The CHR bit determines the character length for an SPI transfer
cycle. A character can consist 8 or 16 bits in length. When CHR bit is O, the character is 8
bits; when CHR is set to 1, the character is 16 bits.

Reserved. Reads return 0.

Slave Active Select. This bit is used to determine the SSEL active state. When the SAS is
cleared to 0, the SSEL is active low and responds to an external low signal. When the SAS
is set to 1, the SSEL is active high.

SPI Interrupt Enable. Setting this bit to 1 enables the SPI interrupt when MODF, WCOL,
ROVR, or SPIC flags are set. Clearing this bit to 0 disables the SPI interrupt.

SPICKO (0Dh, 03h)
Initialization:

Read/Write Access:
SPICKO.7 to SPICKO0.0 (CKR[7:0])

SPI Clock Register 0
This buffer is cleared to 00h on all forms of reset.
Unrestricted read/write.
Clock-Divide Ratio Bits 7:0. These bits select one of the 256 divide ratios (0 to 255) used
for the baud-rate generator, with bit 7 as the most significant bit. The frequency of the SPI
baud rate is calculated using the following equation:

SPI Baud Rate = 0.5 x System Clock/(divide ratio + 1)
This register has no function when operating in slave mode and the clock generation
circuitry should be disabled.

Maxim Integrated

5-23

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

SPICF1 (OEh, 03h)
Initialization:

Read/Write Access:
SPICF1.0 (CKPOL)

SPICF1.1 (CKPHA)

SPICF1.2 (CHR)

SPICF1.5 to SPICF1.3
SPICF1.6 (SAS)

SPICF1.7 (ESPI)

SPI Configuration Register 1
This buffer is cleared to 00h on all forms of reset.

Unrestricted read/write.

Clock Polarity Select. This bit is used with the CKPHA bit to determine the SPI transfer
format. When the CKPOL is set to 1, the SPI uses the clock falling edge as an active edge.
When the CKPOL is cleared to 0, the SPI selects the clock rising edge as an active edge.
Clock Phase Select. This bit is used with the CKPOL bit to determine the SPI transfer
format. When the CKPHA is set to 1, the SPI samples input data at an inactive edge. When
the CKPHA is cleared to 0O, the SPI samples input data at an active edge.

Character Length Bit. The CHR bit determines the character length for an SPI transfer
cycle. A character can consist 8 or 16 bits in length. When CHR bit is O, the character is 8
bits; when CHR is set to 1, the character is 16 bits.

Reserved. Reads return 0.

Slave Active Select. This bit is used to determine the SSEL active state. When the SAS is
cleared to 0, the SSEL is active low and responds to an external low signal. When the SAS
is set to 1, the SSEL is active high.

SPI Interrupt Enable. Setting this bit to 1 enables the SPI interrupt when MODF, WCOL,
ROVR, or SPIC flags are set. Clearing this bit to O disables the SPI interrupt.

SPICK1 (OFh, 03h)
Initialization:

Read/Write Access:
SPICK1.7 to SPICK1.0 (CKR[7:0])

SPI Clock Register 1
This buffer is cleared to 00h on all forms of reset.

Unrestricted read/write.
Clock-Divide Ratio Bits 7:0. These bits select one of the 256 divide ratios (0 to 255) used

for the baud-rate generator, with bit 7 as the most significant bit. The frequency of the SPI
baud rate is calculated using the following equation:

SPI Baud Rate = 0.5 x System Clock/(divide ratio + 1)

This register has no function when operating in slave mode and the clock generation
circuitry should be disabled.

I2CCN (00h, 04h)
Initialization:

Read/Write Access:

12CCN.0 (I2CEN)

[2CCN. 1 (I2CMST)

12CCN.2 (I2CMODE)

I2C Control Register (16-bit register)

This register is cleared to 0000h on all forms of reset. The I2CSTART and I2CSTOP bits are
reset to 0 when I2CMST = 0 or when I2CEN = 0. [I2CSTART and 12CSTOP are a mutually
exclusive operation. User software can only set one of these bits at any given time. I2CRST
is reset to O when 12CEN = 0.

Unrestricted read. Unrestricted write access when [2CBUSY = 0. Writes to I2CMST and
[2CMODE are ignored when 12CBUSY = 1. Writes to I2CEN are normally disabled when
[2CBUSY = 1. However, when the I2CRST = 1, I2CEN can be written to even when
[2CBUSY = 1. Writes to I2CACK are ignored when 12CRST = 1.

I12C Enable. This bit enables the 12C function. When set to 1, the I2C communication unit is
enabled. When cleared to 0, the 12C function is disabled.

I12C Master Mode Enable. The I2CMST bit functions as a master mode-enable bit for the
12C module. When the 12CMST bit is set to 1, the 12C operates as a master. When the
I2CMST is cleared to 0, the 12C module operates in slave mode. This bit is automatically
cleared whenever the 12C controller receives a slave address match (I2CAMI = 1), loses
arbitration (I2CALI = 1), or through a general call (I2CGCl = 1).

I2C Transfer Mode. The transfer mode bit selects the direction of data transfer with respect
to the master. When the I2CMODE bit is set to 1, the master is operating in receiver mode
(reading from slave). When the 12CMODE bit is cleared to 0, the master is operating in
transmitter mode (writing to slave). Note that software writing to this bit is prohibited in slave
mode. When operating in master mode, software configures this bit to the desired direction
of data transfer. When operating in slave mode, the direction of data transfer is determined
by the R/W bit received during the address stage and this bit reflects the actual R/W bit
value in the current transfer and is set by hardware. Software writing to this bit in slave
mode is ignored.

5-24

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

12CCN.3:
I2CCN.4 (I2CSTRS)

I2CCN.5 (I2CACK)

I2CCN.6 (I2CSTART)

I2CCN.7 (I2CSTOP)

I2CCN.8 (I2CGCEN)

I2CCN.9 (I12CSTREN)

12CCN.14:10
[2CCN. 15 (I12CRST)

Reserved. Read returns 0.

I2C Clock Stretch Select. Setting this bit to 1 enables clock stretching after the falling edge of
the 8th clock cycle. Clearing this bit to 0 enables clock stretching after the falling edge of the
9th clock cycle. This bit has no effect when clock stretching is disabled (I2CSTREN = 0).

I12C Data Acknowledge Bit. This bit selects the acknowledge bit returned by the 12C
controller while acting as a receiver. Setting this bit to 1 generates a NACK (leaving SDA
high). Clearing the I2CACK bit to 0 generates an ACK (pulling SDA LOW) during the
acknowledgement cycle. This bit retains its value unless changed by software or hardware.
When an 12C abort is in progress (I2CRST = 1), this bit is set to 1 by hardware and software
and writes to this bit are ignored when I12CRST = 1.

I12C START Enable. Setting this bit automatically generates a START condition when

the bus is free or a repeated START condition during a transfer where the 12C module is
operating as the master. This bit automatically is self-cleared to 0 after the START condition
has been generated. If the I12C START interrupt is enabled, a START condition generates an
interrupt to the CPU.

In master mode, setting this bit may also start the timeout timer if enabled. If the timeout
timer expires before the START condition can be generated, a timeout interrupt will be
generated to the CPU if enabled. The I2CSTART bit will also be cleared to ‘0’ by the
timeout event.

Note that this bit has no effect when the 12C is operating in slave mode (I2CMST=0) and will
be reset to ‘0" when I2CMST =0 or I2CEN=0. Also the I2CSTART and I12CSTOP are mutually
exclusive. If both bits are set at the same time, it is considered as an invalid operation and
the 12C controller will ignore the request and reset both bits to 0. Setting the I2CSTART bit
to 1 while I2CSTOP = 1 is an invalid operation and will be ignored, leaving I2CSTART bit
cleared to 0.

I12C STOP Enable. Setting this bit to 1 generates a STOP condition. This bit is automatically
self-cleared to O after the STOP condition has been generated.

In master mode, setting this bit may also start the timeout timer if enabled. If the timeout
timer expires before the STOP condition can be generated, a timeout interrupt will be
generated to the CPU if enabled. The I2CSTOP bit will also be cleared to ‘0’ by the timeout
event.

Note that this bit has no effect when the 12C is operating in slave mode (I2CMST=0) and will
be reset to ‘0" when [2CMST=0 or I2CEN=0. Setting the I2CSTOP bit to 1 while I2CSTART =
1 is an invalid operation and will be ignored, leaving I2CSTOP bit cleared to 0.

I12C General Call Enable. Setting this bit to 1 enables the 12C to respond to a general
call address (address = 0000 0000). Clearing this bit to 0 disables the 12C to respond to
general call address.

I2C Clock Stretch Enable. Setting this bit to 1 stretches the clock (hold SCL low) at the end
of the clock cycle specified in I2CSTRS. Clearing this bit disables clock stretching.
Reserved. Read returns 0.

I12C Reset. Setting this bit to 1 aborts the current transaction and resets the 12C controller.
This bit is set to 1 by software and is only cleared to O by hardware after the reset or when
[2CEN = 0.

Maxim Integrated

5-25

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

12CST (01h, 04h)
Initialization:

Read/Write Access:

12CST.0 (12CSRI)

12CST.1 (12CTXI)

12CST.2 (I12CRXI)

12CST.3 (12CSTRI)

12CST.4 (12CTOl)

12CST.5 (12CAMI)

I2CST.6 (I2CALI)

12CST.7 (I2CNACKI)

12CST.8 (12CGCl)

12CST.9 (12CROI)

12CST. 10 (12CSCL)

12CST. 11 (12CSPI)

12CST.13 to 12CST. 12

I2C Status Register (16-bit register)

This register is cleared to 0000h on all forms of reset.

Unrestricted read. Not all the bits can be written by software. For each bit accessibility refer
to individual bit description.

I2C START Interrupt Flag. This bit is set to 1 when a START condition (S or Sr) is detected.
This bit must be cleared to 0 by software once set. Setting this bit to 1 by software causes
an interrupt if enabled.

I12C Transmit Complete Interrupt Flag. This bit indicates that an address or a data byte
has been successfully shifted out and the 12C controller has received an acknowledgment
from the receiver (NACK or ACK). This bit must be cleared by software once set. Setting
this bit to 1 by software causes an interrupt if enabled.

I12C Receive Ready Interrupt Flag. This bit indicates that a data byte has been received
in the 12C buffer. This bit must be cleared by software once set. Setting this bit to 1 by
hardware causes an interrupt if enabled. This bit is set by hardware only.

I2C Clock Stretch Interrupt Flag. This bit indicates that the 12C controller is operating

with clock stretching enabled and is holding the SCL clock signal low. The 12C controller
releases SCL after this bit has been cleared to 0. Setting this bit to 1 by hardware causes
an interrupt if enabled. This bit must be cleared to 0 by software once set. This bit is set by
hardware only.

I2C Timeout Interrupt Flag. This bit is set to 1 if either the 12C controller cannot generate a
START condition or the 12C SCL low time has expired the timeout value specified in 2CTO
register. This happens when the 12C controller is operating in master mode and some other
device on the bus is using the bus or holding SCL low for an extended period of time. This
bit must be cleared to 0 by software once set. Setting this bit to 1 by software causes an
interrupt if enabled.

I2C Slave Address Match Interrupt Flag. This bit is set to 1 when the 12C controller
receives an address that matches the contents in its slave address register (I2CSLA) during
the address stage. This bit must be cleared to 0 by software once set. Setting this bit to 1
by software causes an interrupt if enabled.

I2C Arbitration Loss Flag. This bit is set to 1 when the 12C is configured as a master and
loses in the arbitration. When the master loses arbitration, the I2CMST bit is cleared to 0.
Setting this bit to 1 by hardware causes an interrupt if enabled. This bit must be cleared to
0 by software once set. This bit is set by hardware only.

I2C NACK Interrupt Flag. This bit is set to 1 if the 12C transmitter receives a NACK from the
receiver. Setting this bit to 1 by hardware causes an interrupt if enabled. This bit must be
cleared to 0 by software once set. This bit is set by hardware only.

I12C General Call Interrupt Flag. This bit is set to 1 when the general call is enabled
(I2CGCEN = 1) and the general call address is received. This bit must be cleared to 0 by
software once set. Setting this bit to 1 by software causes an interrupt if enabled.

I12C Receiver Overrun Flag. This bit indicates a receive overrun when set to 1. This bit
is set to 1 if the receiver has already received 2 bytes since the last CPU read. This bit is
cleared to 0 by software reading the I2CBUF. Setting this bit to 1 by software causes an
interrupt if enabled. Writing O to this bit does not clear the interrupt.

I12C SCL Status. This bit reflects the logic state of SCL signal. This bit is set to 1 when SCL
is at a logic-high (1), and cleared to 0 when SCL is at a logic-low (0). This bit is controlled
by hardware and is read only.

I12C STOP Interrupt Flag. This bit is set to 1 when a STOP condition (P) is detected. This
bit must be cleared to 0 by software once set. Setting this bit to 1 by software causes an
interrupt if enabled.

Reserved. Reads return 0.

5-26

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

12CST. 14 (12CBUSY)

12CST. 15 (12CBUS)

I12C Busy. This bit is used to indicate the current status of the 12C module. The 12CBUSY is
set to 1 when the 12C controller is actively participating in a transaction or when it does not
have control of the bus. This bit is controlled by hardware and is read only.

I12C Bus Busy. This bit is set to 1 when a START/repeated START condition is detected and
cleared to 0 when the STOP condition is detected. This bit is reset to 0 on all forms of reset
and when I2CEN = 0. This bit is controlled by hardware and is read only.

12CBUF (02h, 04h)
Initialization:

Read/Write Access:
[2CBUF.7 to I2CBUF.0

I12C Data Buffer Register (8-bit register)
This register is cleared to 00h on all forms of resets

Unrestricted read access. This register can be written to only when [2CBUSY = 0.
I12C Data Buffer Bits 7:0. Data for |12C transfer is read from or written to this location. The
12C transmit and receive buffers are separate, but both are addressed at this location.

During address transmission, only 12CBUF[6:0] is used as the address bits. During data
transmission, only 12CBUF[7:0] is used.

12CIE (03h, 04h)
Initialization:

Read/Write Access:
12CIE.O (I2CSRIE)

12CIE. 1 (12CTXIE)

12CIE.2 (I2CRXIE)

12CIE.3 (I2CSTRIE)

12CIE.4 (12CTOIE)

12CIE.5 (I2CAMIE)

12CIE.6 (I2CALIE)

12CIE.7 (I2CNACKIE)

12CIE.8 (I2CGCIE)

12CIE.9 (I2CROIE)

12CIE. 10

I12C Interrupt Enable Register (16-bit register)
This register is cleared to 0000h on all forms of reset.

Unrestricted read/write access.

I12C START Interrupt Enable. Setting this bit to 1 causes an interrupt to the CPU when a
START condition is detected (I2CSRI = 1). Clearing this bit to 0 disables a START detection
interrupt from generating.

I2C Transmit Complete Interrupt Enable. Setting this bit to 1 causes an interrupt to the
CPU when the transmit interrupt flag is set (I2CTXI = 1). Clearing this bit to O disables the
transmit interrupt from generating.

I12C Receive Ready Interrupt Enable. Setting this bit to 1 causes an interrupt to the CPU
when the receive interrupt flag is set (I2CRXI = 1). Clearing this bit to 0 disables the receive
interrupt from generating.

I2C Clock Stretch Interrupt Enable. Setting this bit to 1 generates an interrupt to the CPU
when the clock stretch interrupt flag is set (I2CSTRI = 1). Clearing this bit disables the clock
stretch interrupt from generating.

I12C Timeout Interrupt Enable. Setting this bit to 1 causes an interrupt to the CPU when
a timeout condition is detected (I2CTOI = 1). Clearing this bit to 0 disables the timeout
interrupt from generating.

I12C Slave Address Match Interrupt Enable. Setting this bit to 1 causes an interrupt to the
CPU when the I12C controller detects an address that matches the 1I2CSLA value (I2CAMI =
1). Clearing this bit to O disables the address match interrupt from generating.

I12C Arbitration Loss Enable. Setting this bit to 1 causes an interrupt to the CPU when the
I2C master loses in an arbitration (I2CALI = 1). Clearing this bit to O disables the arbitration
loss interrupt from generating.

I12C NACK Interrupt Enable. Setting this bit to 1 causes an interrupt to the CPU when
a NACK is detected (I2CNACKI = 1). Clearing this bit to 0 disables the NACK detection
interrupt from generating.

I12C General Call Interrupt Enable. Setting this bit to 1 generates an 12CGCI (general call
interrupt) to the CPU when general call is enabled (I2CGCEN = 1). Clearing this bit to 0
disables the general call interrupt from generating.

I12C Receiver Overrun Interrupt Enable. Setting this bit to 1 causes an interrupt to the CPU
when a receiver overrun condition is detected (12ROl = 1). Clearing this bit to O disables the
receiver overrun detection interrupt from generating.

Reserved. Reads return 0.

Maxim Integrated

5-27

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

I2CIE. 11 (12CSPIE)

12CIE. 15 to I2CIE. 12

I12C STOP Interrupt Enable. Setting this bit to 1 causes an interrupt to the CPU when a
STOP condition is detected (I2CSPI = 1). Clearing this bit to 0 disables the STOP detection
interrupt from generating.

Reserved. Reads return 0.

UADDR (04h, 04h)
Initialization:

Read/Write Access:

UDDR.4 to UDDRO

UADDR.5
UADDR.6 (UBUSY)

UADDR.7 (USBRW)

USB Register Address Register (8-bit register) (applicable only for the MAXQ622)
This register is cleared to 00h on all forms of reset.

Unrestricted read/write access except bit 6, which is read only. This register cannot be
written to when the USB controller is busy (UBUSY = 1).

OFFSET REGISTER FUNCTION
00h — |dle—no operation
01h FNADDR Function Address Register
02h USBCN USB Control Register
03h USBCFG USB Configuration Register
04h USBIEN USB Interrupt Enable Register
05h USBINT USB Interrupt Register
06h EPIEN Endpoint Interrupt Enable Register
07h EPINT Endpoint Interrupt Register
08h EPSTL Endpoint Stall Register
09h EPNAK Endpoint NAK Register
0Ah EPCTG Endpoint Clear Data Toggle Register
0Bh EPOBC Endpoint 0 Byte Count Register
0Ch EP1BC Endpoint 1 Byte Count Register
0Dh EP2BC Endpoint 2 Byte Count Register
OEh EP3BC Endpoint 3 Byte Count Register
OFh Reserved No operation
10h EPOBUF Endpoint 0 Buffer Register
11h EP1BUF Endpoint 1 Buffer Register
12h EP2BUF Endpoint 2 Buffer Register
13h EP3BUF Endpoint 3 Buffer Register
14h SUDBUF Setup Data Buffer Register
1Fh-15h Reserved No operation

Reserved. Reads return 0.
USB Busy. This active-high busy flag is set to logic 1 to indicate the start of a USB register
read/write operation. It is held high until the end of the operation.

USB Register Read/Write Select. \When this bit is set to 1, the CPU initiates a read
operation to the register at offset UADDR[4:0]. When cleared to 0, the CPU waits for data to
be loaded to UDATA before initiating a write operation to the register at offset UADDR[4:0].

UDATA (05h, 04h)
Initialization:

Read/Write Access:

UDATA.7 to UDATA.O

USB Data Register (8-bit register) (applicable only for the MAXQ622)
This register is cleared to 00h on all forms of reset.

Unrestricted read/write access except when UADDR.UBUSY = 1. This register cannot be
written to when the USB controller is busy (UBUSY = 1).

USB Data Register Bits 7:0. These data register bits are used for supplying data for
supported USB register write operation request and for returning data for USB register read
operation.

5-28

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REGISTER

DESCRIPTION

12CCK (08h, 04h)
Initialization:

Read/Write Access:

I12CCK.7 to 12CCK.0 (I2CCKL[7:0])

12CCK.15 to 12CCK.8
(I2CCKH[7:0])

I2C Clock Control Register (16-bit register)
This register is set to 0204h on all forms of reset.
Unrestricted read. Writes to this register are allowed only when 12CBUSY = 0. This register

has no function when operating in slave mode and the clock generation circuitry should be
disabled.

I2C Clock Low Bits 7:0. These bits define the 12C SCL low period in number of system
clock, with bit 7 as the most significant bit. The duration of SCL low time is calculated using
the following equation:

12C Low Time Period = System Clock x (I2CCKL[7:0] + 1)
When operating in master mode, the I2CCKL must be set to a minimum value of 4 to ensure
proper operation. Any value less than 4 is set to 4.

I2C Clock High Bits 7:0. These bits define the 12C SCL high period in number of system
clock, with bit 7 as the most significant bit. The duration of SCL high time is calculated
using the following equation:

12C High Time Period = System Clock x (I2CCKH[7:0] + 1)

When operating in master mode, the I2CCKH must be set to a minimum value of 2 to ensure
proper operation. Any value less than 2 is set to 2.

12CTO (09h, 04h)
Initialization:

Read/Write Access:
[2CTO.7 to 12CTO.0

I2C Timeout Register (8-bit register)
This register is cleared to 00h on all forms of reset.

Unrestricted read/write access.

I2C Timeout Register Bits 7:0. This register is used only in master mode. This register
determines the number of 12C Bit Period (SCL High + SCL Low) the 12C master waits for
SCL to go high. The timeout timer resets to 0 and starts to count after the I2CSTART bit is
set or every time the SCL goes low. When cleared to 00h, the timeout function is disabled
and the 12C waits for SCL to go high indefinitely during a transmission. When set to any
other values, the 12C waits until the timeout expires and sets the 12CTOI flag.

12C Timeout = 12C Bit Rate x (12CTO[7:0] + 1)

Note that these bits have no effect when the 12C module is operating in slave mode
(I2CMST = 0). When operating in slave mode, SCL is controlled by an external master.

I12CSLA (0Ah, 04h)
Initialization:

Read/Write Access:
I2CSLA.9 to I2CSLA.O

[2CSLA. 15 to I2CSLA. 10

I2C Slave Address Register (16-bit register)
This register is cleared to 0000h on all forms of reset.

Unrestricted read/write access.

I2C Slave Address Register Bits 9:0. These address bits contain the address of the
12C device. When a match to this address is detected, the 12C controller automatically
acknowledges the transmitter with the I2CACK bit value if the 12C module is enabled

(I2CEN = 1). The I2CAMI flag is set to 1 and the I2CMST bit is cleared to 0. An interrupt is
generated to the CPU if enabled.

Reserved. Reads return 0.

Maxim Integrated

5-29

MAXQ612/MAXQ622 User’s Guide

SECTION 6: GENERAL-PURPOSE 1/0 MODULE

This section contains the following information:

6.1 Port Pin Register DesCriptionso 6-4
6.1.1 Port Pin Example 1: Driving Outputs on Port O 6-9
6.1.2 Port Pin Example 2: Receiving Inputs on Port 1 6-9

6.2 External Interrupt Register Descriptions 6-10

LIST OF TABLES

Table 6-1. Port Pin Special Functions 6-2
Table 6-2. MAXQ612/MAXQ622 Port Pin Input/Output States 6-3

Maxim Integrated 6-1

MAXQ612/MAXQ622 User’s Guide

SECTION 6: GENERAL-PURPOSE 1/0 MODULE

The MAXQ612/MAXQ622 provide 38 port pins for general-purpose 1/O that are grouped into eight port pins on port 0
to port 3 and six port pins on port 4. Each of these port pins has the following features:

e CMOS output drivers
e Schmitt trigger inputs

e Optional weak pullup to VDD when operating in input mode

From a software perspective, each port appears as a group of peripheral registers with unique addresses. Special
function pins can also be used as general-purpose |0 pins when the special functions are disabled (ports 2 and 3).

Table 6-1. Port Pin Special Functions

PORT PIN DIRECTION SPECIAL FUNCTION ENABLED WHEN
P0.0 Input/Output IR modulator/envelope output (IRTXM) IRENV[1:0] = O1b or 10b
PO.1 Input/Output Serial USART 0 Receive (RX0) REN =1
P0.2 Input/Output Serial USART 0 Transmit (TX0) SBUFO written
P0.3 Input/Output Serial USART 1 Receive (RX1) REN =1
P0.4 Input/Output Serial USART 1 Transmit (TX1) SBUF1 written
P0.5 Input/Output Timer O Input (TBAO)/Timer 1 Input (TBA1) C/TB =1 or TBOE = 1
P0.6 Input/Output Timer 0 PWM Output (TBBO) EXENB = 1 or TBCR:TBCS = 00b
P0.7 Input/Output Timer 1 PWM Output (TBB1) EXENB = 1 or TBCR:TBCS = 00b
P1.0 Input/Output External Interrupt O (INTO) EX0 =1
P1.1 Input/Output External Interrupt 1 (INT1) EX1 =1
P1.2 Input/Output External Interrupt 2 (INT2) EX2 =1
P1.3 Input/Output External Interrupt 3 (INT3) EX3 =1
P1.4 Input/Output External Interrupt 4 (INT4) EX4 =1
P1.5 Input/Output External Interrupt 5 (INT5) EX5 =1
P1.6 Input/Output External Interrupt 6 (INT6) EX6 =1
P1.7 Input/Output External Interrupt 7 (INT7) EX7 =1
P2.0 Input/Output SPI 0 Master Out-Slave In (MOSIO) SPIENO = 1
pP2.1 Input/Output SPI 0 Master In-Slave Out (MISO0) SPIENO = 1
p2.2 Input/Output SPI 0 Slave Clock (SCLKO) SPIENO = 1
pP2.3 Input/Output SPI 0 Slave Select (SSELO) SPIENO = 1
pP2.4 Input/Output JTAG interface—TAP Clock (TCK) (SC.7) TAP =
p2.5 Input/Output JTAG interface—TAP Data Input (TDI) (SC.7) TAP= 1
p2.6 Input/Output JTAG interface—TAP Mode Select (TMS) (SC.7) TAP =1
p2.7 Input/Output JTAG interface—TAP Data Output (TDO) (SC.7) TAP =1
P3.0 Input/Output External Interrupt 8 (INT8) EX8 =1
P3.1 Input/Output External Interrupt 9 (INT9) EX9 =1
P3.2 Input/Output External Interrupt 10 (INT10) EX10 =1
P3.3 Input/Output External Interrupt 11 (INT11) EX11 =1
P3.4 Input/Output External Interrupt 12 (INT12) EX12 = 1
P3.5 Input/Output External Interrupt 13 (INT13) EX13 =1
P3.6 Input/Output External Interrupt 14 (INT14) EX14 =1
P3.7 Input/Output External Interrupt 15 (INT15) EX15 =1
P4.0 Input/Output — —

P4.1 Input/Output — —
6-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Table 6-1. Port Pin Special Functions (continued)

PORT PIN DIRECTION SPECIAL FUNCTION ENABLED WHEN

P4.2 Input/Output — —

P4.3 Input/Output — —

P4.4 Input/Output — —

P4.5 Input/Output — —

P4.6 Input/Output —

P4.7 Input/Output —

P5.0 Input/Output SPI 1 Master Out-Slave In (MOSI1) SPIENT = 1
P5.1 Input/Output SPI 1 Master In-Slave Out (MISO1) SPIEN1 = 1
pP5.2 Input/Output SPI 1 Slave Clock (SCLK1) SPIENT = 1
P5.3 Input/Output SPI 1 Slave Select (SSELT) SPIENT = 1
P6.0* Input/Output - -

P6.1* Input/Output - -

P6.2* Input/Output - -

P6.3* Input/Output - -

P6.4* Input/Output — -

P6.5* Input/Output — -

P6.6* Input/Output — -

P6.7* Input/Output — -

*Port 6 is not available in the 64-pin LQFP package. It is only available on the bare die variant.

All these special functions are disabled by default with the exception of the JTAG interface pins, which are enabled

by default following any reset.

The port pin input/output states can be defined as shown in Table 6-2.

Table 6-2. MAXQ612/MAXQ622 Port Pin Input/Output States

PDx.y POx.y PORT PIN MODE PORT PIN (Px.y) STATE
0 0 Input Three-state
0 1 Input Weak pullup HIGH
1 0 Output Strong drive LOW
1 1 Output Strong drive HIGH

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

6.1 Port Pin Register Descriptions
The following peripheral registers are used to control the general-purpose 1/O and external interrupt features specific
to the MAXQ612/MAXQ622.

Register Name POO
Register Description Port 0 Output Register

Register Address MO[00h]

Bit # 7 6 5 4 3 2 1 0
Name POO0.7 POO0.6 POO0.5 PO0.4 PO0.3 PO0.2 POO0.1 POO0.0
Reset S S S S S S S S
Access rw rw rw rw rw rw rw rw

Bits 7:0: Port 0 Output. This register stores the data that is output on any of the pins of port 0 that have been defined
as output pins. If the port pins are in input mode, this register controls the weak pullup enable for each pin. Changing
the data direction of any pins for this port (through register PD0O) does not affect the value in this register.

Register Name

Register Description

PO1

Port 1 Output Register

Register Address MO[01h]

Bit # 7 6 5 4 3 2 1 0
Name PO1.7 PO1.6 PO1.5 PO1.4 PO1.3 PO1.2 PO1.1 PO1.0
Reset S S S S S S S S
Access rw rw rw rw rw rw rw rw

Bits 7:0: Port 1 Output. This register stores the data that is output on any of the pins of port 1 that have been defined
as output pins. If the port pins are in input mode, this register controls the weak pullup enable for each pin. Changing
the data direction of any pins for this port (through register PD0O) does not affect the value in this register.

Register Name

Register Description

PO2

Port 2 Output Register

Register Address MO[02h]

Bit # 7 6 5 4 3 2 1 0
Name PO2.7 PO2.6 PO2.5 PO2.4 P0O2.3 PO2.2 PO2.1 PO2.0
Reset S S S S S S S S
Access rw rw rw rw rw rw rw rw

Bits 7:0: Port 2 Output. This register stores the data that is output on any of the pins of port 2 that have been defined
as output pins. If the port pins are in input mode, this register controls the weak pullup enable for each pin. Changing
the data direction of any pins for this port (through register PD2) does not affect the value in this register.

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Register Name PO3
Register Description Port 3 Output Register

Register Address MO[03h]

Bit # 7 6 5 4 3 2 1 0
Name PO3.7 PO3.6 PO3.5 PO3.4 P0O3.3 P0O3.2 PO3.1 PO3.0
Reset s s s s s s s s
Access rw rw rw rw rw rw rw rw

Bits 7:0: Port 3 Output. This register stores the data that is output on any of the pins of port 3 that have been defined
as output pins. If the port pins are in input mode, this register controls the weak pullup enable for each pin. Changing
the data direction of any pins for this port (through register PD3) does not affect the value in this register.

Register Name PO4
Register Description Port 4 Output Register

Register Address M1[04h]

Bit # 7 6 5 4 3 2 1 0
Name PO4.7 PO4.6 PO4.5 PO4.4 PO4.3 PO4.2 PO4 .1 PO4.0
Reset s s s s s s s s
Access rw rw rw rw rw rw rw rw

Bits 7:0: Port 4 Output. This register stores the data that is output on any of the pins of port 4 that have been defined
as output pins. If the port pins are in input mode, this register controls the weak pullup enable for each pin. Changing
the data direction of any pins for this port (through register PD4) does not affect the value in this register.

Register Name PO5

Register Description Port 5 Output Register

Register Address M1[01h]

Bit # 7 6 5 4 3 2 1 0
Name PO5.7 PO5.6 PO5.5 PO5.4 PO5.3 PO5.2 PO5.1 PO5.0
Reset S S S S S S S S
Access rw rw rw rw rw rw rw rw

Bits 7:0: Port 5 Output. This register stores the data that is output on any of the pins of port 5 that have been defined
as output pins. If the port pins are in input mode, this register controls the weak pullup enable for each pin. Changing
the data direction of any pins for this port (through register PD5) does not affect the value in this register.

Register Name PO6

Register Description Port 6 Output Register

Register Address M1[02h]

Bit # 7 6 5 4 3 2 1 0
Name PO6.7 PO6.6 PO6.5 PO6.4 PO6.3 PO6.2 PO6.1 PO6.0
Reset S S S S S S S S
Access rw rw rw rw rw rw rw rw

Bits 7:0: Port 6 Output. This register stores the data that is output on any of the pins of port 6 that have been defined
as output pins. If the port pins are in input mode, this register controls the weak pullup enable for each pin. Changing
the data direction of any pins for this port (through register PD6) does not affect the value in this register.

Maxim Integrated 6-5

MAXQ612/MAXQ622 User’s Guide

Register Name PIO

Register Description Port 0 Input Register

Register Address MO[08h]

Bit # 7 6 5 4 3 2 1 0
Name Pl10.7 Pl10.6 P10.5 P10.4 PI10.3 Pl0.2 P10.1 P10.0
Reset S s S S S s s s
Access r r r r r r r r

Bits 7:0: Port 0 Input Bits. The read values of these bits reflect the logic states present at port 0 pins P0.0 to PO.7.

Register Name

Register Description

Register Address MO[09h]

Bit # 7 6 5 4 3 2 1 0
Name PI1.7 PI1.6 PI1.5 PI1.4 PI1.3 PI1.2 P14 PI1.0
Reset s S S S S S S S
Access r r r r r r r r

P

Port 1 Input Register

Bits 7:0: Port 1 Input Bits. The read values of these bits reflect the logic states present at port 1 pins P1.0 to P1.7.

Register Name

Register Description

P12

Port 2 Input Register

Register Address MO[0AR]

Bit # 7 6 5 4 3 2 1 0
Name P12.7 Pl2.6 Pl2.5 Pl2.4 P12.3 Pl2.2 PI2.1 PI2.0
Reset S S S S S S S S
Access r r r r r r r r

Bits 7:0: Port 2 Input Bits. The read values of these bits reflect the logic states present at port 2 pins P2.0 to P2.7.

Register Name

Register Description

PI3

Port 3 Input Register

Register Address MO[0Bh]

Bit # 7 6 5 4 3 2 1 0
Name PI3.7 PI13.6 PI3.5 PI3.4 PI13.3 PI3.2 PI3.1 PI13.0
Reset S S S S S S]]]
Access r r r r r r r r

Bits 7:0: Port 3 Input Bits. The read values of these bits reflect the logic states present at port 3 pins P3.0 to P4.7.

6-6

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Register Name

Register Description

Pl4

Port 4 Input Register

Register Address M1[08h]

Bit # 7 6 5 4 3 2 1 0
Name Pl4.7 Pl4.6 Pl4.5 Pl4.4 P14.3 Pl4.2 Pl4.1 Pl4.0
Reset s s s s s s s s
Access r r r r r r r r

Bits 7:0: Port 4 Input Bits. The read values of these bits reflect the logic states present at port 4 pins P4.0 to P4.7.

Register Name

Register Description

PI5

Port 5 Input Register

Register Address M1[09h]

Bit # 7 6 5 4 3 2 1 0
Name PI5.7 PI5.6 PI5.5 PI5.4 PI5.3 PI5.2 P154.1 PI5.0
Reset S s s s S S s s
Access r r r r r r r r

Bits 7:0: Port 5 Input Bits. The read values of these bits reflect the logic states present at port 5 pins P5.0 to P5.7.

Register Name

Register Description

PI6

Port 6 Input Register

Register Address M1[0AR]

Bit # 7 6 5 4 3 2 1 0
Name Pl6.7 P16.6 Pl6.5 Pl6.4 P16.3 Pl6.2 Pl64.1 P16.0
Reset s s s s s s s s
Access r r r r r r r r

Bits 7:0: Port 6 Input Bits. The read values of these bits reflect the logic states present at port 6 pins P6.0 to P6.5.

Register Name

Register Description

PDO

Port 0 Direction Register

Register Address MO[10h]

Bit # 7 6 5 4 3 2 1 0
Name PDO.7 PDO0.6 PD0.5 PDO0.4 PD0.3 PDO0.2 PDO.1 PD0.0
Reset S S S S S S S S
Access rw rw rw rw rw rw rw rw

Bits 7:0: Input/Output Direction for Port 0. The bits in this register control the input/output direction for port pins P0.0
to PO.7. When PDO.n is set to 0, the corresponding port pin (P0.n) acts as an input with characteristics determined by

POO0.n. When PDO.n is set to 1, the port pin acts as an output, driving the output state given by POO.n.

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Register Name PD1
Register Description Port 1 Direction Register

Register Address MO[11h]

Bit # 7 6 5 4 3 2 1 0
Name PD1.7 PD1.6 PD1.5 PD1.4 PD1.3 PD1.2 PD1.1 PD1.0
Reset s S S S S S S S
Access rw rw rw rw rw rw rw rw

Bits 7:0: Input/Output Direction for Port 1. The bits in this register control the input/output direction for port pins P1.0
to P1.7. When PD1.n is set to O, the corresponding port pin (P1.n) acts as an input with characteristics determined by
PO1.n. When PD1.n is set to 1, the port pin acts as an output, driving the output state given by PO1.n.

Register Name PD2

Register Description Port 2 Direction Register

Register Address MO[12h]

Bit # 7 6 5 4 3 2 1 0
Name pD2.7 PD2.6 PD2.5 PD2.4 PD2.3 pD2.2 PD2.1 PD2.0
Reset S S S S s S S S
Access rw rw rw rw rw rw rw rw

Bits 7:0: Input/Output Direction for Port 2. The bits in this register control the input/output direction for port pins P2.0
to P2.7. When PD2.n is set to O, the corresponding port pin (P2.n) acts as an input with characteristics determined by
PO2.n. When PD2.n is set to 1, the port pin acts as an output, driving the output state given by PO2.n.

Register Name PD3
Register Description Port 3 Direction Register

Register Address MO[13h]

Bit # 7 6 5 4 3 2 1 0
Name PD3.7 PD3.6 PD3.5 PD3.4 PD3.3 PD3.2 PD3.1 PD3.0
Reset S S S S S S S S
Access rw rw rw rw rw rw rw rw

Bits 7:0: Input/Output Direction for Port 3. The bits in this register control the input/output direction for port pins P3.0
to P3.7. When PD3.n is set to 0, the corresponding port pin (P3.n) acts as an input with characteristics determined by
PO3.n. When PD3.n is set to 1, the port pin acts as an output, driving the output state given by PO3.n.

Register Name PD4

Register Description Port 4 Direction Register

Register Address M1[10h]

Bit # 7 6 5 4 3 2 1 0
Name PD4.7 PD4.6 PD4.5 PD4.4 PD4.3 PD4.2 PD4.1 PD4.0
Reset S S S S S S S S
Access 'w 'w rw rw rw rw rw rw

Bits 5:0: Input/Output Direction for Port 4. The bits in this register control the input/output direction for port pins P4.0
to P4.5. When PD4.n is set to 0, the corresponding port pin (P4.n) acts as an input with characteristics determined by
PO4.n. When PD4.n is set to 1, the port pin acts as an output, driving the output state given by PO4.n.

6-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Register Name PD5

Register Description Port 5 Direction Register

Register Address M1[11h]

Bit # 7 6 5 4 3 2 1 0
Name PD5.7 PD5.6 PD5.5 PD5.4 PD5.3 PD5.2 PD5.1 PD5.0
Reset S S S S s s s S
Access rw rw rw rw rw rw rw rw

Bits 5:0: Input/Output Direction for Port 5. The bits in this register control the input/output direction for port pins P5.0
to P5.7. When PD5.n is set to 0, the corresponding port pin (P5.n) acts as an input with characteristics determined by
PO5.n. When PD5.n is set to 1, the port pin acts as an output, driving the output state given by PO5.n.

Register Name PD6

Register Description Port 6 Direction Register

Register Address M1[12h]

Bit # 7 6 5 4 3 2 1 0
Name PD6.7 PD6.6 PD6.5 PD6.4 PD6.3 PD6.2 PD6.1 PD6.0
Reset S S S S s S S S
Access rw rw rw rw rw rw rw rw

Bits 7:0: Input/Output Direction for Port 6. The bits in this register control the input/output direction for port pins P6.0
to P6.7. When PD6.n is set to 0, the corresponding port pin (P6.n) acts as an input with characteristics determined by
PO6.n. When PD6.n is set to 1, the port pin acts as an output, driving the output state given by PO6.n.

6.1.1 Port Pin Example 1: Driving Outputs on Port 0
move POO, #000h ; Set all outputs low
move PDO, #0FFh ; Set all PO pins to output mode

6.1.2 Port Pin Example 2: Receiving Inputs on Port 1

move POl, #0FFh ; Set weak pullups ON on all pins

move PD1, #000h ; Set all Pl pins to input mode

nop ; Wait for external source to drive Pl pins
move Acc, PI1l ; Get input values from Pl (will return FF if

; no other source drives the pins low)

Maxim Integrated 6-9

MAXQ612/MAXQ622 User’s Guide

6.2 External Interrupt Register Descriptions

Register Name EIFO

Register Description External Interrupt Flag 0 Register

Register Address MO[06h]

Bit # 7 6 5 4 3 2 1 0

Name IE7 IE6 IES IE4 IE3 IE2 IE1 IEO
Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Each bit in this register is set when a negative edge or a positive edge (depending on the ITn bit setting) is detected
on the corresponding interrupt pin. Once an external interrupt has been detected, the interrupt flag bit will remain
set until cleared by software or a reset. Setting any of these bits causes the corresponding interrupt to trigger if it is
enabled to do so.

Bit 7: External Interrupt 7 Edge Detect (IE7)
Bit 6: External Interrupt 6 Edge Detect (IE6)
Bit 5: External Interrupt 5 Edge Detect (IE5)
Bit 4: External Interrupt 4 Edge Detect (IE4)
Bit 3: External Interrupt 3 Edge Detect (IE3)
Bit 2: External Interrupt 2 Edge Detect (IE2)
Bit 1: External Interrupt 1 Edge Detect (IE1)
Bit 0: External Interrupt 0 Edge Detect (IE0)

Register Name EIF1

Register Description External Interrupt Flag 1 Register

Register Address MO[07h]

Bit # 7 6 5 4 3 2 1 0
Name IE15 IE14 IE13 IE12 IE11 IE10 IE9 IE8
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Each bit in this register is set when a negative edge or a positive edge (depending on the ITn bit setting) is detected
on the corresponding interrupt pin. Once an external interrupt has been detected, the interrupt flag bit remains set until
cleared by software or a reset. Setting any of these bits causes the corresponding interrupt to trigger if it is enabled
to do so.

Bit 7: External Interrupt 15 Edge Detect (IE15)
Bit 6: External Interrupt 14 Edge Detect (IE14)
Bit 5: External Interrupt 13 Edge Detect (IE13)
Bit 4: External Interrupt 12 Edge Detect (IE12)
Bit 3: External Interrupt 11 Edge Detect (IE11)
Bit 2: External Interrupt 10 Edge Detect (IE10)
Bit 1: External Interrupt 9 Edge Detect (IE9)

Bit 0: External Interrupt 8 Edge Detect (IE8)

6-10 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Register Name EIEO

Register Description External Interrupt Enable 0 Register

Register Address MO[08h]

Bit # 7 6 5 4 3 2 1 0

Name EX7 EX6 EX5 EX4 EX3 EX2 EX1 EXO
Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Each bit in this register controls the enable for one external interrupt. If a bit is set to 1, the corresponding interrupt is

enabled (if it is not otherwise masked). If a bit is set to 0, its corresponding interrupt is disabled.

Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:

External Interrupt 7 Enable (EX7)
External Interrupt 6 Enable (EX6)
External Interrupt 5 Enable (EX5)
External Interrupt 4 Enable (EX4)
External Interrupt 3 Enable (EX3)

Bit 2: External Interrupt 2 Enable (EX2)

Bit 1: External Interrupt 1 Enable (EX1)

Bit 0: External Interrupt 0 Enable (EX0)

Register Name EIE1

Register Description External Interrupt Enable 1 Register

Register Address MO[09h]

Bit # 7 6 5 4 3 2 1 0

Name EX15 EX14 EX13 EX12 EX11 EX10 EX9 EX8
Reset 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw

Each bit in this register controls the enable for one external interrupt. If a bit is set to 1, the corresponding interrupt is

enabled (if it is not otherwise masked). If a bit is set to 0, its corresponding interrupt is disabled.

Bit 7:
Bit 6:
Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bit 1:
Bit 0:

External Interrupt 15 Enable (EX15)
External Interrupt 14 Enable (EX14)
External Interrupt 13 Enable (EX13)
External Interrupt 12 Enable (EX12)
External Interrupt 11 Enable (EX11)
External Interrupt 10 Enable (EX10)
External Interrupt 9 Enable (EX9)

External Interrupt 8 Enable (EX8)

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Register Name EIESO

Register Description External Interrupt Edge Select 0 Register

Register Address MO[OCh]

Bit # 7 6 5 4 3 2 1 0
Name IT7 IT6 IT5 T4 IT3 T2 IT1 ITO
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Each bit in this register controls the edge select mode for an external interrupt, as follows:
0 = The internal interrupt triggers on a rising (positive) edge.

1 = The external interrupt triggers on a negative (falling) edge.

Bit 7: Edge Select for External Interrupt 7 (IT7)

Bit 6: Edge Select for External Interrupt 6 (IT6)

Bit 5:
Bit 4:
Bit 3:
Bit 2:
Bit 1:

Edge Select for External Interrupt 5 (IT5)
Edge Select for External Interrupt 4 (IT4)
Edge Select for External Interrupt 3 (IT3)
Edge Select for External Interrupt 2 (IT2)
Edge Select for External Interrupt 1 (IT1)

Bit 0: Edge Select for External Interrupt 0 (IT0)

Register Name EIES1

Register Description External Interrupt Edge Select 1 Register

Register Address MO[0Dh]

Bit # 7 6 5 4 3 2 1 0
Name IT15 IT14 IT13 IT12 IT11 IT10 IT9 IT8
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Each bit in this register controls the edge select mode for an external interrupt, as follows:
0 = The internal interrupt triggers on a rising (positive) edge.

1 = The external interrupt triggers on a negative (falling) edge.
Bit 7: Edge Select for External Interrupt 15 (IT15)

Bit 6: Edge Select for External Interrupt 14 (IT14)

Bit 5: Edge Select for External Interrupt 13 (IT13)

Bit 4: Edge Select for External Interrupt 12 (IT12)

Bit 3: Edge Select for External Interrupt 11 (IT11)

Bit 2: Edge Select for External Interrupt 10 (IT10)

Bit 1: Edge Select for External Interrupt 9 (IT9)

Bit 0: Edge Select for External Interrupt 8 (IT8)

6-12 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 7: TIMER/COUNTER TYPE B

This section contains the following information:

7 TImer B 7-2
7.1.1 Timer B Mode: Autoreload Mode. 7-2
7.1.2 Timer B Mode: Capture Mode 7-3
7.1.3 Timer B Mode: Up/Down Autoreload Mode. 7-4
7.1.4 Timer B Mode: Clock Output Mode. 7-4
7.1.5 Timer B Mode: PWM Output Function 7-5

7.1.5.1 Timer B Mode: Up-Counting PWM Output Mode 7-6
7.1.5.2 Timer B Mode: Up/Down-Count PWM Qutput Mode 7-7
716 Timer BInput CloCKo 7-8

7.2 Timer/Counter B Peripheral Registers 7-8
7.2.1 Timer B Control Register (TBCN). 7-8
7.2.2 Timer B Value Register (TBV) 7-10
7.2.3 Timer B Capture/Reload Value Register (TBR) 7-10
7.2.4 Timer B Compare Register (TBC) 7-10

LIST OF FIGURES

Figure 7-1. Timer B Autoreload Mode 7-3

Figure 7-2. Timer B Capture MOde o 7-3

Figure 7-3. Timer B Up/Down Autoreload Mode 7-4

Figure 7-4. Timer B Clock Output MOdeo 7-5

Figure 7-5. Timer B PWM Output Waveforms (Up Count, DCEN =0) 7-6

Figure 7-6. Timer B PWM Output Up/Down-Count Examples. e 7-7

LIST OF TABLES

Table 7-1. Timer/Counter B Mode SUMMaAry 7-2

Table 7-2. Timer B PWM Output FUNCHON e 7-5

Table 7-3. Timer B Input Clock Prescaler Selection 7-8

Maxim Integrated 7-1

MAXQ612/MAXQ622 User’s Guide

SECTION 7: TIMER/COUNTER TYPE B

The timer/counter module allows the MAXQ612/MAXQ622 to control a 16-bit programmable timer/counter. The
MAXQ612/MAXQ622 implement two timer type B modules (“Timer B”): TBO and TB1.

7.1 Timer B

“Timer B” is an enhanced version of the MAXQ timer type 1 with modifications to support different input clock prescal-
ing and set/reset/compare output functionality. The new timer also counts in the range 0000h to TBR instead of TBR
to OFFFFh.

The Timer B value that increments or decrements (depending on mode of operation) is contained in the 16-bit register,
TBV. Timer B is enabled by the Timer B run control (TRB) bit in the TBCN register. To support the basic functionality of
Timer B, a 16-bit capture/reload register (TBR) is provided. The basic Timer B operational modes and corresponding
TBCN register bit settings are shown in Table 7-1. Following the table, each operational mode is described. The TBA
pin can be used as a counter input for any mode except for the Timer B clock output mode since this mode uses TBA
for clock output. The Timer B PWM output functionality is described in the sections that follow the basic modes.

7.1.1 Timer B Mode: Autoreload Mode

The Timer B autoreload mode is configured by setting the CP/RLB (TBCN.O) bit to 0. In this mode, Timer B performs
a simple timer or counter function, but adds a separate 16-bit reload value and the ability to trigger a reload with an
external pin.

When initially enabled, Timer B starts counting from the TBV value. On overflow, TBV is reset and counting continues
from 0000h. When Timer B reaches an overflow state, i.e., the TBR value is reached, the TFB flag is set in the follow-
ing system clock cycle. This flag can generate an interrupt if enabled. In addition, the timer restores its starting 0000h
value and begins timing (or counting) again. The overflow value is preloaded by software into the capture/reload reg-
ister, TBR. This register cannot be used for capture functionality while also performing autoreload, so these modes are
mutually exclusive.

When in autoreload mode, Timer B can also be forced to reload with the TBB pin. If EXENB (TBCN.3) is set to 1, then
a 1-to-O-transition on TBB causes a reload and the EXFB (TBCN.6) flag to be set. Note that the EXFB flag can be set
independent of the state of the TRB bit (e.g., EXFB can still be set on detection of a negative edge when TRB = 0).
Otherwise, the TBB pin is ignored.

If the C/TB bit (TBCN.15) is 0, the timer’s input clock is a function of the system clock. When C/TB = 1, pulses on the
TBA pin are counted. Counting or timing is enabled or disabled using the Timer B run control bit = TRB (TBCN.2). This
mode, including the optional reload control, is illustrated in Figure 7-1.

Table 7-1. Timer/Counter B Mode Summary

TBCN REGISTER BIT SETTINGS*
TIMER B OPERATIONAL MODE
TBOE DCEN EXENB C/TB CP/RLB
Autoreload 0 0 0 X 0
Autoreload using TBB pin 0 0 1 X 0
Capture using TBB pin 0 0 1 X 1
Up/down count using TBB pin 0 1 0 X 0
Clock output on TBA pin 1 X X 0 0

*For modes where the C/TB bit is x: When C/TB = O, the timer input clock is a prescaled version of the system clock. When C/TB =
1, counter mode is enabled and the external TBA pin is counted.

7-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

TBPS[2:0]
| HEEEEEER
SYSTEM CLOCK _ - TFB
CLOCK PRESCALER

TBAPIN
TRB

TBB PIN —— FAEILJLG'QG

— 7

EXFB TIMER B
INTERRUPT

EXENB

Figure 7-1. Timer B Autoreload Mode

TBPS[2:0] _
| C/1B

SYSTEM CLOCK !

CLOCK PRESCALER !

TBAPIN
TRB

TBB PIN ——»] F‘EB%’EG

CAPTURE

EXENB } > EXFB

TIMER B
INTERRUPT

Figure 7-2. Timer B Capture Mode

7.1.2 Timer B Mode: Capture Mode

The 16-bit capture mode is invoked by setting the CP/RLB (TBCN.O) bit to 1. Timer B, when initially enabled, begins
counting from the TBV value and upon overflow, subsequently continues counting from 0000h to the OFFFFh overflow,
i.e., rolls over from OFFFFh to 0000 if left enabled and running. When an overflow occurs, it sets the TFB Flag. This
flag can generate an interrupt if enabled. The optional capture function is enabled by setting the EXENB (TBCN.3) bit
to 1. Once this has been done, a 1-to-0O-transition on the TBB pin causes the value in Timer B (TBV) to be transferred
into the capture register (TBR) and the EXFB (TBCN.6) flag to be set. Note that the EXFB flag can be set independent
of the state of the TRB bit (e.g., EXFB can still be set on detection of a negative edge when TRB = 0). Setting of the
EXFB flag can generate an interrupt if enabled. If the EXENB bit is set to O, then 1-to-O-transitions on the TBB pin do
not automatically trigger a capture event.

Maxim Integrated 7-3

MAXQ612/MAXQ622 User’s Guide

(DOWN-COUNTING RELOAD)

TBPS[2:0] — | L |
| i HNEEENEENEEEE
SYSTEM CLOCK ! v v
CLOCK PRESCALER :
: |||||||||15;‘i_
‘ TBV | ¢ >
ToA |||||||||>,=.
JANRVAN
JENNNNENENNEEEE
| 0000h |
COUNT DIRECTION (UP-COUNTING RELOAD VALUE)
1a3 pyy (1= UP.0=DOWN)

TFB —® TIMER B INTERRUPT

>< > EXFB

Y

\J

Figure 7-3. Timer B Up/Down Autoreload Mode

7.1.3 Timer B Mode: Up/Down Autoreload Mode

The up/down-count autoreload option is enabled by the DCEN (TBCN.4) bit. When DCEN is set to 1, Timer B counts up
or down as controlled by the state of TBB pin. TBB causes upward counting when a high is applied and down counting
when a low is applied. When DCEN = 0, Timer B only counts up.

When an upward counting overflow occurs (TBV overflow occurs after reaching TBR), a 0000h value loads into TBV. In
the down-count direction, an underflow occurs when TBV reaches 0000h. When an underflow occurs, the TBR value
is loaded into TBV counting continues.

Note that in this mode, the overflow/underflow output of the timer is provided to an edge-detection circuit as well as
to the TFB bit (TBCN.7). This edge-detection circuit toggles the EXFB bit (TBCN.6) on every overflow or underflow.
Therefore, the EXFB bit behaves as a 17th bit of the counter, and can be used as such.

7.1.4 Timer B Mode: Clock Output Mode

Timer B can also be configured to drive a clock output on the TBA port pin as shown in Figure 7-4. To configure Timer
B for this mode, first it must be set to 16-bit autoreload timer mode (CP/RLB = 0, C/TB = 0). Next, the TBOE (TBCN.5)
bit must be set to 1. The output state for this mode is always set to 1 each time the TBOE bit is changed from 0 to 1.
TRB (TBCN.2) must also be set to 1 to enable the timer and the corresponding output. If the timer is stopped (TRB =
0) and subsequently restarted (TRB = 1) while leaving TBOE = 1, the previous timer clock output state is restored on
the TBA pin. The DCEN bit has no effect in this mode. This mode produces a 50% duty-cycle square-wave output. The
frequency of the square wave is given by the formula in the figure. Each timer overflow causes an edge transition on
the pin, i.e., the state of the pin toggles. The timer overflow flag (TFB) is still set on an overflow in clock output mode,
however, the TBOE = 1 condition prevents this flag from causing an interrupt. The Timer B external interrupt is still
available for use when enabled (EXENB = 1). Note that the EXFB flag can be set independent of the state of the TRB
bit (e.g., EXFB can still be set on detection of a negative edge when TRB = 0).

7-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

\J

TFB

TBPS[2:0] =
| A

SrSTEw cock | OB=0 RRNERRRRRERER
CLOCK PRESCALER [TBV |
LI
e ANNVANNVANEE =
HERERRARREREN
| 0000h |
0 15
TBAPIN e TOGGLE —G_‘—
TBOE=1
FALLING
TBBPIN — " Epge) EXFB | TIMER B INTERRUPT
EXENB
TBA FREQUENCY OUT = PRESCALED SYSTEM CLOCK/(2 x (TBR + 1))
Figure 7-4. Timer B Clock Output Mode
Table 7-2. Timer B PWM Output Function
TBCS:TBCR FUNCTION INITIAL STATE (TRB = 0)
00 None (Compare Disable) No change
01 (Reset) Reset on TBC Match, Set on 0000h Low
10 (Set) Set on TBC Match, Reset on TBR Match High
11 (Toggle) Toggle on TBC Match (except TBR or 0Oh) No change*

*The initial state for the toggle mode depends on the previous set or reset mode. This means that the TBCS:TBCR bits should be
configured to set or reset momentarily when changing from “Compare Disable” to “Compare Toggle Mode” to establish a specific
starting state.

7.1.5 Timer B Mode: PWM Output Function

The PWM output function is enabled whenever the TBCS:TBCR bit pair is nonzero. Table 7-2 shows how these bits
define a certain output function.

When the PWM output function is configured to the reset mode, configuring TBC = 0000h disables the TBC compare
match reset operation. The timer will do one set on 0000h and never reset. When the PWM output function is configured
to the set mode, configuring TBC = TBR disables the TBC compare match set operation. The timer will do one reset
on TBR match and never set. When the PWM output function is configured to toggle, configuring TBC = 0000h or TBR
disables the toggle function.

When the timer is not running (TRB = 0), the initial output starting state of the TBB output is established as low or high,
respectively, if the reset function (TBCR = 1,TBCS = 0) or set function (TBCR = 0, TBCS = 1) is established. Invoking
the toggle function does not change the already defined starting state for TBB, thus a fixed high or low starting state
may be defined for the toggle mode by first passing through the set or reset mode. The initial starting state takes effect
on the pin when the timer is started (TRB = 1). Changing the output function to set or reset while the timer is running
does not affect the current output.

Maxim Integrated 7-5

MAXQ612/MAXQ622 User’s Guide

7.1.5.1 Timer B Mode: Up-Counting PWM Output Mode

The 16-bit timer/counter with autoreload mode is used for the up-counting PWM output mode to produce edge-aligned
PWM output. In the 16-bit autoreload timer mode, the Timer B allows an optional external pin (TBB) triggered reload
event when the EXENB bit is configured to 1. The external input special function and the PWM output function can
be enabled at the same time, however the input special function changes slightly when the PWM output is enabled.
When the PWM output mode is enabled (TBCS:TBCR = 00b) and the external pin input is enabled (EXENB = 1), the
detection of a output falling edge on TBB should still result in setting of the EXFB interrupt flag, but should not force
an autoreload. Note that the EXFB flag can be set independent of the state of the TRB bit (e.g., EXFB can still be set
on detection of a negative edge when TRB = 0). While it is most likely that TRB = 1 when EXFB is set, since TRB = 1
is required to enable the PWM output, a negative edge on the TBB pin while TRB = 0 can still result in setting of EXFB.
Using the standard GPI/O port controls to generate a negative edge when the PWM is not running, for instance, can
set EXFB. Example TBB output waveforms for the autoreload up-counting mode are shown in Figure 7-5.

—— TBC (POSITION B)
TBR

—— -~ TBC (POSITION A)

0000

TBC (POSITION A)
TBCS, TBCR =

10 (SET)

01 (RESET)

11 (TOGGLE)

TBC (POSITION B)
TBCS, TBCR =

10 (SET)

01 (RESET)

11 (TOGGLE)

Figure 7-5. Timer B PWM Output Waveforms (Up Count, DCEN = 0)

7-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

The set and reset functions for the autoreload up-counting mode essentially provide the same functionality. They pro-
vide a 16-bit PWM with the ability to change the frequency using the TBR reload value. The toggle mode allows a 50%
duty cycle waveform to be created (when the TBC register is configured to a value inside the counting range, i.e., 0 <
TBC < TBR, with Timer B running). With the TBC register outside of the count range, the set and reset functions allow a
timed clear or set of a given pin without need of polling or interrupting the CPU such that it can manually be performed.

Up-count set, reset PWM duty cycle can be calculated as follows (where period = TBR + 1):
Set mode = (TBR - TBC)/(TBR + 1)
Reset mode = TBC/(TBR + 1)

7.1.5.2 Timer B Mode: Up/Down-Count PWM Output Mode

The 16-bit up/down-count timer is utilized for the up/down-count PWM output mode to produce center-aligned PWM
output. When the Timer B is configured in the up/down-count mode, the external pin (TBB) is used to control the direc-
tion of the timer count. When the Timer B PWM output functionality is enabled at the same time as the up/down-count
autoreload mode, the TBB pin no longer controls the direction of counting. Instead, the up/count count is controlled
internally. When the timer is up counting upward and reaches TBR, in the next cycle, it reverses its direction of count-
ing. When the timer is down counting and reaches 0000h, it reverses direction so as to begin up counting (as illustrated
in Figure 7-6). When the up/down autoreload and PWM output modes are both enabled, the TBB input function can
still be enabled by the EXENB = 1 configuration. Enabling the TBB input function during this mode allows detection
of PWM output negative edges to set the EXFB interrupt flag. Note that the EXFB flag can be set independent of the
state of the TRB bit (e.g., EXFB can still be set on detection of a negative edge when TRB = 0). While it is most likely
that TRB = 1 when EXFB is set, since TRB = 1 is required to enable the PWM output, a negative edge on the TBB pin
while TRB = 0 can still result in setting of EXFB. Using the standard GPI/O port controls to generate a negative edge
when the PWM is not running, for instance, can set EXFB.

TBR = 0008h
TBV=0000 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2 3

UpP DOWN up
TBB PIN

SET, TBC=0 |
SET, TBC =5 |) !

SET,TBC=6

SET,TBC=7

— |

SET,TBC=8

| ————|

SET, TBC=4 |

Figure 7-6. Timer B PWM Output Up/Down-Count Examples

Maxim Integrated 7-7

MAXQ612/MAXQ622 User’s Guide

Example TBB output waveforms for the autoreload up/down-counting modes are shown below.
Up/down-count PWM duty cycle can be calculated as follows (where period = 2 x TBR):

Set mode = (TBR + TBC)/(2 x TBR)
Reset mode = TBC/(2 x TBR)
Toggle mode = TBC/TBR or (TBR - TBC)/TBR

Note that the toggle mode has two possible duty-cycle calculations and depends upon the initial pin state and start-
ing TBV and TBC values. For example, the TBC/TBR equation would be used if the starting pin state were 1, TBV =
0, and 0 < TBC < TBR. If the starting pin state were 0, and all other initial conditions were the same, the (TBR - TBC)/
TBR equation would apply.

The set and reset up/down-count PWM modes effectively allow 17-bit resolution since the set mode allows duty-cycle
variation > 50% with 50% of the period always being high and the reset mode allows duty-cycle variation < 50% with
50% of the period always being low.

The toggle mode still effectively provides 16-bit PWM resolution with twice the period of the pure up-counting autore-
load mode.

7.1.6 Timer B Input Clock

The Timer B Input Clock can be prescaled using the TBPS[2:0] bits of the TBCN register. The Timer B input clock is
a divided version of the system clock as per the equation below (which also appears in the register bit descriptions).

Timer B Clock = System Clock/2(2xTBPS[2:0])

Table 7-3. Timer B Input Clock Prescaler Selection

TBPS[2:0] TIMER B INPUT CLOCK
000 Sysclk/1
001 Sysclk/4
010 Sysclk/16
011 Sysclk/64
100 Sysclk/256
101 Sysclk/1024
11x Sysclk/1

The TBPS[2:0] bits should be configured by the user when the timer is stopped (TRB = 0). While hardware does not
prevent changing the TBPS[2:0] bits when the timer is running, the resultant behavior is indeterministic.

7.2 Timer/Counter B Peripheral Registers
7.2.1 Timer B Control Register (TBCN)

15 0
L L L L L I 1L L I I I | | | | | | TimerBcontrol Register (TBCN)
o 0 o o o oo OO0 O 0 0 0o 0 o Power-On Reset and System Resets
W rw rw rw rw Iw Irw rw rw rw rw rw rw rw rw rw Read (r), Write (w), or Special (s) access

Bit 15: (TBCN.15) Counter/Timer Select (C/TB). This bit determines whether Timer B functions as a timer or counter.
Setting this bit to 1 causes Timer B to count negative transitions on the TBA pin. If this bit is cleared to O Timer B func-
tions as a Timer. The speed of Timer B is determined by the TBPS[2:0] bits of TBCN.

Bits 14 and 13: Reserved. Reads return 0.

7-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Bits 12 and 11: TBB Pin Output Reset Mode, Set Mode (TBCS:TBCR). These mode bits define whether the PWM
Mode output function is enabled on the TBB pin, the initial output starting state, and what compare mode output func-
tion is in effect. Note that the TBB pin still has certain input functionality when the PWM/output function is enabled. See
Bits 10 to 8: Timer B Clock Prescaler Bits 2:0 (TBPS[2:0]. The TBPS[2:0] bits select the clock prescaler applied to
the system clock input to Timer B. The TBPS[2:0] bits should be configured by the user when the timer is stopped (TRB
= 0). While hardware does not prevent changing the TBPS[2:0] bits when the timer is running, the resultant behavior is
indeterministic. See Timer B input clocks for supported prescaler values.

Bit 7: Timer B Overflow Flag (TFB). This bit is set when Timer B overflows from TBR or the count is equal to 0000h
in down-count mode. It must be cleared by software.

Bit 6: External Timer B Trigger Flag (EXFB). When configured as a timer (C/TB = 0), a negative transition on the
TBB pin causes this flag to be set if (CP/RLB = EXENB = 1) or (CP/RLB = DCEN = 0 and EXENB = 1) or (CP/RLB =0
and EXENB = 1 and TBCS:TBCR = 00b). When configured in any of these ways, this flag can be set independent of
the state of the TRB bit (e.g., EXFB can still be set on detection of a negative edge when TRB = 0).When CP/RLB = 0
and DCEN = 1 and TBCS:TBCR = 00b, EXFB toggles whenever Timer B underflows or overflows. Overflow/underflow
condition is the same as described in TFB bit description. In this mode, EXFB can be used as the 17th timer bit and
does not cause an interrupt. This flag must be cleared by software if set by a negative transition. Setting this bit to 1
forces a timer interrupt if enabled.

Bit 5: Timer B Output Enable (TBOE). Setting this bit to 1 enables the clock output function on the TBA pin if C/TB =
0. Timer B rollovers do not cause interrupts. Clearing this bit to O allows the TBA pin to function as either a standard
port pin or a counter input for Timer B.

Bit 4: Down-Count Enable (DCEN). This bit, in conjunction with the TBB pin, controls the direction that Timer B counts
in 16-bit autoreload mode. Clearing this bit to O causes Timer B to count up only. Setting this bit to 1 enables the up/
down-counting mode (i.e., it causes Timer B to count up if the TBB pin is 1 and to count down if the TBB pin is 0). When
Timer B PWM output mode functionality is enabled along with up/down counting (DCEN = 1), the up/down-count con-
trol of Timer B is controlled internally based upon the count in relation to the register settings. In the compare modes,
the DCEN bit controls whether the timer counts up and resets (DCEN = 0), or counts up and down (DCEN = 1).

Bit 3: Timer B External Enable (EXENB). Setting this bit to 1 enables the capture/reload function on the TBB pin for
a negative transition (in up-counting mode). A reload results in TBV being reset to 0000h. Clearing this bit to O causes
Timer B to ignore all external events on the TBB pin. When operating in autoreload mode (CP/RLB = 0) with the PWM
output functionality enabled, enabling the TBB input function (EXENB = 1) allows PWM output negative transitions to
set the EXFB flag, however, no reload occurs as a result of the external negative edge detection.

Bit 2: Timer B Run Control (TRB). This bit enables Timer B operation when set to 1. Clearing this bit to O halts Timer
B operation and preserves the current count in TBV.

Bit 1: Enable Timer B Interrupt (ETB). Setting this bit to 1 enables the interrupt from the Timer B TFB and EXFB flags
in TBCN. In Timer B clock output mode (TBOE = 1), the timer overflow flag (TFB) is still set on an overflow, however,
the TBOE = 1 condition prevents this flag from causing an interrupt when ETB = 1.

Bit 0: Capture/Reload Select (CP/RLB). This bit determines whether the capture or reload function is used for Timer B.
Timer B functions in an autoreload mode following each overflow/underflow. See TFB bit description for overflow/under-
flow condition. Setting this bit to 1 causes a Timer B capture to occur when a falling edge is detected on TBB if EXENB
is 1. Clearing this bit to O causes an autoreload to occur when Timer B overflow or a falling edge is detected on TBB if
EXENB is 1. It is not intended that the Timer B compare functionality should be used when operating in capture mode.

Maxim Integrated 7-9

MAXQ612/MAXQ622 User’s Guide

7.2.2 Timer B Value Register (TBV)

15

o o0 o0 o0 o o0 0 o o o0 o o0 O
W rw rw rw rw rw orworw orworworworweorw

7.2.3 Timer B Capture/Reload Value Register (TBR)

15

o 06 o 0 0 o0 o o 0 o o o o
W W W W W rw rw rw rw Irw rw rw rw

7.2.4 Timer B Compare Register (TBC)

15

o o0 o0 o o o0 0o o o o o0 o0 o
W rw rw rw rw rw Irw Irw Irw rw rw rw rw

7-10

Timer B Value Register (TBV)

Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access

The TBV register is a 16-bit register that holds the cur-
rent Timer B value.

Timer B Capture/Reload Value Register (TBR)
Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access

This 16-bit register is used to capture the TBV value
when Timer B is configured in capture mode and
holds the reload value when Timer B is configured in
autoreload mode.

Timer B Compare Register (TBC)

Power-On Reset and System Resets
Read (r), Write (w), or Special (s) access

This register is used to compare against TBV when
Timer B operates in compare mode.

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 8: IR TIMER

This section contains the following information:

8.1 Carrier Generation Module 8-2
8.2 IR TransSmIiSSION . . . 8-2
8.3 IR Transmit—Independent External Carrier and Modulator Qutputs 8-4
B4 IR RECEIVE . . .o 8-5
8.5 Carrier Burst-Count Mode 8-6
8.6 IRV Stand-Alone Count MOde 8-6
8.7 IR Timer Peripheral Registers 8-10
8.7.1 IR Control Register (IRCN). 8-10
8.7.2 IR Control Register B (IRCNB) 8-11
8.7.3 IR Value Register (IRV). 8-12
8.7.4 IR Carrier Register (IRCA) 8-12
8.7.5 IR Modulator Time Register (IRMT) 8-12

LIST OF FIGURES

Figure 8-1. IR Transmit Frequency Shifting Example (IRCFME =0). 8-3
Figure 8-2. IR Transmit Carrier Generation and Carrier Modulator Control 8-3
Figure 8-3. IR Transmission Waveform (IRCFME = 0). e 8-4
Figure 8-4. External IRTXM (Modulator) OQUtput 8-5
Figure 8-5. IR CaptUreo 8-5
Figure 8-6. Receive Burst-Count Example. 8-7
Figure 8-7. Philips Remote Encoding Example 8-8
Figure 8-8. Sony Remote Encoding Example 8-9

Maxim Integrated 8-1

MAXQ612/MAXQ622 User’s Guide

SECTION 8: IR TIMER

The MAXQ612/MAXQ622 microcontroller provides a dedicated IR timer/counter module to simplify support for low-
speed infrared (IR) communication. The IR timer implements two pins (IRTX and IRRX) for supporting IR transmit and
receive, respectively. The IRTX pin has no corresponding port pin designation, so the standard PD, PO, and PI port
control status bits are not present. However, the IRTX pin output can be manipulated high or low using the PWCN.
IRTXOUT bit when the IRTX function is not enabled (i.e., IREN = 0 or both IREN = 1 and IRMODE = 0).

The IR timer is composed of two separate timing entities: a carrier generator and a carrier modulator. The carrier gen-
eration module uses the 16-bit IR carrier register (IRCA) to define the high and low time of the carrier through the IR
carrier high byte (IRCAH) and IR carrier low byte (IRCAL). The carrier modulator uses the IR data bit (IRDATA) and IR
modulator time register (IRMT) to determine whether the carrier or the idle condition is present on IRTX.

The IR timer is enabled when the IR enable bit (IREN) is set to 1.

The IR value register (IRV) defines the beginning value for the carrier modulator. During transmission, the IRV register
is initially loaded with the IRMT value and begins down counting towards 0000h, whereas in receive mode it counts
upward from the initial IRV value. During the receive operation, the IRV register can be configured to reload with 0000h
when capture occurs on detection of selected edges or can be allowed to continue running free throughout the receive
operation. An overflow occurs when the IR timer value rolls over from OFFFFh to 0000h. The IR overflow flag (IROV) is
set to 1 and an interrupt is generated if enabled (IRIE = 1).

8.1 Carrier Generation Module

The IRCAH byte defines the carrier high time in terms of the number of IR input clock, whereas the IRCAL byte defines
the carrier low time.

IR Input Clock (fIRCLK) = fgys/2IRDIV[1:0]

Carrier Frequency (fCARRIER) = fIRCLK/(IRCAH + IRCAL + 2)
Carrier High Time = |IRCAH +1

Carrier Low Time = |IRCAL+1

Carrier Duty Cycle = (IRCAH +1)/(IRCAH + IRCAL + 2)

During transmission, the IRCA register is latched for each IRV down-count interval and is sampled along with the
IRTXPOL and IRDATA bits at the beginning of each new IRV down-count interval so that duty-cycle variation and fre-
quency shifting is possible from one interval to the next. This is illustrated in Figure 8-1.

Figure 8-2 illustrates the basic carrier generation and its path to the IRTX output pin. The IR transmit polarity bit
(IRTXPOL) defines the starting/idle state and the carrier polarity of the IRTX pin when the IR timer is enabled.

8.2 IR Transmission

During IR transmission (IRMODE = 1), the carrier generator is used to create the appropriate carrier waveform, while
the necessary modulation is performed by the carrier modulator.

The carrier modulation can be performed as a function of carrier cycles or as a function of IRCLK cycles dependent on
the setting of the IRCFME bit. When IRCFME = 0, the IRV down counter is clocked by the carrier frequency and, thus,
the modulation is a function of carrier cycles. When IRCFME = 1, the IRV down counter is clocked by IRCLK, allowing
carrier modulation timing with IRCLK resolution.

The IRTXPOL bit defines the starting/idle state as well as the carrier polarity for the IRTX pin. If IRTXPOL = 1, the IRTX
pin is set to a logic-high when the IR timer module is enabled. If IRTXPOL = 0, the IRTX pin is set to a logic-low when
the IR timer is enabled.

A separate register bit, IR data (IRDATA), is used to determine whether the carrier generator output is output to the
IRTX pin for the next IRMT carrier cycles. When IRDATA = 1, the carrier waveform (or inversion of this waveform if
IRTXPOL = 1) is output on the IRTX pin during the next IRMT cycles. When IRDATA = 0, the idle condition, as defined
by IRTXPOL, is output on the IRTX pin during the next IRMT cycles.

8-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

IRCA IRCA = 0202h IRCA = 0002h

IRMT IRMT =3

IRCA, IRMT, IRDATA SAMPLED AT END OF
IRV DOWN-COUNT INTERVAL

3 2 1 05 4 3 21 0

CARRIER OUTPUT !
(IRV) |

IRDATA 4 } } ! } }
0 | L0 | |

IR INTERRUPT } T T T T
IRTX : ; :
IRTXPOL = 1 3 3 3
IRTX } } }
IRTXPOL =0 ! ! !

Figure 8-1. IR Transmit Frequency Shifting Example (IRCFME = 0)

IRTX PIN

A

IR INTERRUPT

IRTXPOL
CARRIER GENERATION
RCLK ‘ CARRIER D
IRCAH + 1 IRCAL + 1 IRCFME
>0
>
™1 SAMPLE
IRDATA ON
FOATA IRV = 0000
RMT ————— >
CARRIER MODULATION

\J

Figure 8-2. IR Transmit Carrier Generation and Carrier Modulator Control

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

The IR timer acts as a down counter in transmit mode. An IR transmission starts when the IREN bit is set to 1 when
IRMODE = 1; when the IRMODE bit is set to 1 when IREN = 1; or when IREN and IRMODE are both set to 1 in the same
instruction. The IRMT and IRCA registers, along with the IRDATA and IRTXPOL bits, are sampled at the beginning of
the transmit process and every time the IR timer value reloads its value. When the IRV reaches 0000h value, on the
next carrier clock, it does the following:

1) Reloads IRV with IRMT.

2) Samples IRCA, IRDATA, and IRTXPOL.

3) Generates IRTX accordingly.

4) Sets IRIF to 1.

5) Generates an interrupt to the CPU if enabled (IRIE = 1).

To terminate the current transmission, the user can switch to receive mode (IRMODE = 0) or clear IREN to O.
Carrier Modulation Time = IRMT + 1 cycles

IRMT =3
CARRIER OUTPUT ; }
(IRV) 2 Lol s 2 1]o !
A ‘ ‘ | | |

IRDATA ‘ | Y ‘
0 1 | 0 | | |
IR INTERRUPT 3 f f f f f

IRTX ; !
IRTXPOL = 1 ! !
IRTX } ‘
IRTXPOL =0 ‘ ‘

Figure 8-3. IR Transmission Waveform (IRCFME = 0)

8.3 IR Transmit—Independent External Carrier and Modulator Outputs
The normal transmit mode performs internal modulation of the carrier based upon the IRDATA bit.

However, the user has the option to discretely provide the modulator (envelope) on an external pin if desired. If the
IRENV[1:0] bits are configured to 01b or 10b, the modulator/envelope is output to the IRTXM pin. The IRDATA bit is
output directly to the IRTXM pin (if IRTXPOL = 0) on each IRV down-count interval boundary just as if it were being
used to internally modulate the carrier frequency. If IRTXPOL = 1, the inverse of the IRDATA bit is output to the IRTXM
pin on the IRV interval down-count boundaries. The envelope output is illustrated in Figure 8-4. When the envelope
mode is enabled, it is possible to output either the modulated (IRENV[1:0] = 01b) or unmodulated (INENV[1:0] = 10b)
carrier to the IRTX pin.

8-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

IRTXM 1 |
(RTXPOL = 1) ! !
IRTXM ! 1
(IRTXPOL = 0) ! ! !
! A : [! A !
RORTA v Y Y | .
1 0 L1 0 1 0 1 0 |
IR INTERRUPT ! f f ? f ? ? ? ? ? ?
< o | . e - <>
IRV INTERVAL AT BT ‘ ‘ ©ORMT RMT

Figure 8-4. External IRTXM (Modulator) Output

8.4 IR Receive

When configured in receive mode (IRMODE = 0), the IR hardware supports the IRRX capture function. The IRRXSEL[1:0]
bits define which edge(s) of the IRRX pin should trigger IR timer capture function.

The IR module starts operating in the receive mode when IRMODE = 0 and IREN = 1. Once started, the IR timer (IRV)
starts up counting from 0000h when a qualified capture event as defined by IRRXSEL happens. The IRV register will,
by default, be counting carrier cycles as defined by the IRCA register. However, the IR clock frequency mux enable
(IRCFME) bit can be set to 1 to allow clocking of the IRV register directly with the IRCLK for finer resolution. When
IRCFME = 0, the IRCA-defined carrier is counted by IRV. When IRCFME = 1, the IRCLK clocks the IRV register.

CARRIER GENERATION
CARRIER MODULATION
IRCLK
> >l 0 IR TIMER OVERFLOW
IRCAH + 1 IRCAL + 1 L e
-l 1 4 INTERRUPT TO CPU
/I/ “ | oo0on IRV
IRCFME >
R INTERRUPT
COPY IRV TO IRMT
ON EDGE DETECT
IRXRL
. RESER IRV TO 0000n
> EDGE DETECT IRDATA

\J

Figure 8-5. IR Capture

Maxim Integrated 8-5

MAXQ612/MAXQ622 User’s Guide

On the first qualified event, it does the following:

1) Captures the IRRX pin state and transfers its value to IRDATA. If a falling edge occurs, IRDATA = 0. If a rising edge
occurs, IRDATA = 1.

2) Transfers its current IRV value to the IRMT.
3) Resets IRV content to 0000h (if IRXRL = 1).
4) Continues counting again until the next qualified event.

If the IR timer value rolls over from OFFFFh to 0000h before a qualified event happens, the IR timer overflow (IROV)
flag is set to 1 and an interrupt is generated, if enabled. The IR module continues to operate in receive mode until it is
stopped by switching into transmit mode (IRMODE = 1) or clearing IREN = 0.

8.5 Carrier Burst-Count Mode

A special mode has been implemented to reduce the CPU processing burden when performing IR learning functions.
Typically, when operating in an IR learning capacity, some number of carrier cycles is examined for frequency determi-
nation. Once the frequency has been satisfactorily determined, the IR receive function can be reduced to counting the
number of carrier pulses in the burst and the duration of the combined mark-space time within the burst. To simplify this
process, the receive burst-count mode (as enabled by the RXBCNT bit) can be used. When RXBCNT = 0, the standard
IR receive capture functionality is in place. When RXBCNT = 1, the IRV capture operation is disabled and the interrupt
flag associated with the capture no longer denotes a capture. In the carrier burst-count mode, the IRMT register is
now used only to count qualified edges. The IRIF interrupt flag (normally used to signal a capture when RXBCNT = 0)
now becomes set if ever two IRCA cycles elapse without getting a qualified edge. The IRIF interrupt flag thus denotes
absence of the carrier and the beginning of a space in the receive signal. When the RXBCNT bit is changed from O to
1, the IRMT register is set to 0001h. The IRCFME bit is still used to define whether the IRV register is counting IRCLKs
or IRCA-defined carrier cycles. The IRXRL bit is still used to define whether the IRV register is reloaded with 0000h on
detection of a qualified edge (per the IRXSEL[1:0] bits).

Figure 8-6 and the descriptive sequence embedded in the figure illustrate the expected usage of the receive burst-
count mode.

8.6 IRV Stand-Alone Count Mode

A special mode has been implemented to allow using the IRV as a simple counter. When IRVCEN = 1 and IRMODE
= 0, the IRV acts as an up counter counting IRCLK edges (IRCFME = 1) or carrier-generated clock edges (IRCFME =
0). If IREN = 1 and IRXRL = 1, a qualifying edge resets the IRV counter and generates an interrupt (if enabled). Using
this feature when IREN = 0 allows controlling the IRTX pin with the PWCN IRTX control bits.

This mode should not be used with RXBCNT set and is not operational if IRMODE = 1.

8-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

IRMT

CAR&E%E?&?%E\INCY IRMT = PULSE COUNTING IRMT = PULSE COUNTING
p ~ IRV = CARRIER CYCLE COUNTING —
- N\

PSS EEEE=,

Yoo

SESEI

ONIO)

CAPTURE INTERRUPT (IRIF = 1)
IRV > IRMT
IRV =0 (IF IRXRL = 1)

SOFTWARE SET IRCA = CARRIER FREQUENCY.

SOFTWARE SETS RXBCNT =1 (WHICH SETS IRMT = 0001 IN HARDWARE).

SOFTWARE CLEARS IRCFME =0 SO THAT IRV COUNTS CARRIER CYCLES. IRV IS RESET TO 0 ON QUALIFIED EDGE DETECTION IF IRXRL = 1.
SOFTWARE ADDS TO IRMT THE NUMBER OF PULSES USED FOR CARRIER MEASUREMENT.

IRCA x 2X COUNTER FOR SPACE CAN BEGIN IMMEDIATELY (QUALIFIED EDGE WILL RESET) .

QUALIFIED EDGE DETECTED: IRMT++
IRVRESET TO O IF IRXRL =1.

IRCA x 2 PERIOD ELAPSES: IRIF = 1; CARRIER ABSENCE = SPACE.
BURST MARK = IRMT PULSES.
SOFTWARE CLEARS RXBCNT =0 SO THAT WE CAPTURE ON THE NEXT QUALIFIED EDGE.

Q@ @ O

QUALIFIED EDGE DETECTED: IRIF = 1, CAPTURE > IRMT AS THE BURST SPACE (PLUS UP TO ONE CARRIER CYCLE).

SOFTWARE SET RXBCNT =1 AS IN (5).
CONTINUE (5) TO (8) UNTIL LEARNING SPACE EXCEEDS SOME DURATION. IRV ROLLOVERS CAN BE USED.

© @

Figure 8-6. Receive Burst-Count Example

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

IRTX

)

(IRTXPOL

IRDATA

IR INTERRUPT

=10b

IRRXSEL

IRMT5

IRMT2

IRRX

IRDATA

IRMT CAPTURE

IR INTERRUPT

NOTE: 0

LOW-TO-HIGH TRANSITION, BIT LENGTH FIXED.

HIGH-TO-LOW TRANSITION, 1

Figure 8-7. Philips Remote Encoding Example

Maxim Integrated

8-8

MAXQ612/MAXQ622 User’s Guide

IRTX U_|_|_H_|_|_ U_|_|_H_|_|_ U_|_|_|_H_|_ U.|.|.|.|.|.|_ Mu
B T L R TN N SR B T SR D S L R T
IR INTERRUPT * * * * * * + * * * * *

VIRMT_T IRMT_T | IRMT_T IRMT_T : IRMT_2T IRMT_T IRMT_2T IRMT_T | IRMT_T IRMT_T :
IRRXSEL = 10b
0 0 1 1 0
IRRX + |
R N S S N b b
0 1 0 1 0 1 0 1 0
IRMT CAPTURE * f * * * * * * *

IR INTERRUPT A A A A A A A A A |

IRMT_T | RMT_T IRMT_T © IRMT_2T RMT_T | IRMT_2T IRMT_T | IRMT_T IRMT_T :

NOTE: 0 =1T HIGH, 1T LOW, 1=2T HIGH, 1T LOW, VARIED BIT LENGTH.

Figure 8-8. Sony Remote Encoding Example

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

8.7 IR Timer Peripheral Registers
8.7.1 IR Control Register (IRCN)

15 0
| | | | | | | | | | | | | | | | | IR Control Register (IRCN)
o 0o 0 o oo o000 0OOOO 0O 00O Power-On Reset and System Resets
W rw Irw rw rw rw rw rw rw rw rw rw rw rw rw rw Read (r), Write (w), or Special (s) access

Bit 13: IRV Count Enable (IRVCEN). Setting this bit to 1, while IRMODE = O (receive mode), enables IRV up counting.
IRCFME is used to select the clock source of the IRV in this mode. To use this mode without affecting the IRTX pin,
keep IREN = 0.

Bits 12 to 10: IR Clock Divide Bits [1:0] (IRDIV[2:0]). These two bits select the divide ratio for the IR input clock.

IRDIV[2:0] IR INPUT CLOCK-DIVIDE RATIO
000 fSYSCLK/
001 fSYSCLK/2
010 fSYSCLK/4
011 fSYSCLK/8
100 fSYSCLK/16
101 fSYSCLK/32
110 fsyscLk/64
111 fsyscLk/128

Bits 9 and 8: IR Envelope Mode Bits [1:0] (IRENV[1:0]). Setting either of these bits (but not both) to 1 enables the
envelope modulation signal (based upon the IRDATA and IRTXPOL bits) to be output separately to the IRTXM pin dur-
ing transmit mode. When these bits are both cleared to 0 or set to 1, the standard internal modulation is performed
during IR transmit mode and the envelope signal is not output to the IRTXM pin. When the envelope mode is enabled,
it is possible to output either the modulated or unmodulated carrier to the IRTX pin (see the following table).

IRENV[1:0] IRTX OUTPUT
00 or 11 Envelope mode disablgd.
Standard IRTX modulation (default).
01 Standard IRTX modulation.
10 Constant IRTX carrier (unmodulated).

Bit 7: IR Receive Reload Enable (IRXRL). Setting this bit to 1 enables automatic reload of the IRV register with 0000h
whenever a qualified edge event capture occurs during the IR receive operation. If IRXRL = 0, the IRV register is not
reloaded with 0000h, but continues running during the IR receive operation.

Bit 6: IR Carrier Frequency Measure Enable (IRCFME). Setting this bit to 1 enables direct clocking of the IRV
register using the defined IRCLK during the IR receive operation. Clearing this bit to O results in IRV counting of the
IRCA-defined carrier during the receive operation. Using IRCFME = 1 allows system clock resolution when capturing,
whereas IRCFME = 0 allows only (Sysclk/2) resolution when IRCA = 0000h.

8-10 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Bits 5 and 4: IR Receive Edge Select Bits (IRRXSEL[1:0]) These bits define which edge of the input signal triggers
a receive capture function when enabled.

IRRXSEL[1:0]

IR RECEIVE MODE

00 Trigger on falling edge.
01 Trigger on rising edge.
10 Trigger on both rising and falling edge.

11

Reserved.

Bit 3: IR Data (IRDATA). This register bit defines how the carrier is modulated in transmit mode, and in receive mode, it
contains the state of IRRX when a qualified capture event happens. When IR transmit mode is in effect, setting IRDATA
= 1 enables the output of the carrier module (as affected by IRTXPOL) to be visible on the IRTX pin. When IRDATA =
0, the IR module is put in the idle state and IRTXPOL is output onto IRTX. In receive mode, the IRDATA bit contains the
latched state of the IRRX pin each time a capture event occurs.

Bit 2: IR TX Polarity Select (IRTXPOL). When the IR timer is enabled (IREN = 1), this bit selects the starting/idle logic
state and the carrier polarity for the transmit output. This bit also impacts the polarity of the IRTXM envelope when the
independent modulator transmit output mode is enabled (IRENV[1:0] =01b or 10b). When IRENV[1:0] =01b or 10b,
the latched IRDATA bit is directly output to the IRTXM pin as the envelope when IRTXPOL = 0. When IRTXPOL = 1, the
complement of the latched IRDATA bit is output.

Bit 1: IR Mode (IRMODE). This register bit controls the IR module operation mode.

IRMODE IR OPERATION MODE
0 Receive Mode
1 Transmit Mode

Bit 0: IR Enable (IREN). This register bit enables the IR module. Setting this bit to 1 starts the operating mode as
defined by IRMODE bit. Clearing this bit to 0 terminates IR operation.

8.7.2 IR Control Register B (IRCNB)

7 0
| | | | | | | | | IR Control Register B (IRCNB)
0O 0 0O 0O O 0O o0 O Power-On Reset and System Resets
W W rw Iw rw rw rw rw Read (r), Write (w), or Special (s) access

Bit 3: Receive Carrier Burst-Count Enable (RXBCNT). Setting this bit to 1 enables the carrier burst-counting mode
for the IR timer when operating in receive mode. This bit is not meaningful for the transmit mode. Whenever software
changes RXBCNT from 0 to 1, the IRMT register is set to 0001h by hardware. When RXBCNT = 1, the IR timer receive
mode is modified in the following ways:

1) The IRV register is not captured to the IRMT register on detection of the IRRXSEL[1:0] selected edge(s).
2) The IRMT register is incremented on detection of the IRRXSEL[1:0] selected edge(s).

3) The IRIF flag is no longer set on capture-edge detection.

4) An IRCA x 2 interval timer is enabled and upon expiration, the IRIF flag is set.

When RXBCNT = 0, the receive carrier burst-count mode is disabled and normal receive capture functionality can be
used.

Bit 2: IR Interrupt Enable (IRIE). Setting this bit to 1 enables an interrupt to be generated to the CPU when the IR timer
overflow (IROV) or IR interrupt flag is set (IRIF). Clearing this bit to O disables IR timer interrupt generation.

Maxim Integrated 8-11

MAXQ612/MAXQ622 User’s Guide

Bit 1: IR Interrupt Flag (IRIF). This flag is set to 1 during transmit when the IR timer reloads its value and in receive
mode (if RXBCNT = 0), when a capture occurs. In receive mode (when RXBCNT = 1), this flag is set whenever the
IRCA x 2 interval timer expires. This bit must be cleared to O by software once it is set.

Bit 0: IR Timer Overflow Flag (IROV). This flag is set to 1 when the IR timer overflows from OFFFFh to 0000h in receive
mode. This bit must be cleared to 0 by software once it is set.

8.7.3 IR Value Register (IRV)

15 0
L Tt]] IR Value Register (IRV)
o o 0o o o o000 OO 0O 0 0 0 O Power-On Reset and System Resets
W rw Irw rw Irw rw rw rw rw rw rw rw rw rw rw rw Read (r), Write (w), or Special (s) access

The IRV register is a 16-bit register that holds the current IR timer value. The IR timer value starts counting when the
IREN bit is set to 1. It stops counting when the IREN bit is cleared to 0 and retains the current timer value.

8.7.4 IR Carrier Register (IRCA)

15 0
| | | | | | | | | | | | | | | | | IR Carrier Register (IRCA)
o 0o 0o o o o000 0 0 0 0 0 0 o0 Power-On Reset and System Resets
rw RwW rw rw o rw o rw orworw o rworworw o rwo o rw rwe rw rw Read (r), Write (w), or Special (s) access

Bits 15 to 8: IR Carrier High Byte Bits [7:0] (IRCAH[7:0]). The IRCAH byte defines the number of IR input clocks
during carrier high time. The carrier high time = IRCAH[7:0] + 1.

Bits 7 to 0: IR Carrier Low Byte Bits [7:0] (IRCAL[7:0]). The IRCAL byte defines the number of IR input clocks during
carrier low time. The carrier low time = IRCAL[7:0] + 1.

8.7.5 IR Modulator Time Register (IRMT)

15 0
| | | | | | | | | | | | | | | | | IR Modulator Time Register (IRMT)
o 0o 0o o 0o o0 o OO 0O 0 O O0 0O Power-On Reset and System Resets
W rw Irw rw rw rw rw rw rw rw rw rw rw rw rw rw Read (r), Write (w), or Special (s) access

The IRMT register is a 16-bit register that defines the IRDATA active time during transmit mode. In receive mode (when
RXBCNT = 0), it is used to capture the IRV value on qualified IRRXSEL edges. In receive mode (when RXBCNT = 1),
the IRMT register increments on detection of selected IRRXSEL edge(s). When RXBCNT is changed from O to 1, the
IRMT register is set to 0001h by hardware.

8-12 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 9: SERIAL 1/0 MODULE

This section contains the following information:

9.1 USART MOES . . . oo 9-2
9.1 1 USART Mode O. . .ot 9-2
9. 1.2 USART Mode 1. . .o 9-4
9. 1.3 USART MOde 2. . .o 9-4
9. 1.4 USART Mode 3. . .o o 9-7
9.2 Baud-Rate Generation 9-8
9.21 Mode 0 Baud Rate. 9-8
9.22Mode 2 Baud Rate. 9-8
9.23Mode 1or3Baud Rate 9-8
9.2.4 Baud-Clock GENErator 9-8
9.3 Framing Error Detection. 9-9
9.4 USART Peripheral Registers 9-10
9.4.1 Serial Control Register (SCON) 9-10
9.4.2 Serial Port Mode Register (SMD) 9-11
9.4.3 Serial Port Data Buffer Register (SBUF). 9-11
9.4.4 Serial Port Phase Register (PR) 9-11
LIST OF FIGURES
Figure 9-1. USART Mode O 9-3
Figure 9-2. USART Mode 1 . . 9-5
Figure 9-3. USART MOdE 2o 9-6
Figure 9-4. USART Mode 3 . . . 9-7
LIST OF TABLES
Table 9-1. USART Mode SUMMATIY oot 9-2
Table 9-2. USART Baud-Clock Summary 9-8
Table 9-3. Example Baud-Clock Generator Settings (SMOD = 1) 9-9
Maxim Integrated 9-1

MAXQ612/MAXQ622 User’s Guide

SECTION 9: SERIAL 1/0 MODULE

The serial 1/0 module provides the MAXQ612/MAXQ622 access to a universal synchronous/asynchronous receiver-
transmitter (USART) for serial communication with framing error detection.

9.1 USART Modes

The USART supports four basic modes of operation and is capable of both synchronous and asynchronous modes,
with different protocols and baud rates. In the synchronous mode, the microcontroller supplies the clock and commu-
nication takes place in a half-duplex manner, while the asynchronous mode supports full-duplex operation. The four
serial operating modes are shown in Table 9-1, followed by detailed descriptions of each mode.

Table 9-1. USART Mode Summary

SYNCHRONOUS/ N DATA 9TH BIT
MODE ASYNCHRONOUS BAUD CLOCK BITS START/STOP FUNCTION
0 Synchronous 4 or 12 clocks 8 None None
1 Asynchronous Baud-clock generator 8 1 start, 1 stop None
2 Asynchronous 32 or 64 clocks 9 1 start, 1 stop 0, 1, parity
3 Asynchronous Baud-clock generator 9 1 start, 1 stop 0, 1, parity

*Use of any system clock-divide modes or power-management mode affects the baud clock.

The USART has a control register (SCON) and a transmit/receive buffer register (SBUF). Transmit or receive buffer
access depends upon whether SBUF is used contextually as a source or destination. When SBUF is used as a source
(read operation), the receive buffer is accessed. When SBUF is used as a destination (write operation), the transmit
buffer is accessed. The USART receiver incorporates a holding buffer so that it can receive an incoming word before
software has read the previous one.

Note that there is no single register bit that explicitly enables the USART for transmission. This means that the port
pin(s) associated with USART transmission (i.e., TXD and RXD for mode 0) is controlled by the PDn and POn port
control register bits when the USART is not actively transmitting a character.

9.1.1 USART Mode 0

This mode is used to communicate in synchronous, half-duplex format with devices that accept the MAXQ612/
MAXQ622 microcontrollers as a master. A functional diagram and basic timing of this mode is shown in Figure 9-1. As
can be seen, there is one bidirectional data line (RXD) and one shift clock line (TXD) used for communication. Mode 0
requires that the MAXQ612/MAXQ622 microcontrollers be the master since it generates the serial shift clock for data
transfers that occur in either direction.

The RXD signal is used for both transmission and reception. Data bits enter and exit LSB first. TXD provides the shift
clock. The baud rate is equal to the shift clock frequency. When not using power-management mode, the baud rate
in mode 0 is equivalent to the clock input divided by either 12 or 4, as selected by SM2 bit (SCON.5) for the USART.

The USART begins transmitting when any instruction writes to SBUF. The internal shift register then begins to shift data
out. The clock is activated and transfers data until the 8-bit value is complete. Data is presented just prior to the falling
edge of the shift clock (TXD) so that an external device can latch the data using the rising edge.

The USART begins to receive data when the REN bit in the SCON register (SCON.4) is set to 1 and the RI bit (SCON.0)
is set to 0. This condition tells the USART that there is data to be shifted in. The shift clock (TXD) activates, and the
USART latches incoming data on the rising edge. The external device should therefore present data on the falling
edge. This process continues until 8 bits have been received. The Rl bit automatically is set to 1 immediately following
the last rising edge of the shift clock on TXD. This causes reception to stop until the SBUF has been read and the Rl
bit cleared. When Rl is cleared, another byte can be shifted in.

9-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

TRANSMIT TIMING
LDSBUF

l » SERIAL

[

INTERRUPT

WRITE TO SBUF

SBUF
_OUTPUT SHIFT REGISTER
o3 SOF—{ LATCH [l D
—— tt ottt
-
DIVIDE DIVIDE
BY 12 BY 4
|L, <ﬂ DATA BUS >
LDSBUF —# »
RDSBUF |
LOAD SHIFT SBUF
SM2 = SCONx.5 SERIAL READ |
BUFFER SERIAL |« »|RD RECEIVEDATABUFFER WR
BUFFER |
BAUD SERIALI/O
CLOCK CONTROL RECEIVE
- BUFFER
= LOAD RO
= DATA
Y ; CLOCK y ????????
Tl Rl CLOCK 58833858
FLAG = FLAG = .
SCONA | | SCON.0 >3l
REGEIVE SHIFT REGISTER

| PIN|

SHIFT

RXD
(DATA OUT)

XD
(DATA CLOCK)

Tl

RECEIVE TIMING
RDSBUF

[

WRITE TO SCON (CLEAR RI)

SHIFT

I

[—

[

[

RXD

(DATAIN)

XD
(DATA CLOCK)

Rl

B O

—

Figure 9-1. USART Mode 0

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

9.1.2 USART Mode 1

This mode provides asynchronous, full-duplex communication. A total of 10 bits is transmitted, consisting of a start bit
(logic 0), 8 data bits, and 1 stop bit (logic 1) as illustrated in Figure 9-2. The data is transferred LSB first. The baud
rate is programmable through the baud-clock generator. Following a write to SBUF, the USART begins transmission
five cycles after the first baud clock from the baud-clock generator. Transmission takes place on the TXD pin. It begins
with the start bit being placed on the pin. Data is then shifted out onto the pin, LSB first. The stop bit follows. The TI bit
is set by hardware after the stop bit is placed on the pin. All bits are shifted out at the rate determined by the baud-
clock generator.

Once the baud-clock generator is active, reception can begin at any time. The REN bit (SCON.4) must be set to 1 to
allow reception. The detection of a falling edge on the RXD pin is interpreted as the beginning of a start bit and begins
the reception process. Data is shifted in at the selected baud rate. At the middle of the stop bit time, certain conditions
must be met to load SBUF with the received data:

Rl must be 0, and either

If SM2 = 0, the state of the stop bit does not matter.
or

If SM2 = 1, the state of the stop bit must be 1.

If these conditions are true, then SBUF (address) is loaded with the received byte, the RB8 bit (SCON.2) is loaded with
the stop bit, and the RI bit (SCON.0) is set. If these conditions are false, then the received data is lost (SBUF and RB8
not loaded) and Rl is not set. Regardless of the receive word status, after the middle of the stop bit time, the receiver
goes back to looking for a 1-to-0 transition on the RXD pin.

Each data bit received is sampled on the 7th, 8th, and 9th clock used by the divide-by-16 counter. Using majority vot-
ing, two equal samples out of the three, determines the logic level for each received bit. If the start bit was determined
to be invalid (= 1), then the receiver goes back to looking for a 1-to-0 transition on the RXD pin in order to start the
reception of data.

9.1.3 USART Mode 2

This mode uses a total of 11 bits in asynchronous full-duplex communication as illustrated in Figure 9-3. The 11 bits
consist of one start bit (a logic 0), 8 data bits, a programmable 9th bit, and one stop bit (a logic 1). Like mode 1, the
transmissions occur on the TXD signal pin and receptions on RXD.

For transmission purposes, the 9th bit can be stuffed as a 0 or 1. The 9th bit is transferred from the TB8 bit position in
the SCON register (SCON.3) following a write to SBUF to initiate a transmission. Transmission begins five clock cycles
after the first rollover of the divide-by-16 counter following a software write to SBUF. It begins with the start bit being
placed on the TXD pin. The data is then shifted out onto the pin, LSb first, followed by the 9th bit, and finally the stop
bit. The Tl bit (SCON.1) is set when the stop bit is placed on the pin.

Once the baud-rate generator is active and the REN bit (SCON.4) has been set to 1, reception can begin at any time.
Reception begins when a falling edge is detected as part of the incoming start bit on the RXD pin. The RXD pin is then
sampled according to the baud rate speed. The 9th bit is placed in the RB8 bit location in SCON (SCON.2). At the
middle of the 9th bit time, certain conditions must be met to load SBUF with the received data.

Rl must be 0, and either

If SM2 = 0, the state of the 9th bit does not matter.

or

If SM2 = 1, the state of the 9th bit must be 1.

If these conditions are true, then SBUF is loaded with the received byte, RB8 is loaded with the 9th bit, and Rl is set.
If these conditions are false, then the received data is lost (SBUF and RB8 not loaded) and Rl is not set. Regardless

of the receive word status, after the middle of the stop bit time, the receiver goes back to looking for a 1-to-0 transition
on RXD.

9-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SBUF
_ TRANSMIT SHIFT REGISTER 0
oS o ES0| LATCH |—»
SYSTEM S8 nguxnars & PIN
P rRbtpeet?
| S —
DIVIDE
BY 4 ﬁ
0 1
SMOD'-» DATABUS >
LDSBUF * /\
BAUD-CLOCK ROSBUF I
GENERATOR LOAD SHIFT SBUF
SERIAL READ |
BB}\JJEER SERIAL [> RD RECEIVEDATABUFFER WR
_| DIVIDE BUFFER
™ BY16 [™| CLOCK SERIALI/O /\
CONTROL | gap
b RESET RB -
= SCON.2 N
y l() Y ?T?T?T?T|
Tl RI S £ 58838858k
FLAG= | | FLAG= 93 5 5
SCON.T | | SCON.0)
RECEIVE SHIFT REGISTER
SERIAL
'NTERRUPI DIVIDE | BT | RXD
> BY16 :DETECTION[™ PIN
TRANSMIT TIMING
LDSBUF |_|
SHIFT |_| |_| |_| |_| |_| |_| |_| |_| |_|

PO\ smr /oo X o X o X m X o4 ¥ 5 X o X o7 / s

Tl

RECEIVE TIMING

e \ SRt / po X b1 X D2 X b3 X b4 X D5 X D6 X o7 / srop
i N T B N A A Y

SAMPLING

SHIFT

RI

Figure 9-2. USART Mode 1

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Data is sampled in a similar fashion to mode 1 with the majority voting on three consecutive samples. Mode 2 uses

the sample divide-by-16 counter with either the clock divided by 2 or 4, thus resulting in a baud clock of either system
clock/32 or system clock/64.

SBUF
_ TRANSMIT SHIFT REGISTER =
oS o = S0—»| LATCH [—»|
SYSTEM ESCaronsnars & PIN
AAd 1A TTTTTTTT 0
| S —
DIVIDE
BY2 TB8 =
|£> ’ SCON.3
SMOD \“ DATA BUS >
LDSBUF * /\
RDSBUF |
LOAD SHIFT SBUF
SERIAL READ |
BUFFER SERIAL =|RD RECEIVE DATABUFFER WR
| DIVIDE SHIFT BUFFER
™ BY16 [™| CLOCK SERIALI/O /\
| S RESET
%) RB8 =
= SCON.2 N
l’ A
! O T O
Tl RI S 58 58833858k
FLAG= | | FLAG= R =
SCON.1 | | SCON.0 o
RECEIVE SHIFT REGISTER
l » SERIAL
INTERRUPT Moo L I RXD
™| BY 16 :DETECTION|™ PIN
TRANSMIT TIMING
LDSBUF |_|
SHIFT |_| |_| |_| |_| |_| |_| |_| |_| |_|
XD

N\ st /oo X o X o2 X o3 X oe X o5 X o6 X o7 X 188 /STOP
T

REGEIVE TIMING
RXD \ smar /oo Y ot X e X 3 X o4 X b5 X b6 X o7 X res / srop

BIT DETECTOR
SAMPLING []]

SHFT [Tl - JJrJr i JT Tl
Rl

Figure 9-3. USART Mode 2

9-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

9.1.4 USART Mode 3

This mode has the same operation as mode 2, except for the baud rate source. As shown in Figure 9-4, mode 3 gener-
ates baud rates through the baud-clock generator. The bit shifting and protocol are the same.

TRANSMIT TIMING
LDSBUF

SBUF
_ TRANSMIT SHIFT REGISTER
28 a S0l LATCH [l D10
SYSTEM S22 858833858 5
CLOCK AA1ATTTTTTTTO
| —
DIVIDE
BY4 TB8 -
|£>] SCON.3
SMob DATA BUS >
LDSBUF ’ /\
BAUD-CLOCK ROSBUF I
GENERATOR LOAD SHIFT SBUF
SERIAL READ |
BUFFER SERIAL [=|RD RECEIVE DATABUFFER ~ WR
_ | DIVIDE BAUD BUFFER
™ BY16 [|CLOCK SERIALI/O /\
! CONTROL | gap
EESET RB8 =
= SCON.2 A
bl oy [R
Tl Rl S 58 58838858k
FLAG= | | FLAG= 925 =
SCON.1 | | SCON.0 o
RECEIVE SHIFT REGISTER
SERIAL
INTERRUPT Dvine COBT | RXD
> BY 16 :DETECTION[™ PIN

SHIFT

[

I

[I Tl

[

[

[

Tl

O\ s S X w X m Y Y m Y X o7 Y m /e

—

RECEIVE TIMING

RXD \ START

[o X

D1

X o X

D7

X R8s / sTop

BIT DETECTOR |
SAMPLING

SHIFT

Rl

Figure 9-4. USART Mode 3

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

9.2 Baud-Rate Generation

Each mode of operation has a baud-rate generator associated with it. The baud-rate generation techniques are impact-
ed by certain user options such as the power-management mode enable (PMME), serial mode 2 (SM2) select bit, and
baud-rate doubler (SMOD) bit. Table 9-2 summarizes the effects of the various user options on the USART baud clock.

Table 9-2. USART Baud-Clock Summary

BAUD-CLOCK FREQUENCY
SYSTEM CLOCK MODE MODE 0 MODE 2 MODE 1, 3*

SM2 =0 SM2 =1 SMOD =0 SMOD =1 SMOD =0 SMOD =1

Divide by 1 (default) CLK/12 CLK/4 CLK/64 CLK/32 BAUD/64 BAUD/16

Divide by 2 CLK/24 CLK/8 CLK/128 CLK/64 BAUD/64 BAUD/16

Divide by 4 CLK/48 CLK/16 CLK/256 CLK/128 BAUD/64 BAUD/16

Divide by 8 CLK/96 CLK/32 CLK/512 CLK/256 BAUD/64 BAUD/16
Power-Management

Mode (Dividegby 256) CLK/3072 CLK/1024 CLK/16384 CLK/8192 BAUD/64 BAUD/16

*The BAUD frequency is determined by the baud-clock generator (described later in this section).

9.2.1 Mode 0 Baud Rate

Baud rates for mode 0 are driven directly from the system clock source divided by either 12 or 4, with the default case
being divided by 12. The user can select the shift clock frequency using the SM2 bit in the SCON register. When SM2
is set to 0, the baud rate is fixed at a divide by 12 of the system clock. When SM2 is set to 1, the baud rate is fixed at
a divide by 4 of the system clock. SM2

Mode 0 Baud Rate = System Clock Frequency x
9.2.2 Mode 2 Baud Rate

In this asynchronous mode, baud rates are also generated from the system clock source. The user can effectively
double the USART baud clock frequency by setting the SMOD bit to 1. The SMOD bit is set to 0 on all resets, thus
making divide by 64 the default setting. The baud rate is given by the following formula:

>SMOD
64

Mode 2 Baud Rate = System Clock Frequency x
9.2.3 Mode 1 or 3 Baud Rate

These asynchronous modes are commonly used for communication with PCs, modems, and other similar interfaces.
The baud rates are programmable using the baud-clock generator in the USART module. The baud-clock generator
is basically a phase accumulator that generates a baud clock as the result of phase overflow into the most significant
bit of the phase shifter. This baud-clock generator is driven by the system clock or system clock divided-by-4 source
(depending upon the state of the SMOD bit). The baud-clock generator output is always divided by 16 to generate the
exact baud rate.

9.2.4 Baud-Clock Generator

The baud-clock generator is essentially a phase accumulator that produces a baud clock as the result of phase over-
flow from the most significant bit of the phase shift circuitry. A 16-bit phase register (PR) is programmable by the user
to select a suitable phase value for its baud clock. The phase value dictates the phase period of the accumulation
process. The phase value is added to the current phase accumulator value on each system clock (SMOD = 1) or every
fourth system clock (SMOD = 0). The baud clock is the result of addition overflow out of the most significant bit of the
phase accumulator (bit 16). The baud-clock generator output is always divided by 16 to produce the exact baud rate.

9-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

|0| PR

ADDITION

16 0

BAUD-CLOCK OUTPUT =
CARRY OUT FROM PHASE ACCUMULATOR [16] | PHASE ACCUMULATOR

—

Figure 9-5. Baud-Clock Generator

The below formulas can be used to calculate the output of the baud-clock generator and the resultant mode 1, 3 baud
rates. Additionally, a table has been provided giving example phase register (PR) settings needed to produce some
more common baud rates at certain system clock frequencies (assuming SMOD = 1).

Baud-Clock Generator Output (BAUD) = System Clock Frequency x PR/217
Baud Rate for Modes 1 and 3 = BAUD x 2(SMODx2)/26

Table 9-3. Example Baud-Clock Generator Settings (SMOD = 1)

SYSTEM CLOCK BAUD RATE SYSTEM CLOCK BAUD RATE
FREQUENCY (MHz) (PR SETTING) FREQUENCy (MHz) (PR SETTING)
115200 (5E5F) 57600 (83D2)
57600 (2F30) 19200 (2BF1)
10 19200 (OFBB) 3.579545
9600 (15F8)
9600 (07DD) 2400 (057E)
2400 (01FF)
115200 (75F7) 57600 (C000)
57600 (3AFB) 19200 (4000)
8 19200 (13A9) 2.4576
9600 (2000)
9600 (09D5) 2400 (0800)
2400 (0275)
115200 (FFFF)
57600 (8000) 19200 (9D49)
3.6864 19200 (2AAB) 1 9600 (4EA5)
9600 (1555) 2400 (13A9)
2400 (0555)

9.3 Framing Error Detection

A framing error occurs when a valid stop bit is not detected. This results in the possible improper reception of the serial
word. The USART can detect a framing error and notify the software. Typical causes of framing errors are noise and
contention. The framing error condition is reported in the SCON register for the USART.

The framing error bit, FE, is located in SCON.7. Note that this bit normally serves as SMO and is described as SMO/FE_0
in the register description. Framing error information is made accessible by the FEDE (framing error-detection enable)
bit located at SMD.0. When FEDE is set to 1, the framing error information is shown in SMO/FE (SCON.7). When FEDE
is set to 0, the SMO function is accessible. The information for bits SMO and FE is actually stored in different registers.
Changing FEDE only modifies which register is accessed, not the contents of either.

Maxim Integrated 9-9

MAXQ612/MAXQ622 User’s Guide

The FE bit is set to a 1 when a framing error occurs. It must be cleared by software. Note that the FEDE state must be
1 while reading or writing the FE bit. Also note that receiving a properly framed serial word does not clear the FE bit.
This must be done in software.

9.4 USART Peripheral Registers
9.4.1 Serial Control Register (SCON)

7 0
| | | | | | | | | Serial Control Register (SCON)
0O 0 0 0O 0O O 0 o Power-On Reset and System Resets
W Iw rw rw rw rw rw rw Read (r), Write (w), or Special (s) access

Bit 7: Framing Error Flag (FE) (FEDE = 1). This bit is set upon detection of an invalid stop bit. It must be cleared by
software. Modification of this bit when FEDE is set has no effect on the serial mode setting.

Bit 7: Serial Port 0 Mode Bit 0 (SM0) (FEDE = 0). This bit is used in conjunction with the SM2 and SM1 bits to define
the serial mode.

MODE SM2 SMA1 SMo FUNCTION LENGTH (BITS) PERIOD

0 0 0 0 Synchronous 8 12 system clock

0 1 0 0 Synchronous 8 4 system clock
64/16 baud clock

1 X 1 0 Asynchronous 10 (SMOD = 0/1)
64/32 system clock

2 0 0 1 Asynchronous 11 (SMOD = 0/1)
64/32 system clock

2 1 0 1 Asynchronous (MP) 11 (SMOD = 0/1)
64/16 baud clock

3 0 1 1 Asynchronous 11 (SMOD = 0/1)
64/16 baud clock

3 1 1 1 Asynchronous (MP) 11 (SMOD = 0/1)

Bits 6:5: Serial Port 0 Mode Bits 1:2 (SM[1:2]). Setting this bit in mode 1 ignores reception if an invalid stop bit is
detected. Setting this bit in mode 2 or 3 enables multiprocessor communications, and prevents the Rl bit from being
set and the interrupt from being asserted if the 9th bit received is 0.

This bit also used to support mode O for clock selection:

0 = serial clock is system clock divided by 12

1 = serial clock is system clock divided by 4

Bit 4: Receive Enable (REN)

0 = serial port receiver disabled

1 = serial port receiver enabled for modes 1, 2, and 3. Initiate synchronous reception for mode 0 (if Rl = 0).

Bit 3: 9th Transmission Bit State (TB8). This bit defines the state of the 9th transmission bit in serial port modes 2
and 3.

Bit 2: 9th Received Bit State (RB8). This bit identifies the state of the 9th bit of received data in serial port modes 2
and 3. When SM2 is 0, it is the state of the stop bit in mode 1. This bit has no meaning in mode 0.

Bit 1: Transmit Interrupt Flag (TI). This bit indicates that the data in the serial port data buffer has been completely
shifted out. It is set at the end of the last data bit for all modes of operation and must be cleared by software once set.

9-10 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Bit 0: Receive Interrupt Flag (RI). This bit indicates that a data byte has been received in the serial port buffer. The
bit is set at the end of the 8th bit for mode 0, after the last sample of the incoming stop bit for mode 1 subject to the
value of the SM2 bit, or after the last sample of RB8 for modes 2 and 3. This bit must be cleared by software once set.

9.4.2 Serial Port Mode Register (SMD)

7 0

| — | — | — | — |——| | | | Serial Port Mode Register (SMD)
0O 0 0O OO 0O 0 O Power-On Reset and System Resets
rr r r r rworw rw Read (r), Write (w), or Special (s) access

Bit 3: Enable Serial Port Interrupt (ESI). Setting this bit to 1 enables interrupt requests generated by the Rl or Tl flags
in SCON. Clearing this bit to O disables the serial port interrupt.

Bit 2: Serial-Port Baud-Rate Select (SMOD). The SMOD selects the final baud rate for the asynchronous mode:
1 = 16 times the baud clock for mode 1 and 3
32 times the system clock for mode 2
0 = 64 times the baud clock for mode 1 and 3
64 times the system clock for mode 2
Bit 0: Framing Error Detection Enable (FEDE). This bit selects the function of SMO (SCON.7):
0 = SCON.7 functions as SMO for serial-port mode selection
1 = SCON.7 is converted to the framing error (FE) flag

9.4.3 Serial Port Data Buffer Register (SBUF)

7 0

| | | | | | | | | Serial Port Data Buffer Register (SBUF)
0 0 0 0OO O 0O O Power-On Reset and System Resets
W rw rw rw rw orw rw rw Read (r), Write (w), or Special (s) access

Data for serial port is read from or written to this location. The serial transmit and receive buffers are separate but both
are addressed at this location.

9.4.4 Serial Port Phase Register (PR)

15 0
| | | | | | | | | | | | | | | | | Serial Port Phase Register (PR)

0 0 00 0 0 0 0 0 0 0 0 0 0 o000 Power-On Reset and System Resets

W IwW W rw rw rw rw rw rw rw rw rw rw rw rw rw Read (r), Write (w), or Special (s) access

This register is used to load and read the value in the phase register.

Maxim Integrated 9-11

MAXQ612/MAXQ622 User’s Guide

SECTION 10: SERIAL PERIPHERAL INTERFACE (SPI) MODULE

This section contains the following information:

10.1 SPI Transfer Formatso 10-2
10.2 SPI Slave SeleCt. . .o 10-4
10.3 SPI Character Lengths. 10-4
10.4 SPI Transfer Baud Rates 10-4
10.5 SPI System Errors ... 10-4
10.5.1 Mode Fault . ..o 10-4
10.5.2 Receive OVEITUN. . . .o 10-5
10.5.3 Write Collision While BUSY 10-5
10.6 SPI Master Operation. 10-5
10.7 SPISlave Operation. 10-5
10.8 SPI Peripheral Registers 10-6
10.8.1 SPI Control Register (SPICNN). 10-6
10.8.2 SPI Configuration Register (SPICFN)o 10-7
10.8.3 SPI Clock Register (SPICKN) 10-8
10.8.4 SPI Data Buffer Register (SPIBN). 10-8

LIST OF FIGURES

Figure 10-1. SPI Block Diagram. oo 10-2
Figure 10-2. SPI Transfer Formats (CKPHA = 1) e 10-3
Figure 10-3. SPI Transfer Formats (CKPHA = 0). e 10-3

LIST OF TABLES

Table 10-1. SPI Module Signal FUNCHIONS 10-2

Maxim Integrated 10-1

MAXQ612/MAXQ622 User’s Guide

SECTION 10: SERIAL PERIPHERAL INTERFACE (SPI) MODULE

The serial peripheral interface (SPI) module of the MAXQ612/MAXQ622 microcontrollers provide an independent serial
communication channel to communicate synchronously with peripheral devices in a multiple master or multiple slave
system. The interface allows access to a 4-wire full-duplex serial bus that can be operated in either master mode or
slave mode. The SPI functionality must be enabled by setting the SPI enable (SPIEN) bit of the SPI control register to
1. The maximum data rate of the SPI interface is 1/2 the system clock frequency for master mode operation and 1/4
the system clock frequency for slave mode operation.

The four external interface signals used by the SPI module are MISO, MOSI, SPICK, and SSEL. Table 10-1 shows the
function of each of these signals.

Figure 10-1 shows the SPI external interface signals, control unit, read buffer, and single shift register common to the
transmit and receive data path. Each time that an SPI transfer completes, the received character is transferred to the
read buffer, giving double buffering on the receive side. The CPU has read/write access to the control unit and the SPI
data buffer (SPIB). Writes to SPIB are always directed to the shift register while reads always come from the receive
holding buffer.

Table 10-1. SPI Module Signal Functions

EXTERNAL PIN SIGNAL

MASTER MODE USE

SLAVE MODE USE

MISO: Master In/Slave Out

Input to serial shift register

Output from serial shift register when selected

MQOSI: Master Out/Slave In

Output from serial shift register

Input to serial shift register when selected

SPICK: SPI Clock Serial shift clock sourced to slave device(s) Serial shift clock from an external master

(Optional) Mode fault-detection input if

SSEL: Slave Select enabled (MODFE = 1)

Slave-select input

MSTM = SPICN.1
1
1
»O"! ! ! MISO
P N B 4
1 I 1
SPIB WRITES 157 | SHIFTREGISTER ¢ | ; !
— > —— || | MOS|
| | R e A —
v 0 | |
I 1
1 1
— SPICK
SPIB READS | | 1 . e S
15/7 RECEIVE DATA 0 ! ! SSEL
BUFFER L o—_ >
‘ 1
1
SPIEN =
/ / SPICN.0

SPI STATUS AND CONTROL UNIT

Figure 10-1. SPI Block Diagram

10.1 SPI Transfer Formats

During an SPI transfer, data is simultaneously transmitted and received over two serial data lines with respect to a sin-
gle serial shift clock. The polarity and phase of the serial shift clock are the primary components in defining the SPI data

10-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

transfer format. The polarity of the serial clock corresponds to the idle logic state of the clock line and therefore also
defines which clock edge is the active edge. To define a serial shift clock signal that idles in a logic-low state (active
clock edge = rising), the clock polarity select bit (CKPOL; SPICF.0) should be configured to a 0, while setting CKPOL
= 1 causes the shift clock to idle in a logic-high state (active clock edge = falling). The phase of the serial clock selects
which edge is used to sample the serial shift data. The clock phase select bit (CKPHA; SPICF.1) controls whether the
active or inactive clock edge is used to latch the data. When CKPHA is set to 1, data is sampled on the inactive clock
edge (clock returning to the idle state). When CKPHA is set to 0, data is sampled on the active clock edge (clock
transition to the active state). Together, the CKPOL and CKPHA bits allow the four possible SPI data transfer formats
illustrated in Figure 10-2 and Figure 10-3. The SSEL signal can remain asserted between successive transfers.

TRANSFER CYCLE |

A
\/

CKPOL =0
CKPHA =1 o I
CKPOL =1
ot S I I S I e B i B
mosmiso ——((mss) 1 1 1 1 1 1 s —
SSEL
SAS =1 L

SAMPLING POINTS f f f f f f f ?

Figure 10-2. SPI Transfer Formats (CKPHA = 1)

TRANSFER CYCLE

CKPOL =0

ivSvrur S | O U O B

CKPOL =1

wwo L L LT LT LT LT LT LT

mosimiso —{_ (s L I X){){) GIETD QD Jv=cr i
S| L

SAS=1

SAMPLING POINTS ? ? f ? ? ? f ?

Figure 10-3. SPI Transfer Formats (CKPHA = 0)

Maxim Integrated 10-3

MAXQ612/MAXQ622 User’s Guide

10.2 SPI Slave Select

The SPI slave-select SSEL can be configured to accept either an active-low or active-high SSEL signal through the
slave active select bit (SAS) in the SPI configuration register. The SAS bit allows the selection of the SSEL asserted
state.

When SAS is cleared to 0, SSEL is configured to be asserted low. When SAS is set to 1, SSEL is configured to be
asserted high.

10.3 SPI Character Lengths

To flexibly accommodate different SPI transfer data lengths, the character length for any transfer is user configurable
through the character length bit (CHR) in the SPI configuration register. The CHR bit allows selection of either 8-bit or
16-bit transfers.

When loading 8-bit characters into the SPIB data buffer, the byte for transmission should be right-justified or placed
in the least significant byte of the word. When a byte transfer completes, the received byte is right-justified and can
be read from the least significant byte of the SPIB word. The most significant byte of the SPIB data buffer is not used
when transmitting and receiving 8-bit characters.

10.4 SPI Transfer Baud Rates

When operating as a slave device, the SPI serial clock is driven by an external master. For proper slave operation, the
serial clock provided by the external master should not exceed the system clock frequency divided by 4.

When operating in the master mode, the SPI serial clock is sourced to the external slave device(s). The serial clock
baud rate is determined by the clock divide ratio specified in the SPI clock divider ratio (SPICK) register. The SPI mod-
ule supports 256 different clock divide ratio selections for serial clock generation. The SPICK clock rate is determined
by the following formula:

SPI Baud Rate = System Clock Frequency/2 x Clock Divider Ratio
where clock divider ratio = (SPICK[7:0]) + 1

Since the SPI baud rate is a function of the system clock frequency, using any of the system clock divide modes
(including power-management mode) alters the baud rate. Attempts to invoke the power-management mode while an
SPI transfer in is progress (STBY = 1) are ignored.

Note, however, that once in power-management mode (PMME = 1), writes to SPIB in master mode and assertion of the
SSEL pin in slave mode both qualify as switchback sources if enabled (SWB = 1). The SPI module clocks are halted if
the device is placed into stop mode.

10.5 SPI System Errors

Three types of SPI system errors can be detected by the SPI module. A mode fault error arises in a multiple master
system when more than one SPI device simultaneously tries to be a master. A receive overrun error occurs when an SPI
transfer completes before the previous character has been read from the receive holding buffer. The third kind of error,
write collision, indicates that an attempted write to SPIB was detected while a transfer was in progress (STBY = 1).

10.5.1 Mode Fault

When an SPI device is configured as a master and its mode fault enable bit (SPICN.2: MODFE) is also set, a mode fault
error occurs if the SSEL input signal is asserted by an external device. The asserted state of SSEL is defined by slave
active select bit (SPICN.6: SAS). If SAS is cleared to 0 and a low SSEL input signal is detected while MODFE is set,
a mode fault error has occurred. If SAS is set to 1, a high SSEL signal indicates that a mode fault error has occurred.
The mode fault error detection is to provide protection from such damage by disabling the bus drivers. When a mode
fault is detected, the following actions are taken immediately:

1) The MSTM bit is forced to O to reconfigure the SPI device as a slave.
2) The SPIEN bit is forced to 0 to disable the SPI module.
3) The mode fault status flag (SPICN.3: MODF) is set. Setting the MODF bit can generate an interrupt if it is enabled.

10-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

The application software must correct the system conflict before resuming its normal operation. The MODF flag is set
automatically by hardware, but must be cleared by software or a reset once set. Setting the MODF bit to 1 by software
causes an interrupt if enabled.

Mode fault detection is optional and can be disabled by clearing the MODFE bit to 0. Disabling the mode fault detection
disables the function of the SSEL signal during master mode operation, allowing the associated port pin to be used as
a general-purpose /0.

Note that the mode fault mechanism does not provide full protection from bus contention in multiple master, multiple
slave systems. For example, if two devices are configured as master at the same time, the mode fault-detect circuitry
offers protection only when one of them selects the other as slave by asserting its SSEL signal. Also, if a master acci-
dentally activates more than one slave and those devices try to simultaneously drive their output pins, bus contention
can occur without and a mode fault error being generated.

10.5.2 Receive Overrun

Since the receive direction of SPI is double buffered, there is no overrun condition as long as the received character in
the read buffer is read before the next character in the shift register ready to be transferred to the read buffer. However,
if previous data in the read buffer has not been read out when a transfer cycle is completed and the new character
is loaded into the read buffer, a receive overrun occurs and the receive overrun flag (SPICN.5: ROVR) is set. Setting
the ROVR flag indicates that the oldest received character has been overwritten and is lost. Setting the ROVR bit to 1
causes an interrupt if enabled. Once set, the ROVR bit is cleared only by software or a reset.

10.5.3 Write Collision While Busy

A write collision occurs if an attempt to write the SPIB data buffer is made during a transfer cycle (STBY = 1). Since the
shift register is single buffered in the transmit direction, writes to SPIB are made directly into the shift register. Allowing
the write to SPIB while another transfer is in progress could easily corrupt the transmit/receive data. When such a write
attempt is made, the current transfer continues undisturbed, the attempted write data is not transferred to the shift reg-
ister, and the control unit sets the write collision flag (SPICN.4: WCOL). Setting the WCOL bit to 1 causes an interrupt
if SPI interrupt sources are enabled. Once set, the WCOL bit is cleared only by software or a reset.

Normally, write collisions are associated solely with slave devices since they do not control initiation of transfers and
do not have access to as much information about the SPICK clock as the master. As a master, write collisions are
completely avoidable, however, the control unit detects write collisions for both master and slave modes.

10.6 SPI Master Operation

The SPI module is placed in master mode by setting the master mode enable bit (MSTM) in the SPI control register to
1. Only an SPI master device can initiate a data transfer. The master is responsible for manually selecting/deselecting
slave(s) through the SSEL slave input signals. Writing a data character to the SPI shift register (SPIB) while in master
mode starts a data transfer. The SPI master immediately shifts out the data serially on the MOSI pin, most significant
bit first, while providing the serial clock on SPICK output. New data is simultaneously received on the MISO pin into the
least significant bit of the shift register. The data transfer format (clock polarity and phase), character length, and baud
rate are all configurable as described earlier in the section. During the transfer, the SPI transfer busy flag (SPICN.7:
STBY) is set to indicate that a transfer is in process. At the end of the transfer, the data contained in the shift register is
moved into the receive data buffer, the STBY bit is cleared by hardware, and the SPI transfer complete flag (SPICN.6:
SPIC) is set. Setting of the SPIC bit generates an interrupt request if SPI interrupt sources are enabled (ESPII = 1).

10.7 SPI Slave Operation

The SPI module operates in slave mode when the MSTM bit is cleared to 0. In slave mode, the SPI is dependent on
the SPICK sourced from the master to control the data transfer. The SPICK input frequency should be no greater than
the system clock of the slave device frequency divided by 4.

The slave-select SSEL input must be externally asserted by a master before data exchange can take place. SSEL
must be asserted before data transaction begin and must remain asserted for the duration of the transaction. If data
is to be transmitted by the slave device, it must be written to its shift register before the beginning of a transfer cycle,
otherwise the character already in the shift register is transferred. The slave device considers a transfer to begin with

Maxim Integrated 10-5

MAXQ612/MAXQ622 User’s Guide

the first clock edge or the active SSEL edge, dependent on the data transfer format. When SAS is cleared to 0, the
active SSEL edge is the falling edge of SSEL, while if SAS is set to 1, the active SSEL edge is the rising edge of SSEL.

The SPI slave receives data from the external master MOSI pin, most significant bit first, while simultaneously transfer-
ring the contents of its shift register to the master on the MISO pin, also most significant bit first. Data received from the
external master replaces data in the internal shift register until the transfer completes. Just like in the master mode of
operation, received data is loaded into the read buffer and the SPI transfer complete flag is set at the end of transfer.
The setting of the transfer complete flag generates an interrupt request if enabled. Note also that when CKPHA = 0O,
the most significant bit of the SPI data buffer is shifted out on the 8th shift clock edge.

When SSEL is not asserted, the slave device ignores the SPICK clock and the shift register is disabled. Under this
condition, the device is basically idle, no data is shifted out from the shift register and no data is sampled from the
MQOSI pin. The MISO pin is placed in an input mode and is weakly pulled high to allow other devices on the bus to drive
the bus. Deassertion of the SSEL signal by the master during a transfer (before a full character, as defined by CHR, is
received) aborts the current transfer. When the transfer is aborted, no data is loaded into the read buffer, the SPIC flag
is not set, and the slave logic and the bit counter are reset.

In slave mode, the clock divider ratio bits (CKR[7:0]) have no function since the serial clock is supplied by an external
master. The transfer format (CKPOL, CKPHA settings) and the character length selection (CHR) for the slave device,
however, should match the master for a proper communication.

10.8 SPI Peripheral Registers
10.8.1 SPI Control Register (SPICNn)

7 0
I | [| | | | | | sPicontrol Register (SPICNn)
0O 0 00O OO O O Power-On Reset and System Resets
r rw rw rw rw rw rw rw Read (r), Write (w), or Special (s) access

Bit 7: SPI Transfer Busy Flag (STBY). This bit is used to indicate the current transmit/receive activity of the SPI mod-
ule. STBY is set to 1 when an SPI transfer cycle starts, and is cleared to O when the transfer cycle is completed. This
bit is controlled by hardware and is read only for user software.

0 = SPI module is idle—no transfer in process
1 = SPI transfer in process

Bit 6: SPI Transfer Complete Flag (SPIC). This bit signals the completion of an SPI transfer cycle. This bit must be
cleared to 0 by software once set. Setting this bit to 1 causes an interrupt if enabled.

0 = No SPI transfers have completed since the bit was last cleared.
1 = SPI transfer complete

Bit 5: Receive Overrun Flag (ROVR). This bit indicates when a receive overrun has occurred. A receive overrun
results when a received character is ready to be transferred to the SPI receive data buffer before the previous charac-
ter in the data buffer is read. The most recent receive data is lost. This bit must be cleared to 0 by software once set.
Setting this bit to 1 causes an interrupt if enabled.

0 = No receive overrun has occurred
1 = Receive overrun occurred

Bit 4: Write Collision Flag (WCOL). This bit signifies that an attempt was made by software to write the SPI buffer
(SPIB) while a transfer was in progress (STBY = 1). Such attempts are always blocked. This bit must be cleared to O
by software once set. Setting this bit to 1 causes an interrupt if enabled.

0 = No write collision has been detected
1 = Write collision detected

10-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Bit 3: Mode Fault Flag (MODF). This bit is the mode fault flag for SPI master mode operation. When mode fault detec-
tion is enabled (MODFE = 1) in master mode, detection of high to low transition on the SSEL pin signifies a mode fault
causes MODF to be set to 1. This bit must be cleared to 0 by software once set. Setting this bit to 1 causes an interrupt
if enabled. This flag has no meaning in slave mode.

0 = No mode fault has been detected
1 = Mode fault detected while operating as a master (MSTM = 1)

Bit 2: Mode Fault Enable (MODFE). When set to 1, the SSEL input pin is used for mode fault detection during SPI
master mode operation. When cleared to 0, the SSEL input has no function and its pin can be used for general-purpose
I/O. In slave mode, the SSEL pin always functions as a slave-select input signal to the SPI module, independent of the
setting of the MODFE bit.

Bit 1: Master Mode Enable (MSTM). The MSTM bit functions as a master mode enable bit for the SPI module.

0 = SPI module operates in slave mode when enabled (SPIEN = 1)

1 = SPI module operates in master mode when enabled (SPIEN = 1)

Note that this bit can be set from 0 to 1 only when the SSEL signal is deasserted. This bit can be automatically cleared
to 0 by hardware if a mode fault is detected.

Bit 0: SPI Enable (SPIEN)
0 = SPI module and its baud-rate generator are disabled
1 = SPI module and its baud-rate generator are enabled

10.8.2 SPI Configuration Register (SPICFn)

7 0
| | | — | — | — | | | | SPI Configuration Register (SPICFn)
0O 0 00O OO 0 O Power-On Reset and System Resets
W rw rr r rworw rw Read (r), Write (w), or Special (s) access

Bit 7: SPI Interrupt Enable (ESPII). This bit enables any of the SPI interrupt source flags (MODF, WCOL, ROVR, SPIC)
to generate interrupt requests.

0 = SPI interrupt sources disabled

1 = SPI interrupt sources enabled

Bit 6: SPI Slave Active Select (SAS). This bit selects SSEL asserted state.
0 = SSEL is active low

1 = SSEL is active high

Bit 2: Character Length Bit (CHR). This bit determines the character length for a SPI transfer cycle. A character can
be 8 bits in length or 16 bits in length.

0 = 8-bit character length specified
1= 16-bit character length specified

Bit 1: Clock Phase Select (CKPHA). This bit selects the clock phase and is used in conjunction with the CKPOL bit
to define the SPI data transfer format.

0 = data sampled on the active clock edge
1 = data sampled on the inactive clock edge

Bit 0: Clock Polarity Select (CKPOL). This bit selects the clock polarity and is used in conjunction with the CKPHA
bit to define the SPI data transfer format.

0 = clock idles in the O state (rising = active clock edge)
1 = clock idles in the 1 state (falling = active clock edge)

Maxim Integrated 10-7

MAXQ612/MAXQ622 User’s Guide

10.8.3 SPI Clock Register (SPICKn)

7 0
[[| | | | | | | sPiclockRegister (SPICKn)
0 0 0 0O 0 0 0 O Power-On Reset and System Resets
W rw rw rw rw rw rw rw Read (r), Write (w), or Special (s) access

Bits 7:0: Clock Divider Ratio Bits 7:0 (CKR[7:0]). This 8-bit value determines the system clock divide ratio to be
used for SPI master mode baud-clock generation. This register has no function when operating in slave mode as the
SPI clock generation circuitry is disabled. The frequency of the SPI master-mode baud rate is calculated using the
following equation:

SPI Baud Rate = (0.5 x System Clock Frequency)/(CKR[7:0] + 1)

10.8.4 SPI Data Buffer Register (SPIBn)

15 0
| | | | | | | | | | | | | | | | | SPI Data Buffer Register (SPIBn)
0O 0 00O 0OOO 00O O O O0OO0OTO0OTO0OTDO0 Power-On Reset and System Resets
rS rs rs rs rs rs rs rs rs rs rs S rs rs rs rs Read (r), Write (w), or Special (s) access

Data for SPI is read from or written to this location. The serial transmit and receive buffers are separate, but both are
addressed at this location. Write access is allowed only outside the transfer cycle. When the STBY bit is set, write
attempts are blocked and cause a write collision error.

10-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 11: 12C INTERFACE

This section contains the following information:

11.112C Mode of Operation. 11-2
11,11 Master-Transmitter 11-2
T1.0.2 Master-ReCeiver . . . 11-4
11.1.3 Slave-Transmittero 11-4
11.1.4 Slave-RecCeiver . . .o 11-6
11.212C Clock GENEration. 11-6
11.312C Controller RESet. o 11-7
11.4 12C Peripheral Register DesCriptionsS. oo 11-8
11.4.1 12C Control Register (I2CCN). 11-8
11.4.2 12C Status Register (I2CST) oot 11-9
11.4.3 12C Data Buffer Register (I2CBUF) 11-10
11.4.4 12C Interrupt Enable Register (I12CIE) 11-11
11.4.5 12C Clock Control Register (I2CCK). 11-12
11.4.6 12C Timeout Register (1I2CTO)o 11-12
11.4.7 12C Slave Address Register (I2CSLA) 11-13
115 12C EXAMPICS . . . oo 11-13
11.5.1 12C Example: Master Mode, Transmito 11-13
11.5.2 12C Example: Master Mode, ReCeIVE. 11-14
11.5.3 12C Example: Slave Mode, ReceiVe. 11-14
11.5.4 12C Example: Slave Mode, TransSmito 11-15
LIST OF FIGURES
Figure 11-1. Roles of 12C Devices and Direction of 12C Signals. 11-2
Figure 11-2. 12C Master-Transmitter Data Transfer. 11-3
Figure 11-3. 12C Master-Transmitter and Master-Receiver 11-3
Figure 11-4. 12C Master-Receiver Data Transfer. 11-4
Figure 11-5. 12C Slave Transmitter and Slave Receiver 11-5
Figure 11-6. 12C Clock Period 11-6
LIST OF TABLES
Table 11-1. Definition of 12C Bus Terminologyot 11-2
Table 11-2. Sample 12C Clock Setting for 50ns Rise/Fall TIMe.t 11-7
Maxim Integrated 11-1

MAXQ612/MAXQ622 User’s Guide

SECTION 11: 12C INTERFACE

The MAXQ612/MAXQ622 provide an 12C module, which is an 8-bit, bidirectional, 2-wire serial bus interface with the
following characteristics:

e Compliant with NXP 12C bus specification version 0.3 (2007)
e Information is transferred through a serial-data bus (SDA) and a serial-clock line (SCL)

e Operates in either master or slave mode as a transmitter or receiver

e Supports a multimaster environment

e Supports a data transfer rate of up to 100kbps in standard mode and up to 400kbps in fast mode
e On-chip filtering rejects spikes on the bus data line to preserve data integrity

Therefore, any device that is attached to the 12C bus can assume one of the following roles:

1) Master-Transmitter

2) Master-Receiver

3) Slave-Transmitter

4) Slave-Receiver

Note that the above relationship is not permanent and is dependent on the direction of data transfer. In all cases, the
master is responsible for initiating the transfer and generating clock signals.

Table 11-1. Definition of 12C Bus Terminology

TERM DESCRIPTION
Transmitter The device that sends data to the bus.
Receiver The device that receives data from the bus.
Master The device that initiates a transfer, generates clock signals, and terminates a transfer.
Slave The device addressed by a master.
SCL
MASTER > SLAVE
TRANSMITTER SDA__ | RECEIVER
SCL
MASTER > SLAVE
RECEVER |<q—SPA TRANSMITTER

Figure 11-1. Roles of I2C Devices and Direction of I2C Signals

11.1 12C Mode of Operation

The 12C module can be enabled by setting the 12CEN bit to 1 (I2CEN = 1). The 12C module operates in master mode
if the I2CMST bit is set to 1. The 12C master can choose to function as a transmitter (I2CMODE = 0) or as a receiver
(I2CMODE = 1). To terminate a transfer, the master generates a STOP (P) condition by setting the 12C STOP bit to 1
(I2CSTOP = 1).

11.1.1 Master-Transmitter

The 12C module functions as a master-transmitter when the master mode bit is set to 1 and the transfer mode bit is
cleared to 0 (I2CMST = 1 and I2CMODE = 0). To initiate a transfer, the 12C master generates a START (S) condition by
setting the 12C START bit to 1 (I2CSTART = 1). After successfully initiating the START condition, the master then writes
the slave address to I2CBUF and starts transmitting. On completion of a slave address transfer, the transmit interrupt

11-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

flag is set (I2CTXI = 1). The I12CTXI flag is set after the acknowledge bit has been received from the slave. This gener-
ates an interrupt to the CPU if the transmit interrupt is enabled (I2CTXIE = 1). On receiving acknowledgement (ACK)
from the slave, the master can then start transmitting data bytes to the slave. The master refrains from generating the
SCL clock until data has been written to 1I2CBUF. The 12C controller starts generating the SCL clock only after the
I2CBUF has been written to and the necessary SCL low time requirement has been satisfied. There is no limit as to the
number of bytes to be transmitted. The master concludes the transfer by generating the STOP condition (I12CSTOP = 1)
and releasing the 12C signals.

|S|SLAVEADDR|0|A| DATA |A| DATA |A|P|

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

WRITE

[] MASTER TO SLAVE
[C] SLAVE TO MASTER

Figure 11-2. I2C Master-Transmitter Data Transfer

(BEGIN) (BEGIN)
\ Y
GENERATE GENERATE
START START
\ Y
TRANSMIT TRANSMIT
SLAVE SLAVE
ADDRESS ADDRESS
\ Y
TRANSMIT | | RECEIVE -
DATA - DATA -
Y Y
N N
GENERATE GENERATE
STOP STOP
\ Y
END END
(A) MASTER TRANSMITTER (B) MASTER RECEIVER

Figure 11-3. I2C Master-Transmitter and Master-Receiver

Maxim Integrated 11-3

MAXQ612/MAXQ622 User’s Guide

11.1.2 Master-Receiver

When operating in master mode with I2CMODE bit set to 1, the 12C module is operating in master-receiver mode. The
|2C operates in a similar fashion as in master-transmitter mode. The master initiates the transfer by generating the
START condition. Once START has been successfully generated, the master transmits the slave address (I2CBUF)
according to address setting (I2CEA). Note that in the first part of the transfer, the master acts as a transmitter so
that it can address the targeted |12C slave device on the bus. Therefore, on completion of address transfer, it sets the
transmit complete flag (I12CTXI = 1). After the master has successfully addressed the target, the master then switches
to receiver mode. The master starts outputting SCL receiving clock pulses and shifting in data from SDA unless clock
stretching is enabled.

Once the master has received a data byte from the slave, it loads the data into I2CBUF and sets I2CRXI = 1. This also
generates an interrupt to the CPU if the receive ready interrupt is enabled (I12CRXIE = 1). The CPU can then read data
from the 12CBUF.

Meanwhile, the master continues to output receiver clock because the 12CBUF is double-buffered on receive. This
allows the 12C module to continue receiving data while the previous data byte is being processed. If the second byte
is received before the first byte is read (the CPU has not read the I2CBUF yet), the second byte is not copied into the
I2CBUF. Instead, the 12C receive overrun flag is set (I2CROI = 1). This generates a receive overrun interrupt to the
CPU if enabled. Meanwhile, the 12C controller responds to the transmitter with the I2CACK value. The master does not
output any more receiver clock pulses unless the 12CROI flag is cleared to O.

The 12CROI flag can only be cleared by CPU reading I12CBUF. On clearing the 12CROI flag, the 12C controller also
loads the second byte into I2CBUF and generates an 12C receive interrupt if enabled. The receiver then resumes its
operation. The master outputs receiver clock pulses after satisfying the SCL low time requirement.

At the end of the each data byte received, the master acknowledges according to the setting of the I2CACK bit. When
the I2CACK bit is set to 1, the master leaves SDA high and acknowledges with a NACK (A). When the I2CACK bit is
cleared to 0, the master pulls SDA low. A NACK from the master indicates to the slave that the master has received all
the bytes it expects from the slave, and the slave should release the SDA line on the following SCL low and allow the

master to drive the SDA line to generate a STOP or START condition.

|S|SLAVEADDR|1|A| DATA |A| DATA |K|P|

DATA TRANSFERRED
(n BYTES + ACKNOWLEDGE)

READ

[C] MASTER TO SLAVE
[C] SLAVE TO MASTER

Figure 11-4. I2C Master-Receiver Data Transfer

11.1.3 Slave-Transmitter

The 12C module functions as a slave-transmitter when an address match is identified (I2CAMI = 1) and the R/W bit is
1. On detecting a START (S) condition, the 12C controller, if enabled, shifts in the address bits and compares it against
its own address (I2CSLA). If the address matches, the I2CAMI flag is set to 1 and an interrupt is generated if enabled.
The 12CMST master mode bit is cleared to 0 and the I2CMODE transfer mode bit is updated with the received R//W
bit value of 1, indicating that the master wants to read from the slave and the slave operates as the transmitter. On
detecting this, the 12C controller operates in slave-transmitter mode. The 12C module shifts out the 12C transmit buffer
content when the master starts clocking the SCL. On completion of transmitting a data byte, the 12C controller sets the
transmit complete flag to 1 (I12CTXI) and generates an interrupt if enabled.

If the master expects no more data from the slave, it sends a NACK as the acknowledgement. On receiving the NACK,
the 12C controller must release the SDA line so that the external master can drive SDA in the next clock period.

11-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

N

(BEGIN)

Y
DETECT START
[2CSRI =1
[2CBUS =1

Y

RECEIVE
SLAVE

ADDRESS

Y

—<_ [2CAMI=1?

Y

<
-«

Y

TRANSMIT
DATA

DETECT STOP
12CBUS =0

Y
END

(A) SLAVE TRANSMITTER

N

(BEGIN)

A\ J
DETECT START
[2CSRI =1
[2CBUS =1

A J

RECEIVE
SLAVE

ADDRESS

Y

—<_ [2CAMI=1?

Y

<
¢

\J

RECEIVE
DATA

DETECT STOP
12CBUS =0

Y
END

(B) SLAVE RECEIVER

Figure 11-5. 12C Slave Transmitter and Slave Receiver

The slave cannot write to the I2CBUF if a transfer is in progress (I2CBUSY = 1). Therefore, the CPU should first check
the status of the 12C busy bit before writing to the 12C buffer. Any attempt to write to the I2CBUF is ignored when

[2CBUSY = 1.

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

11.1.4 Slave-Receiver

The 12C module functions as a slave-receiver when an address match is identified (I2CAMI = 1) and the R/W bit is
0. The 12C module operates in a similar fashion as the slave-transmitter mode previously described. On detecting a
START (S) condition, the 12C controller, if enabled, shifts in the address bits and compares it against its own address
(I2CSLA). If the address matches, the I2CAMI flag is set to 1 and an interrupt generated if enabled. The I2CMST master
mode bit is cleared to 0 and the I2CMODE transfer mode bit is updated with the received R/W bit value of 0, indicating
that the master wants to write to the slave and the slave behaves as a receiver. On detecting this, the 12C controller
operates in slave-receiver mode. The 12C controller starts shifting into the 12C receive buffer when the master starts
clocking SCL. On completion of receiving a data byte, the 12C controller sets the receive ready interrupt flag (I2CRXI)
to 1. This also generates an interrupt to the CPU if the receive ready interrupt is enabled (I2CRXIE = 1). The CPU can
then read data from I2CBUF. An overrun occurs (I2CROI = 1) if the software fails to read 12CBUF when the 12C control-
ler receives two consecutive bytes of data. Once an overrun occurs, the 12C receiver always NACKs future transfers
until the I2CROI flag is cleared to O.

11.2 12C Clock Generation

To accommodate different system needs, the 12C controller provides the system designer complete control over the
duty cycle of the 12C clock. The 12C peripheral is clocked by the system clock and the bit rate is defined by the 12C
clock control register (12CCK).

The high period of SCL clock is defined by the high byte of the 12C clock control register (I2CCKH), whereas the low
period of SCL is defined by the low byte (I2CCKL). The minimum clock high period is three system clocks, while the
minimum low period must be at least five times the system clock period.

VIH_MIN

[2CCKH

12CCKL

[2CCKH

A

Y

ViL_max
SCL

Figure 11-6. I2C Clock Period

In master mode, the 12C clock characteristics are defined by the following equations:
I2C Low Time = System Clock Period x (I2CCKL[7:0] + 1)
|2C High Time = System Clock Period x (I2CCKH[7:0] + 1)
12C Bit Time = (12C Low Time + 12C High Time)
= tgys x (I2CCKL[7:0] + I2CCKHI[7:0] + 2)
|2C Bit Rate = fsys/(I2CCKL[7:0] + I2CCKH[7:0] + 2)

The application can adjust SCL duty cycle accordingly while satisfying timing the requirement of the 12C communica-
tion channels.

During synchronization, when external masters could be driving SCL simultaneously, the actual SCL duty cycle is
affected. By monitoring the SCL state, the 12C controller can determine whether an external master could be holding
SCL low. In all cases, the 12C controller waits until the SCL has gone high before starting to count SCL high cycles.

11-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Similarly, if an external master pulls SCL low before the 12C controller has finished counting its I2CCKH cycles, the 12C
controller starts counting its [I2CCKL cycles and releases SCL once the [2CCKL count has expired.

Theoretically, the 12C bit rate is limited to fSys/8 in both master mode and slave mode. Practically, the 12C specification
requires minimum timing on SCL high and low periods. Therefore, the application should set the [2CCK register so
the 12C timing requirement is satisfied. Table 11-2 shows how the application can configure the I2CCKH and 12CCKL
registers.

[2CCKH = Number of System Clock Required - 1
[2CCKL = Number of System Clock Required - 1

Note that the 12C Bit Rate is limited by the minimum SCL high and low time and is not limited to the implementation.
If the requirement for minimum high and low time is removed, the module can operate up to 1/8 system clock rate.

Table 11-2. Sample 12C Clock Setting for 50ns Rise/Fall Time

fsys (MHz) I2CCKH [2CCKL FREQUENCY (ksps)
20 7 11 1000
20 17 31 400
20 92 106 100
12 3 7 1000
12 9 19 400
12 55 63 100
8 2 4 1000
8 12 400
8 36 42 100

11.3 12C Controller Reset

In the case where the MAXQ controller would like to terminate an on-going 12C communication, it can set the 12C reset
bit (I2CRST) in the 12CCN register. The 12CRST bit is set to 1 by software and can only be cleared to O by hardware.
By setting the I2CRST bit to 1, the 12C controller initiates the abort process. If a transfer is not in progress (I2CBUSY = 0)
and the 12C controller is acting as a master, it generates a STOP condition immediately. Similarly, if a transfer is not in
progress and the 12C controller is acting as a slave, it releases SDA and returns to the idle state.

If a transfer is in progress (I2CBUSY = 1), when acting as a master-transmitter, setting this bit generates a STOP condi-
tion at the next SCL low time. In master-receiver mode, since the SDA line is actively being driven by the slave during
the byte transfer, the master NACKSs the current byte and generates a STOP conditon after the ACK bit. In both cases,
the timeout timer starts when the 12C controller tries to initiate a STOP condition if enabled. If the timeout timer expires
before the STOP condition can be generated, a timeout interrupt is generated to the CPU if enabled. The I2CRST bit
is also cleared to 0 by the timeout event.

In slave mode, the 12C controller releases the SDA line on the next SCL low period. While the reset is in progress, the
[2CBUSY bit is set to 1 and writes to I2CEN are permitted. The I2CACK bit is set to 1 by hardware and any write to this
bit is ignored until I2CRST = 0. The I12CACK bit is set to 1 to force a NACK condition in receive mode. On completion
of the abort, the I2CRST bit automatically is self-cleared to 0. At the conclusion of the 12C reset operation, the 12CBUF
register and I2CSTART and 12CSTOP bits are reset to 0. In addition, all the flags in the 12CST register, with the excep-
tion of I2CTOI, 12CSCL, and [2CSPI, are also reset to 0. The I2CRST bit is also reset to 0 when 12CEN = 0.

Maxim Integrated 11-7

MAXQ612/MAXQ622 User’s Guide

11.4 12C Peripheral Register Descriptions

The following peripheral registers are used to control the integrated 12C peripheral on the devices.

11.4.1 12C Control Register (I2CCN)

Register Name

Register Description

I2CCN

I12C Control Register

Register Address M4[00h]

Bit # 15 14 13 12 11 10 9 8
Name [2CRST — — — — — [2CSTREN [2CGCEN
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bit # 7 6 5 4 3 2 1 0
Name [2CSTOP [2CSTART [2CACK [2CSTRS — [2CMODE [2CMST [2CEN
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Note 1: [I2CSTART and I12CSTOP are mutually exclusive and reset to 0 when I2CMST = 0 or I2CEN = 0.
Note 2: [2CRST is reset to O when I2CEN = 0.

Note 3: Writes to I2CMST, I2CMODE, and I2CEN are ignored when 12CBUSY = 1.

Note 4: If I2CRST = 1, I2CEN can be written when I2CBUSY = 1.

Note 5: Writes to I2CACK are ignored if I2RST = 1.

Bit 15: 12C Reset (I2CRST). Setting this bit to 1 aborts the current transaction and resets the 12C controller. This bit is
set to 1 by software and is only cleared to O by hardware after the reset or when I2CEN = 0.

Bits 14 to 10 and 3: Reserved. Reads returns 0.

Bit 9: I2C Clock Stretch Enable (I2CSTREN). Setting this bit to 1 stretches the clock (holds SCL low) at the end of the
clock cycle specified in I2CSTRS. Clearing this bit disables clock stretching.

Bit 8: 12C General Call Enable (I2CGCEN). Setting this bit to 1 enables the 12C to respond to a general call address
(address = 0000 0000). Clearing this bit to 0 disables the 12C to respond to a general call address.

Bit 7: 12C STOP Enable (I2CSTOP). Setting this bit to 1 generates a STOP condition. This bit is automatically self-
cleared to 0 after the STOP condition has been generated. In master mode, setting this bit can also start the timeout
timer if enabled. If the timeout timer expires before the STOP condition can be generated, a timeout interrupt is gener-
ated to the CPU if enabled. The I2CSTOP bit is also cleared to 0 by the timeout event.

Note that this bit has no effect when the 12C is operating in slave mode (I2CMST = 0) and is reset to 0 when 12CMST
= 0 or I2CEN = 0. Setting the I2CSTOP bit to 1 while I2CSTART = 1 is an invalid operation and is ignored, leaving the
[2CSTOP bit cleared to 0.

Bit 6: I2C START (I2CSTART). Setting this bit automatically generates a START condition when the bus is free or a
repeated START condition during a transfer where the 12C module is operating as the master. This bit is automati-
cally self-cleared to 0 after the START condition has been generated. If the 12C START interrupt is enabled, a START
condition generates an interrupt to the CPU. In master mode, setting this bit also starts the timeout timer if enabled. If
the timeout timer expires before the START condition can be generated, a timeout interrupt is generated to the CPU if
enabled. The I2CSTART bit is also cleared to 0 by the timeout event.

Note that this bit has no effect when the 12C is operating in slave mode (I2CMST = 0) and is reset to 0 when 12CMST
= 0 or I2CEN = 0. Also, the 12CSTART and I2CSTOP bits are mutually exclusive. If both bits are set at the same time,
it is considered as an invalid operation and the 12C controller ignores the request and resets both bits to 0. Setting the
[2CSTART bit to 1 while I2CSTOP = 1 is an invalid operation and is ignored, leaving the I2CSTART bit cleared to 0.

11-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Bit 5: 12C Data Acknowledge Bit (I2CACK). This bit selects the acknowledge bit returned by the 12C controller while
acting as a receiver. Setting this bit to 1 generates a NACK (leaving SDA high). Clearing the I2CACK bit to O generates
an ACK (pulling SDA low) during the acknowledgement cycle. This bit retains its value unless changed by software or
hardware. When an 12C abort is in progress (I2CRST = 1), this bit is set to 1 by hardware, and software writes to this
bit are ignored when 12CRST = 1.

Bit 4: 12C Clock Stretch Select (I2CSTRS). Setting this bit to 1 enables clock stretching after the falling edge of the
8th clock cycle. Clearing this bit to 0 enables clock stretching after the falling edge of the 9th clock cycle. This bit has
no effect when clock stretching is disabled (I2CSTREN = 0).

Bit 2: 12C Transfer Mode (I2CMODE). The transfer mode bit selects the direction of data transfer with respect to the
master. When the 12CMODE bit is set to 1, the master is operating in receiver mode (reading from slave). When the
[2CMODE bit is cleared to 0, the master is operating in transmitter mode (writing to slave).

Note that software writing to this bit is prohibited in slave mode. When operating in master mode, software configures
this bit to the desired direction of data transfer. When operating in slave mode, the direction of data transfer is deter-
mined by the R//W bit received during the address stage, and this bit reflects the actual R/W bit value in the current
transfer and is set by hardware. Software writing to this bit in slave mode is ignored.

Bit 1: I12C Master Mode Enable (I2CMST). The I2CMST bit functions as a master mode enable bit for the 12C mod-
ule. When the 12CMST bit is set to 1, the 12C operates as a master. When the I12CMST is cleared to 0, the 12C module
operates in slave mode. This bit is automatically cleared whenever the 12C controller receives a slave address match
(I2CAMI = 1), losses arbitration (I2CALI = 1), or through a general call (I2CGCI = 1).

Bit 0: 12C Enable (I2CEN). This bit enables the I12C function. When set to 1, the 12C communication unit is enabled.
When cleared to 0, the 12C function is disabled.

11.4.2 12C Status Register (12CST)

Register Name 12CST

Register Description 12C Status Register

Register Address M4[01h]

Bit # 15 14 13 12 11 10 9 8
Name 12CBUS [2CBUSY — — |2CSPI [2CSCL [2CROI 12CGCI
Reset 0 0 0 0 0 0 0 0
Access r r r r rw r rw rw
Bit # 7 6 5 4 3 2 1 0
Name [2CNACKI [2CALI [2CAMI [2CTOl [2CSTRI [2CRXI [2CTXI [2CSRI
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bit 15: 12C Bus Busy (I2CBUS). This bit is set to 1 when a START/repeated START condition is detected and cleared
to 0 when the STOP condition is detected. This bit is reset to 0 on all forms of reset and when [2CEN = 0. This bit is
controlled by hardware and is read only.

Bit 14: 12C Busy (I2CBUSY). This bit is used to indicate the current status of the 12C module. The 12CBUSY is set to 1
when the 12C controller is actively participating in a transaction or when it does not have control of the bus. This bit is
controlled by hardware and is read only.

Bits 13 and 12: Reserved. Reads return 0.

Bit 11: 12C STOP Interrupt Flag (I2CSPI). This bit is set to 1 when a STOP condition (P) is detected. This bit must be
cleared to 0 by software once set. Setting this bit to 1 by software causes an interrupt if enabled.

Bit 10: 12C SCL Status (I2CSCL). This bit reflects the logic state of SCL signal. This bit is set to 1 when SCL is at a
logic-high (1) and cleared to 0 when SCL is at a logic-low (0). This bit is controlled by hardware and is read only.

Maxim Integrated 11-9

MAXQ612/MAXQ622 User’s Guide

Bit 9: I12C Receiver Overrun Flag (I2CROI). This bit indicates a receive overrun when set to 1. This bit is set to 1 if the
receiver has already received 2 bytes since the last CPU read. This bit is cleared to 0 by software reading the 12CBUF.
Setting this bit to 1 by software causes an interrupt if enabled. Writing 0 to this bit does not clear the interrupt.

Bit 8: 12C General Call Interrupt Flag (I2CGCI). This bit is set to 1 when the general call is enabled (I2CGCEN = 1)
and the general call address is received. This bit must be cleared to O by software once set. Setting this bit to 1 by
software causes an interrupt if enabled.

Bit 7: 12C NACK Interrupt Flag (I2CNACKI). This bit is set to 1 if the 12C transmitter receives a NACK from the receiver.
Setting this bit to 1 by hardware causes an interrupt if enabled. This bit must be cleared to 0 by software once set.
This bit is set by hardware only

Bit 6: 12C Arbitration Loss Flag (I2CALI). This bit is set to 1 when the 12C is configured as a master and loses in the
arbitration. When the master loses arbitration, the I2CMST bit is cleared to 0. Setting this bit to 1 by hardware causes
an interrupt if enabled. This bit must be cleared to 0 by software once set. This bit is set by hardware only.

Bit 5: 12C Slave Address Match Interrupt Flag (I2CAMI). This bit is set to 1 when the 12C controller receives an
address that matches the contents in its slave address register (I2CSLA) during the address stage. This bit must be
cleared to 0 by software once set. Setting this bit to 1 by software causes an interrupt if enabled.

Bit 4: 12C Timeout Interrupt Flag (I2CTOI). This bit is set to 1 if either the 12C controller cannot generate a START
condition or the 12C SCL low time has expired the timeout value specified in 12CTO register. This happens when the
12C controller is operating in master mode and some other device on the bus is using the bus or holding SCL low for
an extended period of time. This bit must be cleared to 0 by software once set. Setting this bit to 1 by software causes
an interrupt if enabled.

Bit 3: 12C Clock Stretch Interrupt Flag (I2CSTRI). This bit indicates that the 12C controller is operating with clock
stretching enabled and is holding the SCL clock signal low. The 12C controller releases SCL after this bit has been
cleared to 0. Setting this bit to 1 by hardware causes an interrupt if enabled. This bit must be cleared to 0 by software
once set. This bit is set by hardware only.

Bit 2: 12C Receive Ready Interrupt Flag (I2CRXI). This bit indicates that a data byte has been received in the 12C
buffer. This bit must be cleared by software once set. Setting this bit to 1 by hardware causes an interrupt if enabled.
This bit is set by hardware only.

Bit 1: 12C Transmit Complete Interrupt Flag (I2CTXI). This bit indicates that an address or a data byte has been suc-
cessfully shifted out and the 12C controller has received an acknowledgment from the receiver (NACK or ACK). This bit
must be cleared by software once set. Setting this bit to 1 by software causes an interrupt if enabled.

Bit 0: 12C START Interrupt Flag (I2CSRI). This bit is set to 1 when a START condition (S or Sr) is detected. This bit
must be cleared to 0 by software once set. Setting this bit to 1 by software causes an interrupt if enabled.

11.4.3 12C Data Buffer Register (I2CBUF)

Register Name 12CBUF

Register Description I12C Data Buffer Register

Register Address M4[02h]

Bit # 7 6 5 4 3 2 1 0
Name [2CBUF7 [2CBUF6 [2CBUF5 [2CBUF4 [2CBUF3 [2CBUF2 [2CBUF1 [2CBUFO
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

12C Data Read and Write: Data for 12C transfer is read and written to this location. The I12C transmit and receive buffers
are internally stored separately, however, both are accessed through this buffer.

12C Address Transmission: When transmitting an 12C address, the address should be loaded into 12CBUF[6:0].
|I2CBUF[7] is ignored and is not part of the 12C address.

11-10 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

11.4.4 12C Interrupt Enable Register (12CIE)

Register Name

Register Description

12CIE

12C Interrupt Enable Register

Register Address M4[03h]

Bit # 15 14 13 12 11 10 9 8
Name — — — — 12CSPIE — |2CROIE [2CGCIE
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw r rw rw

Bit # 7 6 5 4 3 2 1 0
Name [2CNACKIE [2CALIE [2CAMIE [2CTOIE [2CSTRIE |2CRXIE 12CTXIE [2CSRIE
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bits 15 to 12 and 10: Reserved. Reads return 0.

Bit 11: 12C STOP Interrupt Enable (I2CSPIE). Setting this bit to 1 causes an interrupt to the CPU when a STOP condi-
tion is detected (12CSPI = 1). Clearing this bit to 0 disables a STOP detection interrupt from generating.

Bit 9: I12C Receiver Overrun Interrupt Enable (I2CROIE). Setting this bit to 1 causes an interrupt to the CPU when a
receiver overrun condition is detected (I2ROI = 1). Clearing this bit to O disables a receiver overrun detection interrupt
from generating.

Bit 8: 12C General Call Interrupt Enable (I2CGCIE). Setting this bit to 1 generates an I2CGCI (general call interrupt)
to the CPU when a general call is enabled (I2CGCEN = 1). Clearing this bit to O disables a general call interrupt from
generating.

Bit 7: 12C NACK Interrupt Enable (I2CNACKIE). Setting this bit to 1 causes an interrupt to the CPU when a NACK is
detected (I2CNACKI = 1). Clearing this bit to 0 disables a NACK detection interrupt from generating.

Bit 6: 12C Arbitration Loss Enable (I2CALIE). Setting this bit to 1 causes an interrupt to the CPU when the 12C master
loses in an arbitration (I2CALI = 1). Clearing this bit to O disables an arbitration loss interrupt from generating.

Bit 5: I12C Slave Address Match Interrupt Enable (I2CAMIE). Setting this bit to 1 causes an interrupt to the CPU when
the 12C controller detects an address that matches the 12CSLA value (I2CAMI = 1). Clearing this bit to 0 disables an
address match interrupt from generating.

Bit 4: 12C Timeout Interrupt Enable (I2CTOIE). Setting this bit to 1 causes an interrupt to the CPU when a timeout
condition is detected (I12CTOI = 1). Clearing this bit to O disables a timeout interrupt from generating.

Bit 3: 12C Clock Stretch Interrupt Enable (I2CSTRIE). Setting this bit to 1 generates an interrupt to the CPU when
the clock stretch interrupt flag is set (I2CSTRI = 1). Clearing this bit disables a clock stretch interrupt from generating.
Bit 2: I12C Receive Ready Interrupt Enable (I2CRXIE). Setting this bit to 1 causes an interrupt to the CPU when the
receive interrupt flag is set (I2CRXI = 1). Clearing this bit to O disables a receive interrupt from generating.

Bit 1: 12C Transmit Complete Interrupt Enable (I2CTXIE). Setting this bit to 1 causes an interrupt to the CPU when
the transmit interrupt flag is set (I2CTXI = 1). Clearing this bit to O disables a transmit interrupt from generating.

Bit 0: 12C START Interrupt Enable (I2CSRIE). Setting this bit to 1 causes an interrupt to the CPU when a START condi-
tion is detected (I12CSRI = 1). Clearing this bit to 0 disables a START detection interrupt from generating.

Maxim Integrated 11-11

MAXQ612/MAXQ622 User’s Guide

11.4.5 12C Clock Control Register (12CCK)

Register Name 12CCK

Register Description 12C Clock Control Register

Register Address M4[08h]

Bit # 5 | 14 | 13 2 | 1 | 10 9 8
Name [2CCKHI[7:0]

Reset 0 0 0 0 0 0 1 0
Access rw rw rw rw rw rw rw rw
Bit # 7 6 5 4 | 3 | 2 1 0
Name [2CCKL[7:0]

Reset 0 0 0 0 0 1 0 0
Access rw rw rw rw r'w r'w r'w r'w

Note 1: Writes to this register are ignored when I12CBUSY = 0.
Note 2: This register has no function in slave mode.

Bits 15 to 8: 12C Clock High (I2CCKH[7:0]). These bits define the 12C SCL high period in number of system clock, with
bit 7 as the most significant bit. The duration of SCL high time is calculated using the following equation:

12C High Time Period = System Clock x (I2CCKH[7:0] + 1)

When operating in master mode, the [I2CCKH must be set to a minimum value of 2 to ensure proper operation. Any
value less than 2 is set to 2.

Bits 7 to 0: 12C Clock Low (I2CCKL[7:0]. These bits define the 12C SCL low period in number of system clock, with
bit 7 as the most significant bit. The duration of SCL low time is calculated using the following equation:

I2C Low Time Period = System Clock x (I2CCKL[7:0] + 1)

When operating in master mode, the 12CCKL must be set to a minimum value of 4 to ensure proper operation. Any
value less than 4 is set to 4.

11.4.6 12C Timeout Register (12CTO)

Register Name 12CTO

Register Description 12C Timeout Register

Register Address M4[09h]

Bit # 7 6 5 4 3 2 1 0
Name 12CTO7 12CTO6 12CTO5 12CTO4 12CTO3 12CTO2 [2CTOA 12CTOO0
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bits 7 to 0: I12C Timeout Register (I2CTO[7:0]). This register is used only in master mode. This register determines
the number of 12C Bit Period (SCL High + SCL Low) the 12C master waits for SCL to go high. The timeout timer resets
to 0 and starts to count after the I2CSTART bit is set or every time the SCL goes low. When cleared to 00h, the time-
out function is disabled and the 12C waits for SCL to go high indefinitely during a transmission. When set to any other
values, the 12C waits until the timeout expires and sets the 12CTOI flag.

|2C Timeout = 12C Bit Rate x (I2CTO[7:0] + 1)

Note that these bits have no effect when the 12C module is operating in slave mode (I2CMST = 0). When operating in
slave mode, SCL is controlled by an external master.

11-12 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

11.4.7 12C Slave Address Register (I2CSLA)

Register Name I12CSLA

Register Description 12C Slave Address Register

Register Address M4[0Ah]

Bit # 7 6 5 4 3 2 1 0
Name — [2CSLAG [2CSLA5 [2CSLA4 |[2CSLA3 |[2CSLA2 |2CSLA1 [2CSLAO
Reset 0 0 0 0 0 0 0 0
Access r rw rw rw rw rw rw rw

Bit 7: Reserved. Reads returns zero.

Bits 6 to 0: I12C Slave Address Register (I2CSLA[6:0]). These address bits contain the address of the 12C device.
When a match to this address is detected, the 12C controller automatically acknowledges the transmitter with the
I2CACK bit value if the 12C module is enabled (I2CEN = 1). The I2CAMI flag is set to 1 and the 12CMST bit is cleared

to 0. An interrupt is generated to the CPU if enabled.

11.5 12C Examples

11.5.1 12C Example: Master Mode, Transmit
I2C configured as master, transmit to slave address 08h:

; Setup for Master Mode Transmit

move I2CCN, #003h ; I2CEN = 1, I2CMST = 1

call wait busy ; Polling routine to wait for I2CBUSY to clear
move I2CCN, #043h ; I2CEN = 1, I2CMST = 1, I2CMODE = 0, I2CSTART = 1
call wait start ; Polling routine to wait for I2CSTART to clear
call wait busy ; Polling routine to wait for I2CBUSY to clear
move I2CIE.1, #01h ; Enable Transmit Complete Interrupt

move I2CBUF, #008h ; Slave address set to 08h

call wailt tx complete ; Wait for transmit interrupt

;7 Verify ACK from slave

move
and
cmp
jump
move

call

ACC,
#080h
#000h
ne,

I2CBUF,

I2CST

FAIL

’

#0aah

’

’

’

wailt tx complete ;

;; Verify ACK

Maxim Integrated

Move I2C Status Register to accumulator

Check for NACK bit set in status register

If NACK bit set, handle retransmission, else continue
Byte to transmit

Wait for transmit interrupt

11-13

MAXQ612/MAXQ622 User

’s Guide

11.5.2 12C Example: Master Mode, Receive

|2C configured as master, receive from slave address 08h:

; Setup for Master Mode Receive

move
call
call
move
move
call
call

;; Byte received in I2CBUF,

I2CCN, #047h
wait start

wait busy
I2CIE.2, #01lh
I2CBUF, #008h
wait tx complete

wait rxbuf

’
’
’
’
’
’

’

I2CEN = 1, I2CMST = 1, I2CMODE = 1, I2CSTART =1
Polling routine to wait for I2CSTART to clear
Polling routine to wait for I2CBUSY to clear
Enable Receive Ready Interrupt

Slave address set to 08h

Wait for transmit interrupt

Wait for receive interrupt

clear I2C interrupt flag and wait for next inte

11.5.3 12C Example: Slave Mode, Receive

|2C configured as slave with address 1Ah:

; Setup for Slave Mode Receive

move
move

call

;7 Check for address match

move
and
cmp
jump
move

call

;; Byte received in I2CBUF,

11-14

I2CSLA, #01lah
I2CCN, #0001h

wait start

ACC, I2CST
#0020h

#0020h

ne, no_match
I2CIE.2, #01lh

wait rxbuf

’
’
’

’

I
’

’

I2C Slave Address
I2CEN = 1, I2CMST

Olah
0, I2CMODE = 0, I2ZCSTART = 0

Polling routine to wait for I2CSTART to be set,
a received START

Check for Address Match flag set

If address match bit not set, not for us, else:
Enable Receive Ready Interrupt
Wait for a receive interrupt

clear I2C interrupt flag and wait for next inte

rrupt

indicating

rrupt

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

11.5.4 12C Example: Slave Mode, Transmit
12C configured as slave with address 1Ah:

; Setup for Slave Mode Receive

move I2CSLA, #0lah ; I2C Slave Address = 0lah
move I2CCN, #0001h ; I2CEN = 1, I2CMST = 0, I2CMODE = 0, I2CSTART = O
call wait start ; Polling routine to wait for I2CSTART to be set, indicating

; a received START
;; Check for address match
move ACC, I2CST
and #0020h ; Check for Address Match flag set
cmp #0020h
jump ne, no match ; Not an address match
move ACC, I2CCN ; Check transfer mode is set
and #004h
cmp #004h

jump ne, not sl xmit ; If transfer mode is low, not a slave transmit, else:
move I2CBUF, #0aah ; Data byte to be transmitted
call wait xmit ; Poll for transmit done

;; Verify ACK received from master
move ACC, I2CST

and #080h

cmp #000h

jump ne, FAIL ; If NACK bit set, handle retransmission, else continue

Maxim Integrated 11-15

MAXQ612/MAXQ622 User’s Guide

SECTION 12: UNIVERSAL SERIAL BUS (USB) INTERFACE

This section contains the following information:

12.1 USB SIE Endpoint DescCription.o 12-2
12.2 USB SIE FeatUres.o 12-3
12.3 USB Peripheral Register DesCriptions. 12-4
12.3.1 USB Register Address Register. 12-4
12.3.2 USB Data Register (UDATA)o 12-5
12.4 USB SIE Internal Register Descriptions. 12-5
12.4.1 Function Address Register (FNADDR). 12-5
12.4.2 USB Control Register (USBCN) 12-6
12.4.3 USB Configuration Register (USBCFG) 12-6
12.4.4 USB Interrupt Enable Register (USBIEN) 12-7
12.4.5 USB Interrupt Register (USBINT) 12-7
12.4.6 Endpoint Interrupt Enable Register (EPIEN) 12-8
12.4.7 Endpoint Interrupt Register (EPINT). 12-9
12.4.8 Endpoint Stall Register (EPSTL). 12-10
12.4.9 Endpoint NAK Register (EPNAK) 12-11
12.4.10 Endpoint Clear Data Toggle Register (EPCTG). 12-11
12.4.11 Endpoint 0 Byte Count Register (EPOBC) 12-12
12.4.12 Endpoint 1 OUT Byte Count Register (EP1BC) 12-12
12.4.13 Endpoint 2 IN Byte Count Register (EP2BC). 12-12
12.4.14 Endpoint 3 IN Byte Count Register (EP3BC). 12-13
12.4.15 Endpoint 0 Buffer Register (EPOBUF) 12-13
12.4.16 Endpoint 1 Buffer Register (EP1BUF) 12-14
12.4.17 Endpoint 2 Buffer Register (EP2BUF) 12-14
12.4.18 Endpoint 3 Buffer Register (EPSBUF) 12-15
12.4.19 Setup Data Buffer Register (SUDBUF) 12-15
125 USB EXamples 12-16
12.5.1 USB Example 1: Reading from an Internal USB Register (EPINT) 12-16
12.5.2 USB Example 2: Writing to an Internal USB Register (EP2BC). 12-17

LIST OF FIGURES

Figure 12-1. MAXQ622 USB CONNECHION. o 12-2
Figure 12-2. USB Interface 12-2
Figure 12-3. USB SIE Block Diagram 12-3
Figure 12-4. Reading from an Internal USB Register 12-16
Figure 12-5. Writing to an Internal USB Register. 12-17

Maxim Integrated 121

MAXQ612/MAXQ622 User’s Guide

SECTION 12: UNIVERSAL SERIAL BUS (USB) INTERFACE

Note: This section only applies to the MAXQ622.

The MAXQ622 provides a USB 2.0 full-speed interface compliant with the Universal Serial Bus Revision 2.0
Specification. The full-speed USB transceiver provides a complete USB interface between the MAXQ622 and a host
USB controller. The MAXQ622 internally generates the USB clock from the 12MHz input.

Firmware libraries are available for the MAXQ622 that support the Windows® standard HID interface for plug-and-play
compatibility without the necessity of loading any drivers on the USB host device (PC). The USB controller described
in this document is compliant with USB Revision 2.0 Specification full-speed operation. The USB specification can be
found on www.usb.org.

The USB controller allows the MAXQ-based microcontroller to function as a full-speed USB peripheral device. The
CPU communicates to the USB controller chip through the SFR interface. The MAXQ622 provides a USB serial inter-
face engine (SIE) that, through connection to the internal USB transceiver, allows the microcontroller to function as a
USB 2.0-compliant full-speed device. The USB SIE on the MAXQ622 implements four endpoints, each with single- or
double-buffered, 64-byte data storage.

+I :
Vpp VbpB
vBUS [© VBUs MAXG622 oo
D-[o D- . +
GES g _| D+ - REG18—:|ri T T

Figure 12-1. MAXQ622 USB Connection

USB

MAXQ UsB UsB
cpy () CONTROLLER | roseenen [HosT

(FUNCTION)

Figure 12-2. USB Interface

12.1 USB SIE Endpoint Description

1) EPO: Mandatory bidirectional control-type endpoint with a single-buffered, 64-byte data buffer
2) EP1: Output bulk- or INT-type endpoint with a double-buffered, 64-byte data buffer

3) EP2: Input bulk- or INT-type endpoint with a double-buffered, 64-byte data buffer

4) EP3: Input bulk- or INT-type endpoint with a single-buffered, 64-byte data buffer

Note that all endpoint directions are from the host standpoint, so an input endpoint writes data out to the host. Double-
buffering EP1 and EP2 improves throughput by allowing the CPU to read or load the next packet while the USB control-
ler is moving the current packet over USB. EP3-IN is intended to serve as a large interrupt endpoint for various USB
class specifications such as the Still Image Capture Device. It can also be used as a second bulk-IN endpoint.

Windows is a registered trademark of Microsoft Corp.

12-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SIE
TIMER

Y

» \/PO
> ENCODER » VMO
» OF
VPl
WMl
RCV

DPLL

DECODER EoP

A

AAA

PROTOCOL LOGIC

» MODE
B SUSPEND
B BUSACT
- SOF

- VBUSDET

<—>| ENDPOINT BUFFER LOGIC

\/
TO DUAL PORT—SRAM

Figure 12-3. USB SIE Block Diagram

12.2 USB SIE Features
The hardware SIE does most of the signaling work required by the USB protocol, such as the following:
1) Timing recovery based on the incoming data stream (differential receiver output)
) USB packet PID detection and checking
) CRC check and generation
) USB packet generation
5) NRZI data encoding and decoding
) Bit stuffing and unstuffing
) Various USB error condition detection
) USB bus reset, suspend, and wake-up detection
9) USB resume signaling

The following sections list the control registers dedicated to the USB SIE. Note that all USB pins are dedicated, and so

none of them are multiplexed with GPIO port pins.

Maxim Integrated

12-3

MAXQ612/MAXQ622 User’s Guide

12.3 USB Peripheral Register Descriptions

The following peripheral registers are used to control the USB functions.

12.3.1 USB Register Address Register

Register Name UADDR

Register Description USB Register Address Register

Register Address M4[04h]

Bit # 7 6 5 4 3 2 1 0
Name USBRW UBUSY — UADDR4 UADDR3 UADDR2 UADDRT UADDRO
Reset 0 0 0 0 0 0 0 0
Access 'w r rw rw rw rw r'w rw

Note: Writes to this register are ignored when UBUSY = 1.

This register is used to supply the offset location and control read/write access to the internal USB registers.

Bit 7: USB Register Read/Write Select (USBRW). When this bit is set to 1, the CPU initiates a read operation to the
register at offset UADDR[4:0]. When cleared to 0, the CPU waits for data to be loaded to UDATA before initiating a
write operation to the register at offset UADDR[4:0].

Bit 6: USB Busy (UBUSY). This active-high busy flag sets to logic 1 to indicate the start of a USB register read/write
operation. It is held high until the end of the operation.

Bit 5: Reserved. Reads returns zero.

Bits 4 to 0: USB Register Address (UADDR[4:0]). These register bits are used to supply the offset location for
accessing internal USB register. Valid offset locations are listed in the following table:

OFFSET REGISTER DESCRIPTION
00h — |dle—No operation
01h FNADDR Function Address Register
02h USBCN USB Control Register
03h USBCFG USB Configuration Register
04h USBIEN USB Interrupt Enable Register
05h USBINT USB Interrupt Register
06h EPIEN Endpoint Interrupt Enable Register
07h EPINT Endpoint Interrupt Register
08h EPSTL Endpoint Stall Register
09h EPNAK Endpoint NAK Register
0Ah EPCTG Endpoint Clear Data Toggle Register
0Bh EPOBC Endpoint 0 Byte Count Register
0Ch EP1BC Endpoint 1 Byte Count Register
0Dh EP2BC Endpoint 2 Byte Count Register
OEh EP3BC Endpoint 3 Byte Count Register
OFh Reserved No operation
10h EPOBUF Endpoint 0 Buffer Register
11h EP1BUF Endpoint 1 Buffer Register
12h EP2BUF Endpoint 2 Buffer Register
13h EP3BUF Endpoint 3 Buffer Register
14h SUDBUF Setup Data Buffer Register

1F-15h Reserved No operation

12-4

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

12.3.2 USB Data Register (UDATA)

Register Name UDATA

Register Description USB Data Register

Register Address M4[05h]

Bit # 7 6 5 4 3 2 1 0
Name UDATA7 UDATAG UDATAS UDATA4 UDATA3 UDATA2 UDATA1 UDATAO
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Note: Writes to this register are ignored when UBUSY = 1.

This register is used for supplying data for supported USB register write operation request and for returning data for
USB register read operation.

Bits 7 to 0: USB Data Register (UDATA[7:0]). These data register bits are used for supplying data for supported USB
register write operation request and for returning data for USB register read operation.

12.4 USB SIE Internal Register Descriptions

The internal control and data registers are accessed through the UADDR and UDATA registers as previously described.
These internal registers control all aspects of the SIE.

12.4.1 Function Address Register (FNADDR)

Register Name FNADDR

Register Description Function Address Register

Register Address UADDRI[4:0] = 01h

Bit # 7 6 5 4 3 2 1 0
Name — FNADDR6 FNADDRS FNADDR4 FNADDR3 FNADDR2 FNADDR1 FNADDRO
Reset 0 0 0 0 0 0 0 0
Access r r r r r r r r

Note: Read access only when USBEN = 1. Reading the function address before USBEN = 1 can compromise USB functionality.

Bit 7: Reserved. Reads returns zero.

Bits 6 to 0: USB Register Address (FNADDRJ6:0]). These register bits represent a unique value that identifies the
USB function. Upon reset and power-up, the address bits are defaulted to zero and are set by host during the enumera-
tion process. The address zero is reserved as the default value and cannot be assigned to any function. This register
also is cleared to 00h by a USB bus reset. The SIE updates this register after receiving the ACK handshake at the
conclusion of a Set_Address request from the host.

Maxim Integrated 12-5

MAXQ612/MAXQ622 User’s Guide

12.4.2 USB Control Register (USBCN)

Register Name

Register Description

Register Address

USBCN

USB Control Register
UADDRI[4:0] = 02h

Bit # 7 6 5 4 3 2 1 0
Name OSCST VBGATE URST PWRDN CONNECT SIGRWU — —
Reset 1 0 1 1 0 0 0 0
Access rw rw rw rw rw rw rw rw

Note: This register is initialized on POR only.

Bit 7: Oscillator Start (OSCST). Setting this bit to 1 allows the USB controller to enable the oscillator when USB bus
activity is detected on D+ (host resume signaling). Clearing this bit to O keeps the USB controller in low-power state
(inhibit the oscillator from starting) when the USB host resumes bus signaling.

Bit 6: VBUS Gate (VBGATE). Setting this bit to 1 makes operation of the CONNECT bit conditional on VBUS being
present on the VBUS pin. Clearing this bit to 0 makes operation of the CONNECT bit independent of VBUS being valid.

Bit 5: USB Controller Reset (URST). Setting this bit to 1 resets all the USB controller internal states and USB regis-
ters (excluding the USBCN register) to their respective default values. This bit remains set unless cleared by software.

Bit 4: USB Power-Down (PWRDN). Setting this bit to 1 instructs the USB controller to enter a low-power state required
by a USB peripheral in the suspended state. Clearing this bit to 0 takes the USB controller out of the low-power state
and resumes operation.

Bit 3: Connect to USB (CONNECT). Setting this bit to 1 requests the external transceiver to connect an internal 1500Q
resistor between the D+ line and Vcc. Clearing this bit to O disconnects the external transceiver internal 1500Q resistor
between the D+ line and Vcc. This goes to the ENUM output pin.

Bit 2: Signal USB Remote Wake-Up (SIGRWU). Setting this bit to 1 signals remote wake-up to the host.
Bits 1 and 0: Reserved. Reads returns zero.

12.4.3 USB Configuration Register (USBCFG)

USBCFG
USB Configuration Register
UADDR[4:0] = 03h

Register Name
Register Description
Register Address

Bit # 7 6 5 4 3 2 1 0
Name — — — — — — — USBEN
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Note: This register is initialized on POR only.

Bits 7 to 1: Reserved. Reads returns zero.

Bit 0: USB Enable (USBEN). Setting this bit to 1 enables the USB controller. Clearing this bit to O disables the USB
controller. Once disabled, the device does not respond to any USB traffic, regardless of the setting in the other USB
register. This bit is cleared following a POR and is unaffected by all other resets.

12-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

12.4.4 USB Interrupt Enable Register (USBIEN)

Register Name

Register Description

USBIEN

USB Interrupt Enable Register

Register Address UADDRJ[4:0] = 04h

Bit # 7 6 5 4 3 2 1 0
Name BRSTDNIE VBUSIE NOVBUSIE SUSPIE BRSTIE BACTIE RWUDNIE DPACTIE
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Note: This register is only accessible when USBEN = 1.

All bits in this register except for USBIEN.3 and USBIEN.7 have a self-clearing mechanism that clears the interrupt
enable when a bus reset condition is detected.

Bit 7: USB Bus Reset Done Interrupt Enable (BRSTDNIE). Setting this bit to 1 causes an interrupt to the CPU when
a USB bus reset done condition is detected (BRSTDN = 1). Clearing this bit to O disables the USB bus reset done
interrupt from generating. This bit holds the last value after bus rest.

Bit 6: VBUS Detect Interrupt Enable (VBUSIE). Setting this bit to 1 causes an interrupt to the CPU when the VBUS
presence condition is detected (VBUS = 1). Clearing this bit to O disables the VBUS detect interrupt from generating.

Bit 5: No VBUS Interrupt Enable (NOVBUSIE). Setting this bit to 1 causes an interrupt to the CPU when the VBUS
absence condition is detected (NOVBUS = 1). Clearing this bit to 0 disables the no VBUS interrupt from generating.
Bit 4: Suspend Interrupt Enable (SUSPIE). Setting this bit to 1 causes an interrupt to the CPU when a USB suspend
condition is detected (SUSP = 1). Clearing this bit to 0 disables the USB suspend interrupt from generating.

Bit 3: USB Bus Reset Interrupt Enable (BRSTIE). Setting this bit to 1 causes an interrupt to the CPU when a USB
bus reset condition is detected (BRST = 1). Clearing this bit to 0 disables the USB bus reset interrupt from generating.
This bit holds the last value after bus reset.

Bit 2: USB Bus Active Interrupt Enable (BACTIE). Setting this bit to 1 causes an interrupt to the CPU when there is
USB bus activity (BACT = 1). Clearing this bit to 0 disables the bus activity interrupt from generating.

Bit 1: Remote Wake-Up Signaling Done Interrupt Enable (RWUDNIE). Setting this bit to 1 causes an interrupt to the
CPU when a USB remote wake-up signaling done condition is detected (RWUDN = 1). Clearing this bit to 0 disables
the USB remote wake-up signaling done interrupt from generating.

Bit 0: D+ Activity Interrupt Enable (DPACTIE). Setting this bit to 1 causes an interrupt to the CPU when D+ activity
DPACTI is detected. Clearing this bit to 0 disables the DPACTI interrupt.

12.4.5 USB Interrupt Register (USBINT)

USBINT
USB Interrupt Register

Register Name
Register Description

Register Address UADDRJ[4:0] = 05h

Bit # 7 6 5 4 3 2 1 0
Name BRSTDN VBUS NOVBUS SUSP BRST BACT RWUDN DPACT
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Note 1: This register is only accessible when USBEN = 1.
Note 2: Bit 3 is set on a bus reset.

Bit 7: USB Bus Reset Done (BRSTDN). The BRSTDN bit indicates the end of a USB bus reset condition. This bit
remains set unless cleared by software. Setting this bit to 1 causes an interrupt to the CPU if USB bus reset done inter-
rupt is enabled (BRSTDNIE = 1).

Maxim Integrated 12-7

MAXQ612/MAXQ622 User’s Guide

Bit 6: VBUS Detect (VBUS). This bit is set when the VBUSDET signal has made a 0-to-1 transition (VBUS is present).
This bit remains set unless cleared by software, a USB controller reset, or a USB bus reset. Setting this bit to 1 causes
an interrupt to the CPU if USB VBUS detect interrupt is enabled (VBUSIE = 1).

Bit 5: No VBUS (NOVBUS). The SIE sets this bit when the VBUSDET signal has made a 1-to-0 transition (VBUS is not
present). This bit remains set unless cleared by software, a USB controller reset or a USB bus reset. Setting this bit to
1 causes an interrupt to the CPU if USB no VBUS interrupt is enabled (NOVBUSIE = 1).

Bit 4: Suspend (SUSP). The SIE sets this bit to 1 after 3ms of idle state on the bus. This bit remains set unless cleared
by software, a USB controller reset, or a USB bus reset. Setting this bit to 1 causes an interrupt to the CPU if USB bus
suspend interrupt is enabled (SUSPIE = 1).

Bit 3: USB Bus Reset (BRST). The BRST bit is set to 1 when a USB bus reset has been detected by the SIE logic.
When this bit is set to 1, the USB controller resets its internal registers to their default values. This bit is self-cleared by
hardware at the end of USB bus reset condition. The bit can also be cleared by software writing a 0. Setting this bit to
1 causes an interrupt to the CPU if USB bus reset interrupt is enabled (BRSTIE = 1).

Bit 2: USB Bus Active (BACT). The bit indicates whether there is any USB bus activity. This bit is set to 1 if the USB
controller receives a SYNC field, and reset after 32 bit times of J-state or during a USB bus reset. This bit can be
cleared by software writing a 0. Setting this bit to 1 causes an interrupt to the CPU if USB bus active interrupt is enabled
(BACTIE = 1).

Bit 1: Remote Wake-Up Signaling Done (RWUDN). The SIE sets this bit to 1 at the end of remote wake-up signaling
(10ms of K-state). This bit remains set unless cleared by software, a USB controller reset, or a USB bus reset. Setting
this bit to 1 causes an interrupt to the CPU if USB remote wake-up signaling done interrupt is enabled (RWUDNIE = 1).

Bit 0: D+ Activity (DPACT). The SIE sets this bit to 1 when activity is detected on the D+ pin. Setting this bit to 1 causes
an interrupt to the CPU if D+ activity interrupt is enabled (DPACTIE = 1).

12.4.6 Endpoint Interrupt Enable Register (EPIEN)

Register Name EPIEN

Register Description Endpoint Interrupt Enable Register

Register Address UADDR[4:0] = 06h

Bit # 7 6 5 4 3 2 1 0
Name — — SUDAVIE INSBAVIE IN2BAVIE OUT1DAVIE OUTODAVIE INOBAVIE
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Note: This register is only accessible when USBEN = 1.

All bits in this register have a self-clearing mechanism that clears the interrupt enable when a bus reset condition is
detected.

Bits 7 and 6: Reserved. Reads returns zero.

Bit 5: Setup Data Available Interrupt Enable (SUDAVIE). Setting this bit to 1 causes an interrupt to the CPU when the
setup data is available (SUDAV = 1). Clearing this bit to O disables the data ready interrupt from generating.

Bit 4: EP3 IN Buffer Available Interrupt Enable (IN3BAVIE). Setting this bit to 1 causes an interrupt to the CPU when
the EP3-IN buffer is available (IN3BAV = 1). Clearing this bit to O disables the buffer ready interrupt from generating.
Bit 3: EP2-IN Buffer Available Interrupt Enable (IN2BAVIE). Setting this bit to 1 causes an interrupt to the CPU when
the EP2-IN buffer is available (IN2BAV = 1). Clearing this bit to O disables the buffer ready interrupt from generating.
Bit 2: EP1-OUT Data Available Interrupt Enable (OUT1DAVIE). Setting this bit to 1 causes an interrupt to the CPU when
the EP1-OUT data is available (OUT1DAV = 1). Clearing this bit to O disables the data ready interrupt from generating.

Bit 1: EPO-OUT Data Available Interrupt Enable (OUTODAVIE). Setting this bit to 1 causes an interrupt to the CPU when
the EPO-OUT data is available (OUTODAV = 1). Clearing this bit to O disables the data ready interrupt from generating.

12-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Bit 0: EPO-IN Buffer Available Interrupt Enable (INOBAVIE). Setting this bit to 1 causes an interrupt to the CPU when
the EPO-IN buffer is available (INOBAV = 1). Clearing this bit to O disables the buffer ready interrupt from generating.

12.4.7 Endpoint Interrupt Register (EPINT)

Register Name EPINT

Register Description Endpoint Interrupt Register

Register Address UADDRI[4:0] = 07h

Bit # 7 6 5 4 3 2 1 0
Name — — SUDAV IN3BAV IN2BAV OUT1DAV OUTODAV INOBAV
Reset 0 0 0 1 1 0 0 1
Access rw rw rw rw rw rw rw rw

Bits 7 and 6: Reserved. Reads returns zero.

Bit 5: Setup Data Available (SUDAV). The SIE sets this bit after error-free reception of the eight setup data bytes in a
control transfer. This bit remains set unless cleared by software. Setting SUDAV = 1 generates an interrupt to the CPU
if SUDAVIE is enabled.

Bit 4: EP3-IN Buffer Available (IN3BAV). The SIE sets this bit after receiving an IN token directed to EP3, transfer
data from EP3 buffer and receiving the ACK handshake from the host. This indicates that the EP3 buffer is available
for CPU loading. This bit remains set unless cleared by software or by writing the EP3BC register. Setting INSBAV = 1
generates an interrupt to the CPU if IN3BAVIE is enabled.

Bit 3: EP2-IN Buffer Available (IN2BAV). The SIE sets this bit after receiving an IN token directed to EP2, transfer
data from EP2 buffer and receiving the ACK handshake from the host. This indicates that the EP2 buffer is available
for CPU loading. This bit remains set unless cleared by software or by writing the EP2BC register. Setting IN2BAV = 1
generates an interrupt to the CPU if IN2BAVIE is enabled.

Bit 2: EP1-OUT Data Available (OUT1DAV). The SIE sets this bit when it has successfully received (and ACK) an OUT
data packet to EP1 buffer. This indicates that the EP1 buffer is available for CPU reading. This bit remains set unless
cleared by software. Clearing this bit also arms the endpoint for another transfer. Setting OUT1BAV = 1 generates an
interrupt to the CPU if OUT1DAVIE is enabled.

Bit 1: EP0O-OUT Data Available (OUTODAV). The SIE sets this bit when it has successfully received (and ACK) an OUT
data packet to EPO buffer. This indicates that the EPO buffer is available for CPU reading. This bit remains set unless
cleared by software. Clearing this bit also arms the endpoint for another transfer. Setting OUTOBAV = 1 generates an
interrupt to the CPU if OUTODAVIE is enabled.

Bit 0: EPO-IN Buffer Available (INOBAV). The SIE sets this bit after receiving an IN token directed to EPO, transfer
data from EPO buffer and receiving the ACK handshake from the host. This indicates that the EPO buffer is available
for CPU loading. This bit remains set unless cleared by software or by writing the EPOBC register. Setting INOBAV = 1
generates an interrupt to the CPU if INOBAVIE is enabled.

Maxim Integrated 12-9

MAXQ612/MAXQ622 User’s Guide

12.4.8 Endpoint Stall Register (EPSTL)

Register Name EPSTL

Register Description Endpoint Stall Register

Register Address UADDRI[4:0] = 08h

Bit # 7 6 5 4 3 2 1 0
Name — ACKSTAT STLSTAT STLEP3 STLEP2 STLEP1 STLOUTO STLINO
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bit 7: Reserved. Reads returns zero.

Bit 6: Acknowledge Status Stage (ACKSTAT). When this bit is set to 1, the SIE responds to the host with an ACK
handshake in the status stage of control transfer. Until the CPU either acknowledges (ACKSTAT = 1) or stalls the trans-
fer, the SIE answers the status stage of the control transfer with the NAK handshake. This bit is cleared after the SIE
sends an ACK handshake in the status stage of a control transfer, new setup packet has been detected, or the stall
bit(s) is set. This bit can also be cleared by CPU writing a 0.

Bit 5: Stall Status Stage (STLSTAT). The stall status stage bit, together with the ACKSTAT bit, indicates to the SIE how
to respond in the status stage of a control transfer. When this bit is cleared to 0, the ACKSTAT bit controls the status
stage of a control transfer. When this bit is set to 1, the SIE always sends a stall response to the host in response to
a control transfer. Until the CPU either acknowledges (ACKSTAT = 1) or stalls the transfer, the SIE answers the status
stage of a control transfer with the NAK handshake. This bit remains set unless cleared by software. This bit is auto-
matically cleared upon the arrival of a setup token.

Bit 4: EP3-IN Stall (STLEP3). If set to 1, the SIE returns a stall handshake for an IN request directed to EP3 regardless
of the status of the other control bits. This bit remains set unless cleared by software.

Bit 3: EP2-IN Stall (STLEP2). If set to 1, the SIE returns a stall handshake for an IN request directed to EP2 regardless
of the status of the other control bits. This bit remains set unless cleared by software.

Bit 2: EP1-OUT Stall (STLEP1). If set to 1, the SIE returns a stall handshake for an OUT request directed to EP1
regardless of the status of the other control bits. This bit remains set unless cleared by software.

Bit 1: EPO-OUT Stall (STLOUTO). If set to 1, the SIE returns a stall handshake for an OUT request directed to EPO
regardless of the status of the other control bits. This bit remains set unless cleared by software. This bit is automati-
cally cleared upon the arrival of a setup token.

Bit 0: EPO-IN Stall (STLINO). If set to 1, the SIE returns a stall handshake for an IN request directed to EPO regardless
of the status of the other control bits. This bit remains set unless cleared by software. This bit is automatically cleared
upon the arrival of a setup token.

12-10 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

12.4.9 Endpoint NAK Register (EPNAK)

EPNAK
Endpoint NAK Register

Register Name
Register Description

Register Address UADDRJ[4:0] = 09h

Bit # 7 6 5 4 3 2 1 0
Name EPSNAK EP2NAK EPONAK — — — — —
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bit 7: EP3-IN NAK (EP3NAK). The SIE sets this bit when the EP3-IN endpoint receives an IN request and returns the
NAK handshake. This bit remains set unless cleared by software.

Bit 6: EP2-IN NAK (EP2NAK). The SIE sets this bit when the EP2-IN endpoint receives an IN request and returns the
NAK handshake. This bit remains set unless cleared by software.

Bit 5: EPO-IN NAK (EPONAK). The SIE sets this bit when the EPO-IN endpoint receives an IN request and returns the
NAK handshake. This bit remains set unless cleared by software.

Bits 4 to 0: Reserved. Reads returns zero.

12.4.10 Endpoint Clear Data Toggle Register (EPCTG)

EPCTG
Endpoint Clear Data Toggle Register

Register Name
Register Description

Register Address UADDRI[4:0] = 0Ah

Bit # 7 6 5 4 3 2 1 0
Name EP3DIS EP2DIS EP1DIS CTGEP3 CTGEP2 CTGEP1 — —
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bit 7: EP3-IN Disable (EP3DIS). Setting this bit to 1 disables traffic to EP3-IN. Clearing this bit to 0 enables traffic to
EP3-IN.

Bit 6: EP2-IN Disable (EP2DIS). Setting this bit to 1 disables traffic to EP2-IN. Clearing this bit to O enables traffic to
EP2-IN.

Bit 5: EP1-OUT Disable (EP1DIS). Setting this bit to 1 disables traffic to EP1-OUT. Clearing this bit to O enable traffic
to EP1-OUT. Note: Endpoint O has no disable bit because as the default control endpoint it must always respond to
a transfer.

Bit 4: Clear EP3-IN Data Toggle (CTGEP3). Setting this bit to 1 clears the data toggle for EP3-IN to the DATAO state.
This bit is self-cleared by hardware. A USB bus reset also clears this bit to O.

Bit 3: Clear EP2-IN Data Toggle (CTGEP2). Setting this bit to 1 clears the data toggle for EP2-IN to the DATAQO state.
This bit is self-cleared by hardware. A USB bus reset also clears this bit to 0.

Bit 2: Clear EP1-OUT Data Toggle (CTGEP1). Setting this bit to 1 clears the data toggle for EP1-OUT to the DATAOQ
state. This bit is self-cleared by hardware. A USB bus reset also clears this bit to 0. Note: Endpoint O does not have a
clear data toggle bit. The USB controller handles the data toggle bit for endpoint O internally.

Bits 1 and 0: Reserved. Reads returns zero.

Maxim Integrated 12-11

MAXQ612/MAXQ622 User’s Guide

12.4.11 Endpoint 0 Byte Count Register (EPOBC)

EPOBC
Endpoint 0 Byte Count Register
UADDR[4:0] = 0Bh

Register Name
Register Description
Register Address

Bit # 7 6 5 4 3 2 1 0
Name — EPOBC6 EPOBC5 EPOBC4 EPOBC3 EPOBC2 EPOBC1 EPOBCO
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bit 7: Reserved. Reads returns zero.

Bits 6 to 0: EP0O Byte Count (EPOBC[6:0]). Endpoint O is a bidirectional endpoint, whereby both IN and OUT transfers
share the same buffer (endpoint 0 buffer). The action of writing this register depends on the transfer direction. For an
IN transfer, the CPU writes the byte count to this register after loading the EPO buffer with data. Valid values are 0 to
64. When the CPU writes this register, the SIE arms the endpoint so that it returns a data packet instead of a NAK to
the next IN request to the endpoint. For an OUT transfer, the SIE loads the byte count to indicate the number of bytes
received in an OUT data transfer. When the OUT transfer is successful, the SIE ACKs the transfer, updates the byte
count register, and asserts the OUTODAYV interrupt bit. If the OUTODAVIE is also enabled, this generates an interrupt
to the CPU.

12.4.12 Endpoint 1 OUT Byte Count Register (EP1BC)

EP1BC
Endpoint 1 OUT Byte Count Register
UADDR[4:0] = 0Ch

Register Name
Register Description
Register Address

Bit # 7 6 5 4 3 2 1 0
Name — EP1BC6 EP1BC5 EP1BC4 EP1BC3 EP1BC2 EP1BC1 EP1BCO
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bit 7: Reserved. Reads returns zero.

Bits 6 to 0: EP1-OUT Byte Count (EP1BC[6:0]). This register contains the number of bytes the SIE received for a
successful EP1-OUT transfer and set the OUT1DAV bit to 1. If the OUT1DAVIE is also enabled, this generates an inter-
rupt to the CPU.

12.4.13 Endpoint 2 IN Byte Count Register (EP2BC)

EP2BC
Endpoint 2 IN Byte Count Register
UADDR[4:0] = 0Dh

Register Name
Register Description
Register Address

Bit # 7 6 5 4 3 2 1 0
Name — EP2BC6 EP2BC5 EP2BC4 EP2BC3 EP2BC2 EP2BCH1 EP2BCO
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bit 7: Reserved. Reads returns zero.

Bits 6 to 0: EP2-IN Byte Count (EP2BC[6:0]). This register contains the number of bytes the CPU has loaded into EP2
buffer for the next IN transfer. Writing to the EP2BC register arms endpoint 2 for the next IN transfer.

12-12 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

12.4.14 Endpoint 3 IN Byte Count Register (EP3BC)

EP3BC
Endpoint 3 IN Byte Count Register

Register Name
Register Description

Register Address UADDRI[4:0] = OEh

Bit # 7 6 5 4 3 2 1 0
Name — EP3BC6 EP3BC5 EP3BC4 EP3BC3 EP3BC2 EP3BCH1 EP3BCO
Reset 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw

Bit 7: Reserved. Reads returns zero.

Bits 6 to 0: EP3-IN Byte Count. This register contains the number of bytes the CPU has loaded into EP3 buffer for the
next IN transfer. Writing to the EP3BC register arms endpoint 3 for the next IN transfer.

12.4.15 Endpoint 0 Buffer Register (EPOBUF)

EPOBUF
Endpoint 0 Buffer Register

Register Name
Register Description

Register Address UADDRI[4:0] = 10h

Bit # 7 6 5 4 3 2 1 0
Name EPOBUF7 EPOBUF6 EPOBUF5 EPOBUF4 EPOBUF3 EPOBUF2 EPOBUF1 EPOBUFO
Reset s s s s s s s s
Access rw rw rw rw rw rw rw rw

Note: This register is indetermistic on POR and retains its value on all other forms of reset.

Bits 7 to 0: EPO Buffer (EPOBUF[7:0]). These data register bits are used for reading/supplying data to the 64-byte
EPO buffer for OUT and IN transfers to and from the bidirectional endpoint O.

For an IN transfer, the CPU writes a series of bytes to this EPOBUF to fill it with IN data. After filling the buffer with a
packet (0 to 64 bytes), the CPU writes the byte count register (EPOBC) to arm the IN transfer and to tell the SIE how
many bytes to transfer when it receives the IN packet to EPO.

For an OUT transfer, the SIE fills the buffer with USB data received from the host. When the OUT transfer is verified to
be error-free, the SIE loads the byte count register (EPOBC) to indicate the number of bytes received in the OUT data
transfer. For a successful transfer the SIE also ACKs the OUT transfer and asserts the OUTODAYV interrupt request bit.

Maxim Integrated 12-13

MAXQ612/MAXQ622 User’s Guide

12.4.16 Endpoint 1 Buffer Register (EP1BUF)

Register Name

Register Description

EP1BUF

Endpoint 1 Buffer Register

Register Address UADDR[4:0] = 11h

Bit # 7 6 5 4 3 2 1 0
Name EP1BUF7 EP1BUF6 EP1BUF5 EP1BUF4 EP1BUF3 EP1BUF2 EP1BUF1 EP1BUFO
Reset S S S S S S S S
Access rw rw rw rw rw rw rw rw

Note: This register is indetermistic on POR and retains its value on all other forms of reset.

Bits 7 to 0: EP1 Buffer (EP1BUF[7:0]). These data register bits are used for reading data from the double-buffered,
64-byte EP1-OUT buffer. The SIE fills the EP1-OUT buffer with bytes transmitted from the host to EP1-OUT. After suc-
cessfully receiving the OUT transfer, the SIE ACKS the transfer, updates the byte count register (EP1BC), and asserts
the OUT1DAV interrupt request.

When the CPU receives an OUT1DAV interrupt request, it reads the byte count register to determine how many bytes
are in the buffer, and then reads that number of bytes from this register.

12.4.17 Endpoint 2 Buffer Register (EP2BUF)

EP2BUF
Endpoint 2 Buffer Register

Register Name
Register Description

Register Address UADDRI[4:0] = 12h

Bit # 7 6 5 4 3 2 1 0
Name EP2BUF7 EP2BUF6 EP2BUF5 EP2BUF4 EP2BUF3 EP2BUF2 EP2BUF1 EP2BUFO
Reset s s s s s S S S
Access rw rw rw rw rw rw rw rw

Note: This register is indetermistic on POR and retains its value on all other forms of reset.

Bits 7 to 0: EP2 Buffer (EP2BUF[7:0]). These data register bits are used for supplying data to the double-buffered,
64-byte EP2-IN buffer. The CPU loads bytes into the EP2BUF buffer in preparation for sending to the host. The SIE
sends these bytes over USB in response to an IN request to EP2-IN.

12-14 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

12.4.18 Endpoint 3 Buffer Register (EP3BUF)

Register Name EP3BUF

Register Description Endpoint 3 Buffer Register

Register Address UADDR[4:0] = 13h

Bit # 7 6 5 4 3 2 1 0
Name EP3BUF7 EP3BUF6 EP3BUF5 EP3BUF4 EP3BUF3 EP3BUF2 EP3BUF1 EP3BUFO
Reset S S S S S S S S
Access rw rw rw rw rw rw rw rw

Note: This register is indetermistic on POR and retains its value on all other forms of reset.

Bits 7 to 0: EP3 Buffer (EP3BUF[7:0]). These data register bits are used for supplying data to the 64-byte EP3-IN
buffer. The CPU loads bytes into the EP3BUF buffer in preparation for sending to the host. The SIE sends these bytes
over USB in response to an IN request to EP3-IN.

12.4.19 Setup Data Buffer Register (SUDBUF)

Register Name SUDBUF

Register Description Setup Data Buffer Register

Register Address UADDR[4:0] = 14h

Bit # 7 6 5 4 3 2 1 0
Name SUDBUF7 SUDBUF6 SUDBUF5 SUDBUF4 SUDBUF3 SUDBUF2 SUDBUF1 SUDBUFO
Reset S S S S S S S S
Access rw rw rw rw rw rw rw rw

Note: This register is indetermistic on POR and retains its value on all other forms of reset.

Bits 7 to 0: Setup Data Buffer (SUDBUF[7:0]). These data register bits are used for reading data from the 8-byte
setup buffer. The SIE fills the setup buffer with SETUP bytes transmitted from the host. After successfully receiving the
SETUP transfer, the SIE ACKs the transfer and asserts the SUDAV interrupt request. When the CPU receives an SUDAV
interrupt request, it reads 8 bytes of data from this register.

Maxim Integrated 12-15

MAXQ612/MAXQ622 User’s Guide

12.5 USB Examples
12.5.1 USB Example 1: Reading from an Internal USB Register (EPINT)

To read from an internal USB register, the user will write the destination register offset to UADDR and wait for UBUSY
to clear before valid data is available from UDATA.

;; reading from USB register

MOV UADDR, #EPINT ; Read EPINT register, #EPINT = 87h
; (RW=1, ADDR=00111)

CHK: MOV C, UADDR.6 ; loop to check UBUSY flag

JUMP NC, CHK ; and wait for it to clear

MOV C, UDATA.INBAVO ;checking for EPO Buffer Available Flag

CPU WRITE

| REG_ADDRI ; ; | CPUREADS | CPUREADS

1 SETUBUSY=1 I CPUWAIT ! ! ! UBUSY=0 ! UDATA1 !

CPUCLK _ [&7] la” | [! | (&] (a1 |
UADDRI4:0] REG_ADDR1 |
UDATA[7:0] UDATAT |

USBRW SELF-CLEARED } } 3 3

USBRW AT NEXT CPU_CLK ! ; 1 |

UBUSY ! u CLEARS CPU UBUSY ! !
SIE_CLK ‘ | A | | ‘ ‘ —
SIE_DATA[7:0] UDATA |

%] CLEARS SIE_UBUSY

SIEQUTPUT \
SIE_UBUSY . 7

Figure 12-4. Reading from an Internal USB Register

12-16 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

12.5.2 USB Example 2: Writing to an Internal USB Register (EP2BC)

To write to the USB state registers, the user will write the destination register offset to UADDR, write data to UDATA
register, and wait for UBUSY to clear to complete the operation.

;; writing to USB register

MOV UADDR, #EP2BC ; Read EP2BC register, #EP2BC = 12h
; (RW=0, ADDR=10010
MOV UDATA, #0010h ; Write 0010h to the EP2BC register
CHK: MOV C, UADDR.6 ; Loop to check UBUSY flag
JUMP NC, CHK ; and wait for it to clear
! | CPUWRITE ! : ! ! |
| CPUWRTE | UDATA | ! ! | CPUREADS |
I REG_ADDR1 I SET UBUSY =1 I CPU WAIT I I I UBUSY = I
CPU_CLK ra (&] | I I I I L | L
UADDRI4:0] DX REG_ADDRI |
UDATAIZ0) ; ‘ ‘ UDATAT ‘ ‘ |
USBRW | | (| | | | |
I I \I I I | CLEARS CPU UBUSY I
UBUSY 1 L : : | : 1
SIE_CLK | I I | | I I | |
SIE_DATAIZ:0] R ‘ ‘ ‘ ‘ g\z\ ‘ |
SIE_UBUSY I \ ; ; N I
- : ! : | ! SEWRITES | ! :
! I ! ! UDATAT | ! |

Figure 12-5. Writing to an Internal USB Register

Maxim Integrated

12-17

MAXQ612/MAXQ622 User’s Guide

SECTION 13: TEST ACCESS PORT (TAP)

This section contains the following information:

131 TAP Controller . .o 13-2
13.2 TAP State Control. . ..o 13-2
13.2.1 Test-LogIiC-ReSet 13-2
13.2.2 Run-Test-ldle . .o 13-3
13.2.31R-Scan SEQUENCE o 13-3
13.2.4 DR-SCan SEUENCE oo 13-5
13.3 Communication Through TAP . .o 13-5
13.3.1 TAP Communication Examples—IR-Scan and DR-Scan. 13-6

LIST OF FIGURES

Figure 13-1. TAP Controller State Diagram 13-3
Figure 13-2. TAP and TAP Controller. 13-5
Figure 13-3. TAP Controller Debug Mode IR-Scan Example 13-6
Figure 13-4. TAP Controller Debug Mode DR-Scan Example. e 13-7

LIST OF TABLES

Table 13-1. TAP Signals.o 13-2
Table 13-2. Instruction Register Content vs. TAP Controller State i, 13-4
Table 13-3. Instruction Register (IR[2:0]) ENCOdINgS 13-4

Maxim Integrated 13-1

MAXQ612/MAXQ622 User’s Guide

SECTION 13: TEST ACCESS PORT (TAP)

The MAXQ612/MAXQ622 microcontrollers incorporate a test access port (TAP) and TAP controller for communica-
tion with a host device across a 4-wire synchronous serial interface. The TAP can be used by MAXQ612/MAXQ622
microcontrollers to support in-system programming and/or in-circuit debug. The TAP is compatible with the JTAG IEEE
standard 1149 and is formed by four interface signals as described in Table 13-1. For detailed information on the TAP
and TAP controller, refer to IEEE Std 1149.1 “IEEE Standard Test Access Port and Boundary-Scan Architecture.”

Table 13-1. TAP Signals

EXTERNAL PIN
SIGNAL

DESCRIPTION

Serial Data Output Pin. This signal is used to serially transfer internal data to the external host. Data
TDO: Test Data Output | is transferred least significant bit first. Data is driven out only on the falling edge of TCK, only during
TAP shift-IR or shift-DR states and is otherwise inactive.

Serial Data Input Pin. This signal is used to receive data serially transferred by the host. Data is
TDI: Test Data Input received least significant bit first and is sampled on the rising edge of TCK. TDI is weakly pulled high
internally when TAP = 1.

Serial Shift Clock Provided by the Host. When this signal is stopped at O, storage elements in the TAP

TCK: Test Clock Input |, i must retain their data indefinitely. TCK is weakly pulled high internally when TAP = 1.

TMS: Test-Mode Select | Mode Select Input Pin. This signal is sampled at the rising edge of TCK and controls movement
Input between TAP states. TMS is weakly pulled high internally when TAP = 1.

13.1 TAP Controller

The TAP controller is a synchronous state machine that responds to changes at the TMS and TCK signals. Based on
its state transition, the controller provides the clock and control sequence for TAP operation.

The performance of the TAP is dependent on the TCK clock frequency. The maximum TCK clock frequency should be
limited to 1/8th the system clock frequency. This section provides a brief description of the state machine and its state
transitions. The state diagram in Figure 13-1 summarizes the transitions caused by the TMS signal sampling on the
rising edge at TCK. The TMS signal value is presented adjacent to each state transition in the figure.

13.2 TAP State Control

The TAP provides an independent serial channel to communicate synchronously with the host system. The TAP state
control is achieved through host manipulation of the test-mode select (TMS) and test clock (TCK) signals. The TMS
signal is sampled at the rising edge of TCK and decoded by the TAP controller to control movement between the TAP
states. The TDI input and TDO output are meaningful once the TAP is in a serial shift state (i.e., shift-IR or shift-DR).

13.2.1 Test-Logic-Reset

On a power-on reset, the TAP controller is initialized to the test-logic-reset state and the instruction register (IR[2:0]) is
initialized to the bypass instruction so that it does not affect normal system operation. No matter what the state of the
controller, it enters test-logic-reset when TMS is held high for at least five rising edges of TCK. The controller remains
in the test-logic-reset state if TMS remains high. An erroneous low signal on the TMS may cause the controller to move
into the run-test-idle state, but no disturbance is caused to system operation if the TMS signal is returned and kept at
the intended logic high for three rising edges of TCK since this returns the controller to the test-logic-reset state.

13-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

TEST-LOGIC-RESET |-
0
\J

ey
u—ry

RUN-TEST-IDLE | SELECT-DR-SCAN » SELECT-IR-SCAN
0 A 0 0
Y Y
! CAPTURE-DR ! CAPTURE-IR
0 0
4 0 Y .
> SHIFT-DR > SHIFT-IR

A4

1
EXIT1-DR EXIT1-IR

PAUSE-DR
0

Yy
/

0

1

A

EXIT2-DR
1

1
/
1
/ /

UPDATE-DR \4— UPDATE-IR

1
0 1 0

<
pali—y
<

Figure 13-1. TAP Controller State Diagram

13.2.2 Run-Test-Ildle

As illustrated in Figure 13-1, the run-test-idle state is simply an intermediate state for getting to one of the two state
sequences in which the controller performs meaningful operations:

e Controller state sequence (IR-scan) or
e Data register state sequence (DR-scan)

13.2.3 IR-Scan Sequence

The controller state sequence allows instructions (e.g., debug and system programming) to be shifted into the instruc-
tion register starting from the select-IR-scan state. In the TAP, the instruction register is connected between the TDI
input and the TDO output. Inside the IR-scan sequence, the capture-IR state loads a fixed binary pattern (001b) into the
3-bit shift register and the shift-IR state causes shifting of TDI data into the shift register and serial output to TDO, least
significant bit first. Once the desired instruction is in the shift register, the instruction can be latched into the parallel
instruction register (IR[2:0]) on the falling edge of TCK in the update-IR state. The contents of the 3-bit instruction shift
register and parallel instruction register (IR[2:0]) are summarized with respect to the TAP controller states in Table 13-2.

Maxim Integrated 13-3

MAXQ612/MAXQ622 User’s Guide

Table 13-2. Instruction Register Content vs. TAP Controller State

TAP CONTROLLER PARALLEL (3-BIT) INSTRUCTION REGISTER
STATE INSTRUCTION SHIFT REGISTER (IR[2:0])
Test-Logic-Reset Undefined Set to bypass (011b) instruction
Capture-IR Load 001b at the rising edge of TCK Retain last state
Shift-IR Inpu? Qata through TDI and shift towards TDO at Retain last state
the rising edge of TCK
Exit1-IR
Exit2-IR Retain last state Retain last state
Pause-IR
Update-IR Retain last state Load from shift register at the falling edge of TCK
All other states Undefined Retain last state

When the parallel instruction register (IR[2:0]) is updated, the TAP controller decodes the instruction and performs any
necessary operations, including activation of the data shift register to be used for the particular instruction during data
register shift sequences (DR-scan). The length of the activated shift register depends upon the value loaded to the
instruction register (IR[2:0]). The supported instruction register encodings and associated data register selections are

shown in Table 13-3.

Table 13-3. Instruction Register (IR[2:0]) Encodings

SERIAL DATA SHIFT REGISTER
IR[2:0] INSTRUCTION FUNCTION SELECTION

000 Extest No operation Unchanged; retain previous selection
001 Sample/Preload No operation Unchanged; retain previous selection
010 Debug In-circuit debug mode 10-bit shift register

011 Bypass No operation (default) 1-bit shift register

100 System Programming Bootstrap function 3-bit shift register

101 Bypass No operation (default) 1-bit shift register

110 Reserved Reserved Reserved

111 Bypass No operation (default) 1-bit shift register

The extest (IR[2:0] = 000b) and sample/preload (IR[2:0] = 001b) instructions are mandated by the JTAG standard,
however, the MAXQ612/MAXQ622 microcontrollers do not intend to make practical use of these instructions. Hence,
these instructions are treated as no operations but can be entered into the instruction register without affecting the
on-chip system logic or pins, and does not change the existing serial data register selection between TDI and TDO.

The bypass (IR[2:0] = 011b, 101b, or 111b) instruction is also mandated by the JTAG standard. The bypass instruc-
tion is fully implemented by the MAXQ612/MAXQ622 microcontrollers to provide a minimum length serial data path
between the TDI and the TDO pins. This is accomplished by providing a single-cell bypass shift register. When the
instruction register is updated with the bypass instruction, a single bypass register bit is connected serially between
TDI and TDO in the shift-DR state. The instruction register automatically defaults to the bypass instruction when the
TAP is in the test-logic-reset state. The bypass instruction has no effect on the operation of the on-chip system logic.

The debug (IR[2:0] = 010b) and system programming (IR[2:0] = 100b) instructions are private instructions that are
intended solely for in-circuit debug and in-system programming operations, respectively. If the instruction register is
updated with the debug instruction, a 10-bit serial shift register is formed between the TDI and TDO pins in the shift-
DR state. If the system programming instruction is entered into the instruction register (IR[2:0]), a 3-bit serial data shift
register is formed between the TDI and TDO pins in the shift-DR state.

13-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

READ

<
|
WRHE—k:]//

L) A_Cw

> 7]6]5]a[3][2]1]0]s1]s0}
DEBUG
Lo sverenproGa L2110

[]
\I\ BYPASS ||
DI o = »| D0
Vb
INSTRUCTION REGISTER
™S —e > -
TAP CONTROLLER UPDATE-DR
B st - UPDATE-DR

RESET

Figure 13-2. TAP and TAP Controller

Instruction register (IR[2:0]) settings other than those listed and described above are reserved for internal use. As can
be seen in Figure 13-2, the instruction register serves to select the length of the serial data register between TDI and
TDO during the shift-DR state.

13.2.4 DR-Scan Sequence

Once the instruction register has been configured to a desired state (mode), transactions are performed via a data
buffer register associated with that mode. These data transactions are executed serially in a manner analogous to the
process used to load the instruction register and are grouped in the TAP controller state sequence starting from the
select-DR-scan state. In the TAP controller state sequence, the shift-DR state allows internal data to be shifted out
through the TDO pin, while the external data is shifted in simultaneously through the TDI pin. Once a complete data pat-
tern is shifted in, input data can be latched into the parallel buffer of the selected register on the falling edge of TCK in
the update-DR state. On the same TCK falling edge, in the update-DR state, the internal parallel buffer is loaded to the
data shift register for output. This shift-DR/update-DR process serves as the basis for passing information between the
external host and the MAXQ612/MAXQ622 microcontrollers. These data register transactions occur in the data register
portion of the TAP controller state sequence diagram and have no effect on the instruction register.

13.3 Communication Through TAP

The TAP controller is in test-logic-reset state after a power-on-reset. During this initial state, the instruction register
contains bypass instruction and the serial path defined between the TDI and TDO pins for the shift-DR state is the 1-bit
bypass register. All TAP signals (TCK, TMS, TDI, and TDO) default to being weakly pulled high internally on any reset.
The TAP controller remains in the test-logic-reset state as long as TMS is held high. The TCK and TMS signals can be
manipulated by the host to transition to other TAP states. The TAP controller remains in a given state whenever TCK
is held low.

Maxim Integrated 13-5

MAXQ612/MAXQ622 User’s Guide

For the host to establish a specific data communication link, a private instruction must be loaded into the IR[2:0] reg-
ister. Once the instruction is latched in the instruction parallel buffer at the update-IR state, it is recognized by the TAP
controller and the communication channel is established. In-circuit debug or in-system programming commands and
data can be exchanged between the host and the MAXQ612/MAXQ622 microcontrollers by operating in the data reg-
ister portion of the state sequence (i.e., DR-scan). The TAP retains the private instruction that was loaded into IR[2:0]
until a new instruction is shifted in or until the TAP controller returns to the test-logic-reset state.

13.3.1 TAP Communication Examples—IR-Scan and DR-Scan

Figure 13-3 and Figure 13-4 illustrate examples of communication between the host JTAG controller and the TAP of the
MAXQ612/MAXQ622 microcontrollers. The host controls the TCK and TMS signals to move through the desired TAP
states while accessing the selected shift register through the TDI input and TDO output pair.

TCK

S L | I [[[

CONTROL
STATE

13S34-019071-1S3L
3101/1S3L-NNY
NYOS-40-193713S
NVOS-HI-10313S
4I-34N1dv9
YI-L4IHS
4l-3Snvd
Hl-eLixd
dI-L4IHS
dI-31vadn
3101/1S3L-NNY

DI

(R SHEL DON'T CARE OR UNDEFINED DONT CARE OR UNDEFINED
IR PARALLEL
OUTPUT BYPASS ¢ NEW INSTRUGTION
SREELGEE%E DON'T CARE OR UNDEFINED INSTRUCTION REGISTER " DONT CARE OR UNDEFINED
00 —
ENABLE
100 C XD C XXX —

Figure 13-3. TAP Controller Debug Mode IR-Scan Example

13-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

TCK
R | N |]
@ =
g = 2 %) o o » = § % E 4!
g o o ‘ = o
conroL | % | 2| 2 = = z 5 = Z| s 7 22| &
STATE | 4 |7 S S i S S s | T = 3|3 =
<] S =] =) =] = <] 4 2 i & g g
" = [2|2 %
DI
SHIFT ~DON'T CARE OR UNDEFINED X DON'T CARE OR UNDEFINED
REGISTER
PARALLEL
QUTPUT OLD DATA ~ X NEW DATA
INSTRUCTION e DATA REGISTER X DON'T CARE OR UNDEFINED
REGISTER
Wi B B o]
ENABLE
00 C XX D CX X XD

Figure 13-4. TAP Controller Debug Mode DR-Scan Example

Maxim Integrated 13-7

MAXQ612/MAXQ622 User’s Guide

SECTION 14: IN-CIRCUIT DEBUG MODE

This section contains the following information:

14.1 Background Mode Operation 14-3

14.2 Breakpoint Registers 14-5
14.2.1 Breakpoint n Register (BPn, n =010 3). 14-5
14.2.2 Breakpoint 4 Register (BP4). 14-5
14.2.3 Breakpoint 5 Register (BP5). 14-6
14.2.4 Using Breakpoints 14-6

143 Debug Mode 14-7
14.3.1 Debug Mode Commands.t 14-7
14.3.2 Read Register Map Command Host-Utility ROM Interaction 14-9
14.3.3 Single-Step Operation (TraCe) o 14-10
14.3.4 RetUmn . .o 14-10
14.3.5 Debug Mode Special Considerations 14-10

14.4 In-Circuit Debug Peripheral Registers. 14-11
14.4.1 In Circuit Debug Temp 0/1 Register (ICDTO/ICDT1) 14-11
14.4.2 In-Circuit Debug Control Register (ICDC) e 14-11
14.4.3 In-Circuit Debug Flag Register (ICDF). 14-12
14.4.4 In-Circuit Debug Buffer Register (ICDB) 14-13
14.4.5 In-Circuit Debug Data Register (ICDD) 14-13
14.4.6 In-Circuit Debug Address Register (ICDA) i 14-13

LIST OF FIGURES
Figure 14-1. In-Circuit Debugger. 14-2
LIST OF TABLES
Table 14-1. Background Mode Commands 14-4
Table 14-2. Debug Mode Commandsot 14-8

Maxim Integrated

14-1

MAXQ612/MAXQ622 User’s Guide

SECTION 14: IN-CIRCUIT DEBUG MODE

Flash-based MAXQ612/MAXQ622 microcontrollers are equipped with embedded debug hardware and embedded util-
ity ROM firmware developed for the purpose of providing in-circuit debugging capability to the user application. The
in-circuit debug mode uses the JTAG-compatible TAP as its means of communication between the host and MAXQ612/
MAXQ622 microcontrollers. Figure 14-1 shows a block diagram of the in-circuit debugger. The in-circuit debug hard-
ware and software features include the following:

e Debug engine

e Set of registers providing the ability to set breakpoints on register, code, or data

e Set of debug service routines stored in a utility ROM

Collectively, these hardware and software features allow two basic modes of in-circuit debugging:

e Background mode allows the host to configure and set up the in-circuit debugger while the CPU continues to
execute the normal program. Debug mode can be invoked from background mode.

e Debug mode allows the debug engine to take control of the CPU, providing read write access to internal registers
and memory, and single-step trace operation.

Note: The in-circuit debug peripheral registers ICDTn, ICDA, ICDB, ICDD, ICDC, and ICDF are used only by the utility
ROM. The user does not have access to these registers.

! | |
! r-———--"—-—"—-—"=—-—"—-——-——-—=-—=-=—= === - 1 | |
! ! | | | !
b T > CPU U~ | ENABLE
v | A]]
IR <
™S ——»>] ICDB (& — + — — I I St DATA
TCK —— TAP < > ICOF |- |- DEBUE 1 | b >
ENGINE P »| ADDR
D] —»| CONTROLLER ICDC |- > .- — = b com
D0 <——— ICDA i
100D } BREAK

A 4

ICDTn COMPARATOR | | CODE ADDR
COMPARATOR | | DATA ADDR
COMPARATOR | | REG DATA

4
A

Yy

Figure 14-1. In-Circuit Debugger

The embedded hardware debug engine is implemented as a stand-alone hardware block in the MAXQ612/MAXQ622
microcontrollers. The debug engine can be enabled for monitoring internal activities and interacting with selected
internal registers while the CPU is executing user code. This capability allows the user to employ the embedded debug
engine to debug the actual system, in place of the in-circuit emulator, which uses external hardware to duplicate opera-
tion of the microcontroller outside of the real application environment.

To enable a communication link between the host and the microcontroller debug engine, the debug instruction (010b)
must be loaded into the TAP instruction register using the IR-scan sequence. Once the instruction is latched in the
instruction parallel buffer (IR[2:0]) and is recognized by the TAP controller in the update-IR state, the 10-bit data shift
register is activated as the communication channel for DR-scan sequences. The TAP instruction register retains the
debug instruction until a new instruction is shifted through an IR-scan or the TAP controller returns to the test-logic-
reset state.

14-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

The host now can transmit and receive serial data through the 10-bit data shift register that exists between the TDI
input and TDO output during DR-scan sequences. All background and debug mode communication (commands, data
input/output, and status) occurs through this serial channel. Each 10-bit exchange of data between the host and the
MAXQ612/MAXQ622 internal hardware is composed of two status bits and a single byte of command or data.

The 10-bit word is always transmitted least significant bit first with the format shown below.

Loz
o 0 i omaaez o 0

! ! ! | ! ! ! | X | X + TDI TDO &

HOST COMMAND/DATA INPUT e mmm———— a MAXQ612/MAXQ622 DATA OUTPUT

s[1:0] STATUS CONDITION

00 NONDEBUG. DEFAULT CONDITION,
BACKGROUND MODE, OR DEBUG ENGINE
INACTIVE.

01 DEBUG IDLE. DEBUG ENGINE IS READY TO
RECEIVE DATA FROM THE HOST (COMMAND, DATA).

10 DEBUG BUSY. DEBUG ENGINE IS BUSY WITHOUT
VALID DATA (i.e., ROM CODE EXECUTION, TRADE
OPERATIONS).

1 DEBUG VALID. DEBUG ENGINE IS BUSY WITH
VALID DATA.

The data byte portion of the 10-bit shift register is interfaced directly to the ICDB parallel register. The ICDB register
functions as the holding data register for both transmit and receive operations. On the falling edge of TCK in the
update-DR state, the outgoing data is loaded from the ICDB parallel register to the debug shift register and the incom-
ing shift register data is latched in the ICDB parallel register.

14.1 Background Mode Operation

When the instruction register is loaded with the debug instruction (IR[2:0] = 010b), the host can communicate with
the MAXQ612/MAXQ622 microcontrollers in a background mode using TAP DR-scan sequences without disturbing
CPU operation. Note, however, that JTAG in-system programming also requires use of the 10-bit debug shift register
and, if enabled (SPE, PSS[1:0] = 100b), takes precedence over background mode communication. When operating in
background mode, the status bits are always cleared to 00b (nondebug), which indicates that the MAXQ612/MAXQ622
microcontrollers are ready to receive background mode commands.

The host can perform the following operations from background mode:
Read/write internal breakpoint registers (BPO to BP5)

Read/write internal in-circuit debug registers (ICDC, ICDF, ICDA, ICDD)
e Monitor to determine when a breakpoint match has occurred

e Directly invoke debug mode

The background mode commands supported by the MAXQ612/MAXQ622 microcontrollers are shown in Table 14-1.
Encodings not listed in this table are not supported in background mode and are treated as no operations.

Maxim Integrated 14-3

MAXQ612/MAXQ622 User’s Guide

Table 14-1. Background Mode Commands

OP CODE

COMMAND

OPERATION

0000-0000

No Operation

No operation (default state for debug shift register).

0000-0001

Read ICDC

Read control data from the ICDC. The contents of the ICDC register are loaded into the debug
shift register through the ICDB register for host read. This command requires one follow-on
transfer cycle.

0000-0010

Read ICDF

Read flags from the ICDF. The contents of the ICDF register (1 byte) are loaded into the debug
shift register through the ICDB register for host read. This command requires one follow-on
transfer cycle.

0000-0011

Read ICDA

Read data from the ICDA. The contents of the ICDA register are loaded into the debug shift
register through the ICDB register for host read. This command requires two follow-on transfer
cycles with the least significant byte first.

0000-0100

Read ICDD

Read data from the ICDD. The contents of the ICDD register are loaded into the debug shift
register through the ICDB register for host read. This command requires two follow-on transfer
cycles with the least significant byte first.

0000-0101

Read BPO

Read data from the BPO. The contents of the BPO register are loaded into the debug shift reg-
ister through the ICDB register for host read. This command requires two follow-on transfer
cycles with the least significant byte first.

0000-0110

Read BP1

Read data from the BP1. The contents of the BP1 register are loaded into the debug shift reg-
ister through the ICDB register for host read. This command requires two follow-on transfer
cycles with the least significant byte first.

0000-0111

Read BP2

Read data from the BP2. The contents of the BP2 register are loaded into the debug shift reg-
ister through the ICDB register for host read. This command requires two follow-on transfer
cycles with the least significant byte first.

0000-1000

Read BP3

Read data from the BP3. The contents of the BP3 register are loaded into the debug shift reg-
ister through the ICDB register for host read. This command requires two follow-on transfer
cycles with the least significant byte first.

0000-1001

Read BP4

Read data from the BP4. The contents of the BP4 register are loaded into the debug shift reg-
ister through the ICDB register for host read. This command requires two follow-on transfer
cycles with the least significant byte first.

0000-1010

Read BP5

Read data from the BP5. The contents of the BP5 register are loaded into the debug shift reg-
ister through the ICDB register for host read. This command requires two follow-on transfer
cycles with the least significant byte first.

0001-0001

Write ICDC

Write control data to the ICDC. The contents of ICDB are loaded into the ICDC register by the
debug engine at the end of the data transfer cycle.

0001-0011

Write ICDA

Write data to the ICDA. The contents of ICDB are loaded into the ICDA register by the debug
engine at the end of the data transfer cycles. Data is transferred with the least significant byte
first.

0001-0100

Write ICDD

Write data to the ICDD. The contents of ICDB are loaded into the ICDD register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-0101

Write BPO

Write data to the BPO. The contents of ICDB are loaded into the BPO register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-0110

Write BP1

Write data to the BP1. The contents of ICDB are loaded into the BP1 register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-0111

Write BP2

Write data to the BP2. The contents of ICDB are loaded into the BP2 register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

14-4

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Table 14-1. Background Mode Commands (continued)

OP CODE COMMAND OPERATION
Write data to the BP3. The contents of ICDB are loaded into the BP3 register by the debug

00011000 Write BP3 engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-1001 Write BP4 Write data to the BP4. The contents of ICDB are loaded into the BP4 register by the debug
engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

0001-1010 Write BP5 Write data to the BP5. The contents of ICDB are loaded into the BP5 register by the debug

engine at the end of data transfer cycles. Data is transferred with the least significant byte first.

Debug command. This command forces the debug engine into debug mode and halts the
0001-1111 Debug CPU operation at the completion of the current instruction after the debug command is recog-
nized by the debug engine.

14.2 Breakpoint Registers

The MAXQ612/MAXQ622 microcontrollers incorporate six breakpoint registers (BPO to BP5) that are configurable by
the host for establishing different types of breakpoint mechanisms. The first four breakpoint registers (BPO to BP3)
are 16-bit registers that are configurable as program memory address breakpoints. When enabled, the debug engine
forces a break when a match between the breakpoint register and the program memory execution address occurs. The
final two 16-bit breakpoint registers (BP4, BP5) are configurable in one of two possible capacities. They can be config-
ured as data memory address breakpoints or can be configured to support register access breakpoints. In either case,
if breakpoints are enabled and the defined breakpoint match occurs, the debug engine generates a break condition.

14.2.1 Breakpoint n Register (BPn, n = 0 to 3)

15 0
Breakpoint 0 Register (BP0)
Breakpoint 1 Register (BP1)
Breakpoint 2 Register (BP2)
Breakpoint 3 Register (BP3)
+ 1+ 1+ 1t 1+ 11 1 1 1 1 1 1 1 1 1 Power-On Reset and Test-Logic-Reset
S $ S S s S S S S S S S S s s S Read (r), Write (w), or Special (s) access

These registers are accessible only through background mode read/write commands. These four registers serve as
program memory address breakpoints. When DME bit is set in background mode, the debug engine monitors the
program address bus activity while the CPU is executing the user program. If an address match is detected, a break
occurs, allowing the debug engine to take control of the CPU and enter debug mode.

14.2.2 Breakpoint 4 Register (BP4)

15 0
Breakpoint 4 Register (BP4) (REGE = 0)
X | X[x| x| x]|x]|x Breakpoint 4 Register (BP4) (REGE = 1)
1R o o Ry R Rl Rkl Rty Rl el Power-On Reset and Test-Logic-Reset
S S s s 8§ S s s S S s s s S s s Read (r), Write (w), or Special (s) access

**Module Specifier 3:0 {0 to 15}
*Register Index within Module {0 to 31}

This register is accessible only through background mode read/write commands.

When (REGE = 0): This register serves as one of the two data memory address breakpoints. When DME is set in
background mode, the debug engine monitors the data memory address bus activity while the CPU is executing the

Maxim Integrated 14-5

MAXQ612/MAXQ622 User’s Guide

user program. If an address match is detected, a break occurs, allowing the debug engine to take over control of the
CPU and enter debug mode.

When (REGE = 1): This register serves as one of the two register breakpoints. A break occurs when the destination
register address for the executed instruction matches with the specified module and index.

14.2.3 Breakpoint 5 Register (BP5)

15 0
Breakpoint 5 Register (BP5) (REGE = 0)
X | X[X[x]|x]|x]|X Breakpoint 5 Register (BP5) (REGE = 1)
s e e e e A A T e R B Rl ol Power-On Reset and Test-Logic-Reset
S $ S S S S S S S S S S S S s s Read (r), Write (w), or Special (s) access

“*Module Specifier 3:0 {0 to 15}
*Register Index within Module {0 to 31}

This register is accessible only through background mode read/write commands.

When (REGE = 0): This register serves as one of the two data memory address breakpoints. When DME is set in
background mode, the debug engine monitors the data memory address bus activity while the CPU is executing the
user program. If an address match is detected, a break occurs, allowing the debug engine to take over control of the
CPU and enter debug mode.

When (REGE = 1): This register serves as one of the two register breakpoints. A break occurs when two conditions
are met:

Condition 1: The destination register address for the executed instruction matches with the specified module and
index.

Condition 2: The bit pattern written to the destination register matches those bits specified for comparison by the
ICDD data register and ICDA mask register. Only those ICDD data bits with their corresponding ICDA mask bits are
compared. When all bits in the ICDA register are cleared, Condition 2 becomes a don’t care.

14.2.4 Using Breakpoints

All breakpoint registers (BP0 to BP5) default to the OFFFFh state on power-on reset or when the test-logic-reset TAP
state is entered. The breakpoint registers are accessible only with background mode read/write commands issued over
the TAP communication link. The breakpoint registers are not read/write accessible to the CPU.

Setting the debug mode enable (DME) bit in the ICDC register to 1 enables all six breakpoint registers for breakpoint
match comparison. The state of the break-on register enable (REGE) bit in the ICDC register determines whether the
BP4 and BP5 breakpoints should be used as data memory address breakpoints (REGE = 0) or as register breakpoints
(REGE = 1).

When using the register matching breakpoints, it is important to realize that debug mode operations (e.g., read data
memory, write data memory, etc.) require use of ICDA and ICDD for passing of information between the host and
MAXQ612/MAXQ622 microcontrollers’ utility ROM routines. It is advised that these registers be saved and restored or
be reconfigured before returning to the background mode if register breakpoints are to remain enabled.

When a breakpoint match occurs, the debug engine forces a break and the MAXQ612/MAXQ622 microcontrollers
enter debug mode. If a breakpoint match occurs on an instruction that activates the PFX[n] register, the break is held
off until the prefixed operation completes. The host can assess whether debug mode has been entered by monitoring
the status bits of the 10-bit word shifted out of the TDO pin. The status bits change from the nondebug (00b) state
associated with background mode to the debug-idle (01b) state when debug mode is entered. Debug mode can also
be manually invoked by host issuance of the debug background command.

14-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

14.3 Debug Mode

There are two ways to enter the debug mode from background mode:

e |ssuance of the debug command directly by the host through the TAP communication port
or

e Breakpoint matching mechanism

The host can issue the debug background command to the debug engine. This direct debug mode entry is indeter-
ministic. The response time varies dependent on system conditions when the command is issued. The breakpoint
mechanism provides a more controllable response, but requires that the breakpoints be initially configured in back-
ground mode. No matter the method of entry, the debug engine takes control of the CPU in the same manner. Debug
mode entry is similar to the state machine flow of an interrupt except that the target execution address is 8010h in
utility ROM instead of the address specified by the IV register that is used for interrupts. On debug mode entry, the
following actions occur:

1) Block the next instruction fetch from program memory.

2) Push the return address onto the stack.

) Save the state of the UPA bit and clear it.

) Set the contents of IP to 8010h.

) Clear the IGE bit to 0 to disable interrupt handler if it is not already clear.
6) Halt CPU operation.

Once in debug mode, further breakpoint matches or host issuance of the debug command are treated as no operations
and do not disturb debug engine operation. Entering debug mode also stops the clocks to all timers, including the
watchdog timer. Temporarily disabling these functions allows debug mode operations without disrupting the relation-
ship between the original user program code and hardware timed functions. No interrupt request can be granted since
the interrupt handler is also halted as a result of IGE = 0.

14.3.1 Debug Mode Commands

The debug engine sets the data shift register status bits to 01b (debug-idle) to indicate that it is ready to accept debug
commands from the host.

g b~ W

The host can perform the following operations from debug mode:
e Read register map

e Read program stack

e Read/write register

e Read/write data memory

e Single step of CPU (trace)

e Return to background mode

e Unlock password

The only operations directly controlled by the debug engine are single step and return. All other operations are assisted
by debug service routines contained in the utility ROM. These operations require that multiple bytes be transmitted
and/or received by the host, however each operation always begins with host transmission of a command byte. This
command byte is decoded by the debug engine in order to determine the quantity, sequence, and destination for
follow-on bytes received from the host. Even though there is no timing window specified for receiving the complete
command and follow-on data, the debug engine must receive the correct number of bytes for a particular command
before executing that command. If command and follow-on data are transmitted out of byte order or proper sequence,
the only way to resolve this situation is to disable the debug engine by changing the instruction regsiter (IR[2:0]) and

Maxim Integrated 14-7

MAXQ612/MAXQ622 User’s Guide

reloading the debug instruction. Once the debug engine has received the proper number of command and follow-on
bytes for a given utility ROM assisted operation, it responds with the following actions:

e Update the command bits (CMDI[3:0]) in the ICDC register to reflect the host request
e Enable the utility ROM if it is not enabled

e Force a jump to utility ROM address 8010h

e Set the data shift register status bits to 10b (debug-busy)

The utility ROM code performs a read to the ICDC register CMD[3:0] bits to determine its course of action. Some com-
mands can be processed by the utility ROM without receiving data from the host beyond the initially supplied follow-on
bytes, while others (e.g., unlock password) require additional data from the host. Some commands need only to pro-
vide an indication of completion to the host, while others (read register map) need to supply multiple bytes of output
data. To accomplish data flow control between the host and utility ROM, the status bits should be used by the host
to assess when the utility ROM is ready for additional data and/or when the utility ROM is providing valid data output.
Internally, the utility ROM can ascertain when new data is available or when it may output the next data byte through
the TXC flag. The TXC flag is an important indicator between the debug engine and the utility ROM debug routines. The
utility ROM firmware sets the TXC flag to 1 to indicate that valid data has been loaded to the ICDB register. The debug
engine clears the TXC flag to 0 to indicate completion of a data shift cycle, thus allowing the utility ROM to continue
execution of a requested task that is still in progress. The utility ROM signals that it has completed a requested task
by setting the utility ROM operation done (ROD) bit of the SC register to 1. The ROD bit is reset by the debug engine
when it recognizes the done condition.

The debug mode commands supported by the MAXQ612/MAXQ622 microcontrollers are shown in Table 14-2. Note
that background mode commands are supported inside debug mode, however, the documentation of these com-

in debug mode and are treated as no operations.

Table 14-2. Debug Mode Commands

OP CODE COMMAND OPERATION
0010-0000 No Operation | No operation.

Read data from internal registers. This command forces the debug engine to update the
CMDI[3:0] bits in the ICDC to 0001b and perform a jump to utility ROM code at 8010h. The util-
ity ROM debug service routine loads register data to ICDB for host capture/read, starting at the
lowest register location in module O, one byte at a time in a successive order until all internal
registers are read and output to the host.

Read register
map

0010-0001

Read data from data memory. This command requires four follow-on transfer cycles, two for
the starting address and two for the word read count, starting with the LSB address and end-
ing with the MSB read count. The address is moved to the ICDA register and the word read
Read data count is moved to the ICDD register by the debug engine. This information is directly acces-

memory sible by the utility ROM code. At the completion of this command period, the debug engine
updates the CMD[3:0] bits to 0010b and performs a jump to utility ROM code at 8010h. The
utility ROM debug service routine loads ICDB from data memory according to address and
count information provided by the host.

0010-0010

Read data from program stack. This command requires four follow-on transfer cycles, two
for the starting address and two for the read count, starting with the LSB address and end-
ing with the MSB read count. The address is moved to the ICDA register and the read count
Read program | is moved to the ICDD register by the debug engine. This information is directly accessible by
stack the utility ROM code. At the completion of this command period, the debug engine updates
the CMD[3:0] bits to 0011b and performs a jump to utility ROM code at 8010h. The utility ROM
debug service routine pops data out from the stack according to the information received in
the ICDA and ICDD register. The stack pointer is postincremented for each pop operation.

0010-0011

14-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Table 14-2. Debug Mode Commands (continued)
OP CODE | COMMAND OPERATION

Write data to a selected register. This command requires four follow-on transfer cycles, two
for the register address and two for the data, starting with the LSB address and ending with
the MSB data. The address is moved to the ICDA register and the data is moved to the ICDD
register by the debug engine. This information is directly accessible by the utility ROM code.
At the completion of this command period, the debug engine updates the CMD[3:0] bits to
0100b and performs a jump to utility ROM code at 8010h. The utility ROM debug service rou-
tine updates the select register according to the information received in the ICDA and ICDD
registers.

0010-0100 Write register

Write data to a selected data memory location. This command requires four follow-on transfer
cycles, two for the memory address and two for the data, starting with the LSB address and
ending with the MSB data. The address is moved to the ICDA register and the data is moved
Write data to the ICDD register by the debug engine. This information is directly accessible by the util-

memory ity ROM code. At the completion of this command period, the debug engine updates the
CMD[3:0] bits to 0101b and performs a jump to utility ROM code at 8010h. The utility ROM
debug service routine updates the selected data memory location according to the information
received in the ICDA and ICDD registers.

0010-0101

Trace command. This command allows single stepping the CPU and requires no follow-on
0010-0110 Trace transfer cycle. The trace operation is a ‘debug mode exit, one cycle CPU execution, debug
mode entry’ sequence.

Return command. This command terminates the debug mode and returns the debug engine
0010-0111 Return to background mode. This allows the CPU to resume its normal operation at the point where it
has been last interrupted.

Unlock the password lock. This command requires 32 follow-on transfer cycles each contain-
ing a byte value to be compared with the program memory password for the purpose of clear-
Unlock ing the PWL/PWLL/PWLS bits and granting access to protected debug and loader functions.
0010-1000 password When this command is received, the debug engine updates the CMD[3:0] bit to 1000b and

performs a jump to utility ROM code at 8010h. Data is loaded to the ICDB register when each
byte of data is received, beginning with the LSB of the least significant word first and end with
the MSB of the most significant word.

Read from a selected internal register. This command requires two follow-on transfer cycles,
starting with the LSB address and ending with the MSB address. The address is moved to
ICDA register by the debug engine. This information is directly accessible by the utility ROM
code. At the completion of this command period, the debug engine updates the CMD[3:0] bits
to 1001b and performs a jump to utility ROM code at 8010h. The utility ROM debug service
routine always assumes a 16-bit register length and returns the requested data LSB first.

0010-1001 Read register

14.3.2 Read Register Map Command Host-Utility ROM Interaction

A read register map command reads out data contents for all implemented system and peripheral registers. The host
does not specify a target register, but instead should expect register data output in successive order, starting with the
lowest order register in register module 0. Data is loaded by the utility ROM to the 8-bit ICDB register and is output 1
byte per transfer cycle. Thus, for a 16-bit register, two transfer cycles are necessary. The host initiates each transfer
cycle to shift out the data bytes and finds valid data output tagged with a debug-valid (status = 11b). At the end of
each transfer cycle, the debug engine clears the TXC flag to signal the utility ROM service routine that another byte
can be loaded to ICDB. The utility ROM service routine sets the TXC flag each time after loading data to the ICDB
register. This process is repeated until all registers have been read and output to the host. The host system recognizes
the completion of the register read when the status debug-idle is presented. This indicates that the debug engine is
ready for another operation.

Maxim Integrated 14-9

MAXQ612/MAXQ622 User’s Guide

14.3.3 Single-Step Operation (Trace)

The debug engine supports single step operation in debug mode by executing a trace command from the host. The
debug engine allows the CPU to return to its normal program execution for one cycle and then forces a debug mode
re-entry:

1) Set status to 10b (debug-busy).

e¢]

Save and clear the UPA bit.

Set the contents of IP to 8010h.

10) Clear the IGE bit to O to disable the interrupt handler.
11) Halt CPU operation.

12) Set the status to debug-idle.

Note that the trace operation uses a return address from the stack as a legitimate address for program fetching. The
host must maintain consistency of program flow during the debug process. The instruction pointer is automatically
incremented after each trace operation, thus a new return address is pushed onto the stack before returning the con-
trol to the debug engine. Also, note that the interrupt handler is an essential part of the CPU and a pending interrupt
could be granted during single-step operation since the IGE bit state present on debug mode entry is restored for the
single step.

However, single tracing through program in system memory is prohibited by hardware if multiple memory regions are
defined.

14.3.4 Return

To terminate the debug mode and return the debug engine to background mode, the host must issue a return com-
mand to the debug engine. This command causes the following actions:

1

©

2) Pop the return address from the stack.
3) Setthe IGE bit to 1 if debug mode was activated when IGE = 1.
4) Supply the CPU with an instruction addressed by the return address.
5) Stall the CPU at the end of the instruction execution.
6) Block the next instruction fetch from program memory.
7) Push the return address onto the stack.
)
)
0

) Pop the return address from the stack.

) Restore the state of the UPA bit.

) Set the IGE bit to 1 if debug mode was activated when IGE = 1.
)

)

N W N

Supply the CPU with an instruction addressed by the return address.

(9}

Allow the CPU to execute the normal user program.
6) Set the status to 00b (nondebug).

To prevent a possible endless breakpoint matching loop, no break occurs for a breakpoint match on the first instruc-
tion after returning from debug mode to background mode. Returning to background mode also enables all internal
timer functions.

14.3.5 Debug Mode Special Considerations

e The debug engine does not operate reliably when the CPU is in power-management mode (divide-by-256 system
clock mode). To allow for proper execution of debug mode commands when invoked during PMM, the switchback
enable (SWB) bit should be configured to 1. With SWB = 1, entering active debug mode (whether by breakpoint
match or issuance of the debug command) forces a switchback to the divide-by-1 system clock mode and allows
the debug engine to function correctly. This allows user code to configure breakpoints that occur inside PMM, thus
providing reliable use of debug commands. However, it does not allow a good means for re-entering PMM.

14-10 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Special caution should be exercised when using the write register command on register bits that globally affect
system operation (e.g., IGE, STOP). If the write register command is used to invoke stop mode (setting STOP = 1),
the RESET pin can be asserted to reset the debug engine and return to the background mode of operation.

Single stepping (trace) through any operation that changes the state of the IGE bit results in the debug engine over-
riding the bit change since it retains the IGE bit setting captured when active debug mode was entered.

Single stepping (trace) into an operation that sets STOP = 1 when IGE = 1 effectively allows enabled interrupts nor-
mally capable of causing exit from stop mode to do so.

Data memory allocation is important during system development if in-circuit debug is planned. The top 32 bytes
(16 words) of data memory are used by the debug service routine during debug mode. The data contents in these
locations can be altered and cannot be recovered.

One available stack location is needed for debug mode. If the stack is full when entering debug mode, the oldest
data in the stack is overwritten.The crystal warmup counter is the only counter not disabled when active debug
mode is entered. If the crystal warmup counter completes while in active debug mode, a glitchless switch is made
to selected clock source (which was being counted). It is important that the user recognize that this action occurs
since the TAP clock should be run no faster than 1/8th the system clock frequency.

Any signal sampling that relies upon the internal system clock (e.g., counter inputs) can be unreliable since the
system clock is turned off inside active debug mode between debug mode commands.

To debug UAPP/ULDR regions, their passwords should not be cleared. The following methods can be used for this
purpose:

1) Place the application startup code at the start of the UAPP segment (or)

2) Explicitly add a password to be located at word address 0x2010 (byte address 0x4020). Only one of the
32 bytes of the password field needs to be programmed to something other than OxFF or 0xQ0.

The stack plug-in should be disabled for debug commands to be effective.

14.4 In-Circuit Debug Peripheral Registers

14.4.1 In Circuit Debug Temp 0/1 Register (ICDT0/ICDT1)
15 0
In Circuit Debug Temp 0 Register (ICDTO)
In Circuit Debug Temp 1 Register (ICDT1)
0o 0 0o o o0 0o o0 o o 0o o o o o0 o0 Power-On Reset or Test-Logic-Reset
S $ S s S S S S S S S S S S S s Read (r), Write (w), or Special (s) access

These registers are read/write accessible by the CPU only in background mode or debug mode. These registers are
intended for use by the utility ROM routines as temporary storage to save registers that might otherwise have to be
placed in the stack.

14.4.2 In-Circuit Debug Control Register (ICDC)

7 0

| | — | | — | | | | | In-Circuit Debug Control Register (ICDC)
0O 0 00O OO O O Power-On Reset or Test-Logic-Reset
rS r rs r rs rs rs rs Read (r), Write (w), or Special (s) access

Bit 7: Debug Mode Enable (DME). When this bit is cleared to 0, background mode commands can be executed, but
breakpoints are disabled. When this bit is set to 1, breakpoints are enabled while background mode commands still
can be entered. This bit cany only be set or cleared from background debug mode. This bit has no meaning for the

u

tility ROM code.

Maxim Integrated 14-11

MAXQ612/MAXQ622 User’s Guide

Bit 5: Break-On Register Enable (REGE). The REGE bit is used to enable the break on register function. When REGE
bitis set to 1, BP4 and BP 5 are used as register breakpoints. A break occurs when the content of BP4 is matched with
the destination address of the current instruction. For BP5, a break occurs only on a selected data pattern for a selected
destination register addressed by BP5. The data pattern is determined by the contents in the ICDA and ICDD register.
The REGE bit alone does not enable register breakpoints, but simply changes the manner in which BP4, BP5 are used.
The DME bit still must be set to a logic 1 for any breakpoint to occur. This bit has no meaning for the utility ROM code.

Bits 3:0: Command Bits (CMD[3:0]). These bits reflect the current host command in debug mode. These bits are set
by the debug engine and allow the utility ROM code to determine the course of action.

CMD[3:0] ACTION
0000 No operation
0001 Read register map
0010 Read data memory
0011 Read stack memory
0100 Write register
0101 Write data memory
1000 Unlock password
1001 Read register
Other Reserved

14.4.3 In-Circuit Debug Flag Register (ICDF)

7 0

| — | — | — | — | | | | | In-Circuit Debug Flag Register (ICDF)
0 0 0O OO 0O 0 O Power-On Reset and Test-Logic-Reset
rr r r rworw rw rw Read (r), Write (w), or Special (s) access

Bits 3:2: Programming Source Select Bits 1:0 (PSS[1:0]). These bits are used to select a programming interface
during in-system programming when SPE is set to 1. Otherwise, the logic values of these bits have no meaning. The
logical states of these bits, when read by the CPU, reflect the logical-OR of the PSS bits that are write accessible by
the CPU and those in the system programming buffer (SPB) register of the TAP module (which are accessible through
JTAG). These bits are read/write accessible for the CPU and are cleared to 0 by a power-on reset or test-logic-reset.
CPU writes to the PSS bits result in clearing of the JTAG PSS[1:0] bits.

PSS1 PSSO SOURCE SELECTION
0 0 JTAG
Others Reserved

Bit 1: System Program Enable (SPE). The SPE bit is used for in-system programming support and its logical state,
when read by the CPU, always reflects the logical-OR of the SPE bit that is write accessible by the CPU and the SPE
bit of the system programming buffer (SPB) register in the TAP module (which is accessible through JTAG). The logical
state of this bit determines the program flow after a reset. When it is set to 1, in-system programming is executed by
the utility ROM. When it is cleared to 0, execution is transferred to user code. This bit allows read/write access by the
CPU and is cleared to 0 only on a power-on reset or test-logic-reset. The JTAG SPE bit is cleared by hardware when
the ROD bit is set. CPU writes to the SPE bit result in the clearing of the JTAG PSS[1:0] bits.

Bit 0: Serial Transfer Complete (TXC). This bit is set by hardware at the end of a transfer cycle at the TAP com-
munication link. The TXC bit helps the debug engine to recognize host requests, either command or data. This bit is
normally set by utility ROM code to signify or request the sending or receiving of data. The TXC bit is cleared by the
debug engine once set. CPU writes to the TXC bit results in the clearing of the JTAG PSS[1:0] bits.

14-12 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

14.4.4 In-Circuit Debug Buffer Register (ICDB)

7 0

| | | | | | | | | In-Circuit Debug Buffer Register (ICDB)
0 0 0O OO0 0 0 O Power-On Reset and Test-Logic-Reset
W rw rw rw orw o rworworw Read (r), Write (w), or Special (s) access

This register serves as the parallel holding buffer for the debug shift register of the TAP. Data is read from or written to
ICDB for serial communication between the debug routines and the external host.

14.4.5 In-Circuit Debug Data Register (ICDD)

15 0

| | | | | | | | | | | | | | | | | In-Circuit Debug Data Register (ICDD)
0 0 0o oo o000 O 0O 0 0O O0O D0 o0 Power-On Reset or Test-Logic-Reset
r-r r r r r r r r r r r r r r r Read (r), Write (w), or Special (s) access

This register is used by the debug engine to store data/read count so that utility ROM code can view that information.
This register is also used by the debug engine as a data register for content matching when BP5 is used as a register
breakpoint. In this case, only data bits in this register with their corresponding mask bits in the ICDA register set are
compared with the updated destination data to determine if a break should be generated.

14.4.6 In-Circuit Debug Address Register (ICDA)

15 0

| | | | | | | | | | | | | | | | | In-Circuit Debug Address Register (ICDA)
0 0 o o o0 o o o o0 0o o o o o o0 o Power-On Reset or Test-Logic-Reset
r-r r r r r r r r r r r r r r r Read (r), Write (w), or Special (s) access

This register is used by the debug engine to addresses so that utility ROM code can view that information. This regis-
ter is also used by the debug engine as a mask register to mask out don't care bits in the ICDD register when BP5 is
used as a register breakpoint. When a bit in this register is set to 1, the corresponding bit location in the ICDD register
is compared to the data being written to the destination register to determine if a break should be generated. When
a bit in this register is cleared, the corresponding bit in the ICDD register becomes a don’t care and is not compared
against the data being written. When all bits in this register are cleared, any updated data pattern causes a break when
the BP5 register matches the destination register address of the current instruction.

Maxim Integrated 14-13

MAXQ612/MAXQ622 User’s Guide

SECTION 15: IN-SYSTEM PROGRAMMING (JTAG)

This section contains the following information:

15.1 JTAG Bootloader Operation. 15-2
15.2 Password-ProteCted ACCESSo 15-3
15.2.1 Entering Passwords 15-3

LIST OF TABLES

Table 15-1. Status Bits for Bootloader Operation 15-2

Maxim Integrated 15-1

MAXQ612/MAXQ622 User’s Guide

SECTION 15: IN-SYSTEM PROGRAMMING (JTAG)

Internal nonvolatile (flash) memory of MAXQ612/MAXQ622 microcontrollers can be initialized through bootstrap-loader
mode. To enable the bootstrap loader and establish a desired communication channel, the system programming
instruction (100b) must be loaded into the TAP instruction register using the IR-scan sequence. Once the instruction is
latched in the instruction parallel buffer (IR[2:0]) and is recognized by the TAP controller in the update-IR state, a 3-bit
data shift register is activated as the communication channel for DR-scan sequences. The TAP retains the system pro-
gramming instruction until a new instruction is shifted in or the TAP controller returns to the test-logic-reset state. This
3-bit shift register formed between the TDI and TDO pins is directly interfaced to the 3-bit serial programming buffer
(SPB). The system programming buffer (SPB) contains three bits with the following functions:

e SPB.0—System Programming Enable (SPE). Setting this bit to a 1 denotes that system programming is desired upon
exiting reset. When it is cleared to 0, no system programming is needed. The logic state of SPE is examined by
the reset vector in the utility ROM to determine the program flow after a reset. When SPE = 1, the bootstrap loader
selected by the PSS[1:0] bits is activated to perform a bootstrap-loader function. When SPE = 0, the utility ROM
transfers execution control to the normal user program.

e SPB.2:1—Programming Source Select (PSS[1:0]). These bits allow the host to select programming interface sources.
The PSS bits have no functions when the SPE bit is cleared.

PSS1 PSSO PROGRAMMING SOURCE
0 0 JTAG
0 1 Reserved
1 0 Reserved
1 1 Reserved

The DR-scan sequence is used to configure the SPB bits. The data content of the SPB register is reflected in the ICDF
register and allows read/write access by the CPU. These bits are cleared by power-on reset or test-logic-reset of the
TAP controller.

15.1 JTAG Bootloader Operation

Devices that support a JTAG bootloader have the benefit of using the same status bit handshaking hardware as is used
for in-circuit debugging. When the SPE bit of the system programming buffer (SPB) is set to 1 and JTAG is selected
as the programming source (PSS[1:0] = 00b), the background and active debug mode state machines are disabled.
Once the host loads the debug instruction into the TAP instruction register (IR[2:0]), the 10-bit shift register interface
to ICDB and the status bits become available for host-to-utility ROM bootloader communication. The status bits should
be interpreted as shown in Table 15-1 for JTAG bootloader operation:

Table 15-1. Status Bits for Bootloader Operation

BITS 1:0 STATUS CONDITION
00 Reserved Invalid condition
01 Reserved Invalid condition
10 Loader-Busy Utility ROM loader is busy executing code or processing the current command
11 Loader-Valid Utility ROM loader is supplying valid output data to the host in current shift operation

When the using the JTAG bootloader option (SPE = 1, PSS[1:0] = 00b), the sole purpose of the debug hardware is
to simultaneously transfer the data byte shifted in from the host into the ICDB register and transfer the contents of an
internal holding register (loaded by utility ROM code writes of ICDB) into the shift register for output to the host. This
transfer takes place on the falling edge of TCK at the update-DR state. The debug hardware additionally clears the TXC
bit at this point in the state diagram. The utility ROM loader code controls the status bit output to the host by asserting
TXC = 1 when it has valid data to be shifted out. The utility ROM code can flexibly implement whatever communication
protocol and command set it wishes within the data byte portion of the shifted 10-bit word.

15-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

15.2 Password-Protected Access

Some applications require preventive measures to protect against simple access and viewing of program code
memory. To address this need for code protection, any MAXQ612/MAXQ622 microcontroller equipped with a utility
ROM that permits in-system programming, in-application programming, or in-circuit debugging grants full access to
those utilities only after a password has been supplied. The password is defined as the 16 words of physical program
memory at addresses 0010h to 001Fh of each memory area (system, user loader, user application, see Figure 2-7).
Note that using these memory locations as a password does not exclude their usage for general code space if a unique
password is not needed.

Multiple password lock bits (PWL/PWLS/PWLL) are implemented in the SC register. When a PWL bit is set to 1, a pass-
word is required to access the in-circuit debug and in-system programming utility ROM routines that allow reading
or writing of internal memory. When a PWL is cleared to 0, these utilities are fully accessible through the utility ROM
without password.

The PWL bits default to 1 after a power-on reset. To access the ROM utilities, a correct password is needed; otherwise,
access to the utility ROM utilities is denied. Once the correct password has been supplied by the user, the utility ROM
clears the password lock. The PWLs remain clear until one of the following occurs:

e Power-on reset
or
e Setto 1 by user software

For flash-less devices with ROM program memory, the end user supplies the ROM code, thus the user always knows
the password if needed. It is expected that the password is rarely needed since the utility of memory programming and/
or in-circuit debug to the end user is minimal once the decision has been made to freeze the code in program ROM.

For devices with reprogrammable nonvolatile memory, the password is always known for a fully erased device since
the unprogrammed state of these memories is fixed. Once the memory has been programmed, a password is estab-
lished and can be used for access protection. The utility ROM code denies access to the protected routines when
PWL indicates a locked state.

15.2.1 Entering Passwords
A password can be entered in one of two ways:

e Through the in-system programming interface established by the PSS[1:0] bits when SPE bit is set to 1; the util-
ity ROM bootstrap loader dictates the protocol for entering the password over the specified serial communication
interface.

e Through the TAP interface directly by issuing the unlock password debug mode command. The unlock password
command requires 32 follow-on transfer cycles each containing a byte value to be compared with the program
memory password.

Maxim Integrated 15-3

MAXQ612/MAXQ622 User’s Guide

SECTION 16: MAXQ612/MAXQ622 INSTRUCTION SET SUMMARY

Table 16-1. MAXQ612/MAXQ622 Instruction Set Summary

STATUS
MNEMONIC DESCRIPTION 16-BIT IV'\\l,%LF:)UCTION AFFBE(I;?['ED INC‘?SEC EXCEY%lIJ_TEIgN NOTES
AND src Acc « Acc AND src f001 1010 ssss sssS S, Z Y 1 1
OR src Acc « Acc OR src f010 1010 ssss sSSS S, Z Y 1 1
XOR src Acc « Acc XOR src f011 1010 ssss ssss S, Z Y 1 1
CPL Acc « ~Acc 1000 1010 0001 1010 S, Z Y 1 —
NEG Acc « ~Acc + 1 1000 1010 1001 1010 S, Z Y 1 —
‘é’ SLA Shift Acc left arithmetically 1000 1010 0010 1010 C,S, 2z Y 1 —
g SLA2 Shift Acc left arithmetically twice 1000 1010 0011 1010 C, S Z Y 1 —
E SLA4 Shift Acc left arithmetically four times | 1000 1010 0110 1010 C,S Z Y 1 —
g RL Rotate Acc left (w/o C) 1000 1010 0100 1010 S Y 1 —
5:' RLC Rotate Acc left (through C) 1000 1010 0101 1010 C S Zz Y 1 —
% SRA Shift Acc right arithmetically 1000 1010 1111 1010 CZ Y 1 —
9 SRA2 Shift Acc right arithmetically twice 1000 1010 1110 1010 CZ Y 1 —
SRA4 Srr:fetSAcc right arithmetically four 1000 1010 1011 1010 c.z Y 1 o
SR Shift Acc right (0 — msbit) 1000 1010 1010 1010 C,S Z Y 1 —
RR Rotate Acc right (w/o C) 1000 1010 1100 1010 S Y 1 —
RRC Rotate Acc right (though C) 1000 1010 1101 1010 C S Zz Y 1 —
MOVE C, Acc. C « Acc. 1110 1010 bbbb 1010 C — 1 —
MOVE C, #0 C«0 1101 1010 0000 1010 C — 1 —
MOVE C, #1 Ce 1 1101 1010 0001 1010 C — 1 —
‘2 CPLC C« ~C 1101 1010 0010 1010 C — 1 —
g MOVE Acc., C Acc. « C 1111 1010 bbbb 1010 S,z — 1 —
& | AND Acc. C « C AND Acc. 1001 1010 bbbb 1010 C — 1 —
?5 OR Acc. C « C OR Acc. 1010 1010 bbbb 1010 C — 1 —
E XOR Acc. C « C XOR Acc. 1011 1010 bbbb 1010 C — 1 —
MOVE dst., #1 dst. « 1 1ddd dddd 1bbb 0111 C,SEZ (Note 2) 3
MOVE dst., #0 dst. « 0 1ddd dddd Obbb 0111 C,SEZ (Note 2) 3
MOVE C, src. C « src. fobb 0111 ssss ssss C — 1 —
ADD src Acc « Acc + src f100 1010 ssss ssSS C, S,z 0V Y 1 1
Z | ADDC src Acc « Acc + (src + C) f110 1010 ssss ssss C S, Z 0V Y 1 1
‘st SUB src Acc « Acc — src f101 1010 ssss ssss C,S 7 0V Y 1 1
SUBB src Acc « Acc — (src + C) f111 1010 ssss ssss C S, Z 0V Y 1 1
Maxim Integrated 16-1

MAXQ612/MAXQ622 User’s Guide

Table 16-1. MAXQ612/MAXQ622 Instruction Set Summary (continued)

STATUS
MNEMONIC DESCRIPTION 16-BIT INSTRUCTION BITS AP EXECUTION NOTES
WORD AFFECTED INC/DEC CYCLES
{L/S}JUMP src IP « IP + src or src fO00 1100 ssss ssss — — 2 4
{L/S}JUMP C, src If C=1, IP « (IP + src) or src f010 1100 ssss ssss — — 2 4
{L/S}JUMP NC, src If C=0, IP « (IP + src) or src 110 1100 ssss ssss — — 2 4
{L/S}JUMP Z, src If Z=1, IP « (IP + src) or src f001 1100 ssss ssss — — 2 4
{L/S}JUMP NZ, src If Z=0, IP « (IP + src) or src f101 1100 ssss ssss — — 2 4
{L/S}JUMP E, src If E=1, IP « (IP + src) or src 0011 1100 ssss ssss — — 2 4
{L/S}JUMP NE, src If E=0, IP « (IP + src) or src 0111 1100 ssss ssss — — 2 4
{L/S}JUMP S, src If S=1, IP « (IP + src) or src f100 1100 ssss ssss — — 2 4
I {L/S}DINZ LCIn], src | If --LC[n] <> 0O, IP< (IP + src) or src f10n 1101 ssss ssss — — 2 4
% {L/S}CALL src @++SP « IP+1; IP « (IP+src) or src | f011 1101 ssss ssss — — 2 4,5
Lz> RET IP « @SP-- 1000 1100 0000 1101 — — 2 —
é RET C If C=1, IP « @SP-- 1010 1100 0000 1101 — — 2 —
m |RET NC If C=0, IP « @SP-- 1110 1100 0000 1101 — — 2 —
RET Z If Z=1, IP « @SP-- 1001 1100 0000 1101 — — 2 —
RET NZ If Z=0, IP « @SP-- 1101 1100 0000 1101 — — 2 —
RET S If S=1, IP « @SP-- 1100 1100 0000 1101 — — 2 —
RETI IP « @SP-- ; IPS«11b 1000 1100 1000 1101 — — 2 —
RETIC If C=1, IP « @SP-- ; IPS«11b 1010 1100 1000 1101 — — 2 —
RETI NC If C=0, IP < @SP-- ; IPS11b 1110 1100 1000 1101 — — 2 —
RETI Z If Z=1, IP « @SP-- ; IPS«—11b 1001 1100 1000 1101 — — 2 —
RETI NZ If Z=0, IP « @SP-- : IPS«11b 1101 1100 1000 1101 — — 2 —
RETI S If S=1, IP « @SP-- ; IPS11b 1100 1100 1000 1101 — — 2 —
XCH Swap Acc bytes 1000 1010 1000 1010 S Y 1
E XCHN Swap nibbles in each Acc byte 1000 1010 0111 1010 S Y 1 —
E i, MOVE dst, src dst « src fddd dddd ssss ssss C, S, ZE (Note 6) (Notes 2, 7) 56
o < | PUSH src @++SP « src fO00 1101 ssss ssss — — (Note 2) 5
E POP dst dst « @SP-- 1ddd dddd 0000 1101 C,S ZE — (Note 2) 5
POPI dst dst < @SP-- ; IPS«11b 1ddd dddd 1000 1101 C,S ZE — (Note 2) 5
CMP src E « (Acc = src) f111 1000 ssss ssss E — 1 —
NOP No operation 1101 1010 0011 1010 — — 1 —
Note 1: The active accumulator (Acc) is not allowed as the src in operations where it is the implicit destination.
Note 2: The CPU stalls when code is executed from flash with the destination being an IP register or when the code pointer is
used. This stall requires two execution cycles to complete the instruction.
Note 3: Only module 8 and modules 0 to 5 (when implemented for a given product) are supported by these single-cycle bit opera-
tions. Potentially affects C or E if PSF register is the destination. Potentially affects S and/or Z if AP or APC is the destination.
Note 4: The ‘{L/S}’ prefix is optional.
Note 5: Instructions that attempt to simultaneously push/pop the stack (e.g., PUSH @SP--, PUSH @SPI--, POP @++SP, POPI
@++SP) or modify SP in a conflicting manner (e.g., MOVE SP, @SP--) are invalid.
Note 6: The enabled AP autoincrement or decrement operation occurs for operations when specifying the active accumulator
(Acc) as the source or destination (i.e., MOVE Acc, src; MOVE dst, Acc; MOVE Acc, Acc). Special cases: If ‘MOVE APC,
Acc’ sets the APC.CLR bit, AP is cleared, overriding any autoinc/dec/modulo operation specified for AP. If ‘MOVE AP,
Acc’ causes an autoinc/dec/modulo operation on AP, this overrides the specified data transfer (i.e., Acc is not trans-
ferred to AP).
Note 7: Exception for MOVE instruction, MOVE dp, @cp requires three cycles.
Note 8: The terms Acc and A[AP] can be used interchangeably to denote the active accumulator.
Note 9: Any index represented by or found inside [] brackets is considered variable, but required.
Note 10: The active accumulator (Acc) is not allowed as the dst if A[AP] is specified as the src.
16-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

ADD/ADDC src

Add/Add with Carry

Description:

The ADD instruction sums the active accumulator (Acc or A[AP]) and the specified src data and
stores the result back to the active accumulator. The ADDC instruction additionally includes the
Carry (C) Status Flag in the summation. For the complete list of src specifiers, reference the MOVE

instruction. The PFX[n] register may be used to supply the high byte of data for 8-bit sources.

Status Flags: C, S, Z, OV
ADD
Operation: Acc « Acc + src
Encoding: 15 0
| f100 | 1010 SsSS |
Example(s): ; Acc = 2345h for each example
ADD A[3] ; A[38]=FFOFh
; = Acc =2254h,C=1, Z=0, S=0, OV=0
ADD #0COh ; = Acc =2405h,C=0, Z=0, S=0, OV=0
ADD A[4] ; A[4]=C000h
; = Acc = E345h, C=0, Z=0, S=1, OV=0
ADD A[5] ; A[5]=6789h
; = Acc = 8ACEh, C=0, Z=0, S=1, OV=1
ADDC
Operation: Acc « Acc + C + src
Encoding: 15 0
| f110 | 1010 ssss |
Example(s): ; Acc = 2345h for each example
ADDC A[3] ; A[3] = DCBAh, C=1
; = Acc = 0000h, C=1, Z=1, S=0, OV=0
ADDC @DP[0]-- ; @DP[0] = OOEEh, C=1

Special Notes:

The active accumulator (Acc) is not allowed as the src for these operations.

; = Acc = 2434h, C=0, Z=0, S=0, OV=0

Maxim Integrated

16-3

MAXQ612/MAXQ622 User’s Guide

AND src Logical AND

Description: Performs a logical-AND between the active accumulator (Acc) and the specified src data. For the
complete list of src specifiers, reference the MOVE instruction. The PFX[n] register may be used to
supply the high byte of data for 8-bit sources.

Status Flags: S, Z

Operation: Acc « Acc AND src
Encoding: 15 0
| f001 | 1010 ssss | ssss |
Example(s): ; Acc = 2345h for each example
AND A[3] ; A[3]=0FOFh
; = Acc = 0305h, S=0, Z=0
AND #33h ; — Acc = 0001h
AND #2233h ; generates object code below
; MOVE PFX[0], #22h (smart-prefixing)
; AND #33h
= Acc = 2201h
MOVE PFX[0], #0Fh
AND MO0[8] ; MO[8]=0Fh (assume MOI[8] is an 8-bit register)
. — Acc = 0305h
Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.
AND Acc. Logical AND Carry Flag with Accumulator Bit
Description: Performs a logical-AND between the Carry (C) status flag and a specified bit of the active accumu-

lator (Acc.) and returns the result to the Carry.

Status Flags: C

Operation: C « C AND Acc.
Encoding: 15 0
| 1001 | 1010 bbbb 1010 |
Example(s): ; Acc = 2345h, C=1 at start
AND Acc.0 : Acc.0=1 — C=1
AND Acc.1 : Acc.1=0 — C=0
AND C, Acc.8 : Acc.8=1 — C=0

16-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

{L/S}CALL src

{Long/Short} Call to Subroutine

Description:

Status Flags:
Operation:

Encoding:

Example(s):

Performs a call to the subroutine destination specified by src. The CALL instruction uses an 8-bit
immediate src to perform a relative short call (IP +127/-128 words). The CALL instruction uses a
16-bit immediate src to perform an absolute long CALL to the specified 16-bit address. The PFX[0]
register is used to supply the high byte of a 16-bit immediate address for the absolute long CALL.
Using the optional ‘L’ prefix (i.e., LCALL) will result in an absolute long call and use of the PFX[0]
register. Using the optional ‘'S’ prefix (i.e., SCALL) will attempt to generate a relative short call, but
will be flagged by the assembler if the destination is out or range. Specifying an internal register
src (no matter whether 8-bit or 16-bit) always produces an absolute CALL to a 16-bit address, thus
the ‘L’ and ‘S’ prefixes should not be used. The PFX[n] register value is used to supply the high
address byte when an 8-bit register src is specified.

None

@++SP « IP + 1 PUSH

IP « src Absolute CALL

IP « IP + src Relative CALL

15 0

| fo11 | 1101 SSSS ssss |

CALL label1 ; relative call to label1 (must be within
; IP +127/-128 address range)

CALL label1 : absolute call to label1 = 0120h
; MOVE PFX[0], #01h
; CALL #20h.

CALL DPI[O] ; DP[0] holds 16-bit address of subroutine

CALL MO[0] ; assume MO[0] is an 8-bit register

: absolute call to addr16
; high(addr16)=00h (PFX[0])
; low (addr16)=MO0[0]
MOVE PFX[0], #22h ;
CALL MO[0] ; assume MO[0] is an 8-bit register
; high(addr16)=22h (PFX[0])
: low (addr16)=MO0I[0]
LCALL labeld ; label=0120h and is relative to this instruction
; absolute call is forced by use of ‘L’ prefix
: MOVE PFX[0], #01h

; CALL #20h

SCALL label1 ; relative offset for label1 calculated and used
; if label1 is not relative, assembler will generate an
; error

SCALL #10h ; relative offset of #10h is used directly by the CALL

Maxim Integrated

16-5

MAXQ612/MAXQ622 User’s Guide

CMP src

Compare Accumulator

Description:

Status Flags:

Compare for equality between the active accumulator and the least significant byte of the specified
src. The PFEX[n] register may be used to supply the high byte of data for 8-bit sources.

E

Operation: Acc = src: E « 1
Acc #src: E« 0
Encoding: 15 0
| f111 1000 SSSS | ssss |
Example(s): CMP #45h ; Acc = 0145h, E=0
CMP #145h ; PFX[0] register used
; MOVE PFX[0], #01h (smart-prefixing)
; CMP #45h E=1
CPL Complement Acc
Description: Performs a logical bitwise complement (one’s complement) on the active accumulator (Acc or
A[AP]) and returns the result to the active accumulator.
Status Flags: S, Z
Operation: Acc « ~Acc
Encoding: 15 0
| 1000 1010 0001 1010 |
Example(s): ; Acc = OFFFFh, S=1, Z=0
CPL ; Acc « 0000h, S=0, Z=1
; Acc = 0990h, S=0, Z=
CPL ; Acc « FB6Fh, S=1, Z=0
CPLC Complement Carry Flag
Description: Logically complements the Carry (C) Flag.
Status Flag: C
Operation: C« ~C
Encoding: 15 0
| 1101 | 1010 o010 | 1010 |
Example(s): ;C=0
CPLC ; C 1

{L/S}IDJNZ LC/n], src

Decrement Counter, {Long/Short} Jump Not Zero

Description:

Status Flags:
Operation:

16-6

The DJNZ LCI[n], src instruction performs a conditional branch based upon the associated Loop
Counter (LC[n]) register. The DJNZ LC[n], src instruction decrements the LC[n] loop counter
and branches to the address defined by src if the decremented counter has not reached 0000h.
Program branches can be relative or absolute depending upon the src specifier and may be quali-
fied by using the ‘L’ or ‘'S’ prefixes as documented in the JUMP src opcode.

None

LC[n] « LC[n] -1

LC[n] #0: IP « IP + src (relative) —or— src (absolute)

LC[N] = 0: IP « IP + 1

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Encoding:

Example(s):

15 0
| f10n | 1101 | SSS8 SSSS

MOVE LC[1], #10h ; counter = 10h

Loop:

ADD @DP[O]++ ; add data memory contents to Acc, post-inc DP[0]

DJNZ LC[1], Loop ; 16 times before falling through

{L/S} JUMP src

Unconditional {Long/Short} Jump

Description:

Status Flags:

Operation:

Encoding:

Example(s):

Performs an unconditional jump as determined by the src specifier. The JUMP instruction uses an
8-bit immediate src to perform a relative jump (IP +127/-128 words). The JUMP instruction uses
a 16-bit immediate src to perform an absolute JUMP to the specified 16-bit address. The PFX[0]
register is used to supply the high byte of a 16-bit immediate address for the absolute JUMP. Using
the optional ‘L’ prefix (i.e. LAUMP) will result in an absolute long jump and use of the PFX[0] register.
Using the optional ‘S’ prefix (i.e. SJUMP) will attempt to generate a relative short jump, but will be
flagged by the assembler if the destination is out or range. Specifying an internal register src (no
matter whether 8-bit or 16-bit) always produces an absolute JUMP to a 16-bit address, thus the ‘L’
and ‘S’ prefixes should not be used. The PFX[n] register value is used to supply the high address
byte when an 8-bit register src is specified.

None
IP « src Absolute JUMP
IP « IP + src Relative JUMP
15 0
| f000 | 1100 ssss ssss |
JUMP label1 ; relative jump to label1 (must be within range
: IP +127/-128 words)
JUMP label1 ; absolute jump to label1= 0400h
; MOVE PFX[0], #04h
; JUMP #00h
JUMP DP[0] ; absolute jump to addr16 DP[0]
JUMP MOQ[0] ; assume MO[0] is an 8-bit register
; absolute jump to addr16
; high(addr16)=00h (PFX[0])
; low (addr16)=M0[0]
LJUMP labeld ; label=0120h and is relative to this instruction
; absolute jump is forced by use of ‘L’ prefix
: MOVE PFX[0], #01h
; JUMP #20h
SJUMP labeld ; relative offset for label1 calculated and used
; if label1 is not relative, assembler will generate an
; error
SJUMP #10h ; relative offset of #10h is used directly by the JUMP

Maxim Integrated

16-7

MAXQ612/MAXQ622 User’s Guide

{L/S} JUMP C/{L/S} JUMP NC, src
{L/S} JUMP Z/{L/S} JUMP NZ, src

Conditional {Long/Short} Jump on Status Flag

{L/S} JUMP E/{L/S} JUMP NE, src
{L/S} JUMP S, src

Description: Performs conditional branching based upon the state of a specific processor status flag. JUMP C
results in a branch if the Carry flag is set while JUMP NC branches if the Carry flag is clear. JUMP
Z results in a branch if the Zero flag is set while JUMP NZ branches if the Zero flag is clear. JUMP E
results in a branch if the Equal flag is set while JUMP NE branches if the Equal flag is clear. JUMP
S results in a branch if the Sign flag is set. Program branches can be relative or absolute depending
upon the src specifier and may be qualified by using the ‘L’ or ‘S’ prefixes as documented in the

JUMP src opcode. Special src restrictions apply to JUMP E and JUMP NE.

Status Flags: None

JUMP C
Operation: C=1: IP « IP + src (relative) —or— src (absolute)

C=0: 1P« IP +1
Encoding: 15 0

| f010 | 1100 | SSSS | ssss |
Example(s): JUMP C, label1 ; C=0, branch not taken
JUMP NC
Operation: C=0: IP « IP + src (relative) —or— src (absolute)

C=1:1P « IP +1
Encoding: 15 0

| 010 | 1100 | ssss | ssss |
Example(s): JUMP NC, label1 : C=0, branch taken
JUMP 2
Operation: Z=1:IP « IP + src

Z=0:IP « IP + 1
Encoding: 15 0

| foo1 | 1100 SSSS SSSS
Example(s): JUMP Z, label1 ; Z=1, branch taken
JUMP Nz
Operation: Z=0: IP « IP + src (relative) —or— src (absolute)

Z=1.1P « IP + 1
Encoding: 15 0

| f101 1100 | Ssss | ssss |
Example(s): JUMP NZ, labeld ; Z=1, branch not taken
16-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

JUMP E
Operation: E=1: IP « IP + src (relative) —or— src (absolute)
E=0:IP < IP + 1
Encoding: 15 0
| 0011 | 1100 | sSSs | ssss |
Example(s): JUMP E, labeld ; E=1, branch taken

Special Notes: The src specifier must be immediate data.

JUMP NE
Operation: E=0: IP « IP + src (relative) —or— src (absolute)
E=1: 1P« IP +1
Encoding: 15 0
| 0111 | 1100 | SSS8 | SSSS |
Example(s): JUMP NE, label1 : E=1, branch not taken

Special Notes: The src specifier must be immediate data.

JUMP S
Operation: S=1: IP « IP + src (relative) —or— src (absolute)
S=0:IP < IP + 1
Encoding: 15 0
| f100 | 1100 | ssss | ssss |
Example(s): JUMP S, label1 ; S=0, branch not taken
MOVE dst, src Move Data
Description: Moves data from a specified source (src) to a specified destination (dst). A list of defined source,

destination specifiers is given in the table below. Also, since src can be either 8-bit (byte) or 16-bit
(word) data, the rules governing data transfer are also explained below in the encoding section.

Status Flags: S, Z (if dstis Acc or AP or APC)
C, E (if dstis PSF)
Operation: dst « src

Encoding: 15 0
| fddd | dddd | SSSs SSSS

Maxim Integrated 16-9

MAXQ612/MAXQ622 User’s Guide

Table 16-2. Source Specifier Codes

BIT
src EF\TC":‘;)DING WIDTH DESCRIPTION
f ssssssss 160R 8
#k 0 kkkk kkkk 8 kkkkkkkk = Immediate (Literal) Data
nnnn Selects One of 1st 16 Registers in Module NNN, shere NNN = 0 to 5;
MNIn] 1nnnn ONNN 816 Accesss to 2nc(1)16 Using PFX[niJ , ’
AP 1 0000 1000 8 Accumulator Pointer
APC 10001 1000 8 Accumulator Pointer Control
PSF 10100 1000 8 Processor Status Flag Register
IC 10101 1000 8 Interrupt and Control Register
SC 11000 1000 8 System Control Register
IPRO 11001 1000 8 Interrupt Priority Register Zero
CKCN 11110 1000 8 Clock Control Register
WDCN 11111 1000 8 Watchdog Control Register
Aln] 1 nnnn 1001 8/16 nnnn Selects One of 16 Accumulators
Acc 10000 1010 8/16 Active Accumulator = A[AP]; Update AP per APC
A[AP] 10001 1010 8/16 Active Accumulator = A[AP]; No Change to AP
P 10000 1100 16 Instruction Pointer
@SP-- 10000 1101 16 16-Bit Word @SP, Pop (Postincrement SP)
SP 10001 1101 16 Stack Pointer
IV 10010 1101 16 Interrupt Vector
LC[n] 1011n 1101 16 n Selects One of Two Loop Counter Registers
@SPI-- 11000 1101 16 16-Bit Word @SP, Pop (Postincrement SP), IPS = 11b
@BP[OFFS] 10000 1110 8/16 Data Memory @BP[OFFS]
@BP[OFFS++] 10001 1110 8/16 Data Memory @BP[OFFS]; Postincrement OFFS
@BP[OFFS--] 10010 1110 8/16 Data Memory @BP[OFFS]; Postdecrement OFFS
OFFS 100111110 8 Frame Pointer Offset from Base Pointer (BP)
DPC 10100 1110 16 Data Pointer Control Register
GR 10101 1110 16 General Register
GRL 10110 1110 8 Low Byte of GR Register
BP 10111 1110 16 Frame Pointer Base Pointer (BP)
GRS 11000 1110 16 Byte-Swapped GR Register
GRH 11001 1110 8 High Byte of GR Register
GRXL 11010 1110 16 Sign Extended Low Byte of GR Register
FP 11011 1110 16 Frame Pointer (BP[OFFS])
@DP[n] 10n00 1111 8/16 Data Memory @DP[n]
@DP[n]++ 10n01 1111 8/16 Data Memory @DP[n], Postincrement DP[n]
@DP[n]-- 10n10 1111 8/16 Data Memory @DP[n], Postdecrement DP[n]
DP[n] 10n11 1111 16 n Selects One of Two Data Pointers
@CP 11000 1111 8/16 Code Memory @CP
@CP++ 11001 1111 8/16 Code Memory @CP, Postincrement DP[n]
@CP-- 11010 1111 8/16 Code Memory @CP, Postdecrement DP[n]
CP 11011 1111 16 Code Pointer
16-10 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Table 16-3. Destination Specifier Codes

dst BIT
dst ENCODING 1V(\5"31F;H8 DESCRIPTION
ddd dddd
NUL 111 0110 8/16 Egilrln(;/r'T:f:éggi?;%fgemt:rﬂged As A Bit Bucket to Assist Software with
nnnn Selects One of 1st Eight Registers in Module NNN, where NNN = 0
MNIn] nnn ONNN 8he to 5; A?ccess tg Next 24 Us?ng PF?([n] ’
AP 000 1000 8 Accumulator Pointer
APC 001 1000 8 Accumulator Pointer Control
PSF 100 1000 8 Processor Status Flag Register
IC 101 1000 8 Interrupt and Control Register
Aln] nnn 1001 8/16 nnn Selects One of 1st Eight Accumulators: A[0] to A[7]
Acc 000 1010 8/16 Active Accumulator = A[AP]
PFX[n] nnn 1011 8 nnn Selects One of Eight Prefix Registers
@++SP 000 1101 16 16-Bit Word @SP, Push (predecrement SP)
SP 001 1101 16 Stack Pointer
v 010 1101 16 Interrupt Vector
LC[n] 11n 1101 16 n Selects One of Two Loop Counter Registers
@BP[OFFS] 000 1110 8/16 Data Memory @BP[OFFS]
@BP[++0OFFS] 001 1110 8/16 Data Memory @BP[OFFS]; Preincrement OFFS
@BP[--OFFS] 010 1110 8/16 Data Memory @BP[OFFS]; Predecrement OFFS
OFFS 011 1110 8 Frame Pointer Offset from Base Pointer (BP)
DPC 100 1110 16 Data Pointer Control Register
GR 101 1110 16 General Register
GRL 110 1110 8 Low Byte of GR Register
BP 111 1110 16 Frame Pointer Base Pointer (BP)
@DP[n] n00 1111 8/16 Data Memory @DP[n]
@++DP[n] not1 1111 8/16 Data Memory @DP[n], Preincrement DP[n]
@--DP[n] n10 1111 8/16 Data Memory @DP[n], Predecrement DP[n]
DP[n] nit 1111 16 n Selects One of Two Data Pointers
2-CYCLE DESTINATION ACCESS USING PFX[n] Register (see Special Notes)
SC 000 1000 16 System Control Register
IPRO 001 1000 16 Interrupt Priority Register Zero
CKCN 110 1000 8 Clock Control Register
WDCN 111 1000 8 Watchdog Control Register
Aln] nnn 1001 16 nnn Selects One of 2nd Eight Accumulators A[8] to A[15]
GRH 001 1110 8 High Byte of GR Register
CP 011 1111 16 Code Pointer

Maxim Integrated

16-11

MAXQ612/MAXQ622 User’s Guide

Data Transfer Rules

dst (16-bit) « src (16-bit): dst[15:0] « src[15:0]
dst (8-bit) « src (8-bit): dst[7:0] « src[7:0]
dst (16-bit) « src (8-bit): dst[15:8] « 00h *
dst[7:0] « src[7:0]
dst (8-bit) « src (16-bit): dst[7:0] « src[7:0]

* Note: The PFX[0] register may be used to supply a separate high order data byte for this type of

transfer.
Example(s): MOVE A[0], A[3] : A[0] « A[3]
MOVE DPI[0], #110h ; DP[0] « #0110h (PFX[O] register used)
; MOVE PFX[0], #01h (smart-prefixing)
; MOVE DP[0O], #10h
_ MOVE DP[0], #80h ; DP[0] < #0080h (PFX[0] register not needed)
ﬁ';f::l Proper loading of the PFX[n] registers, when for the purpose of supplying 16-bit immediate data

or accessing 2-cycle destinations, is handled automatically by the assembler and is therefore an
optional step for the user when writing assembly source code. Examples of the automatic PFX[n]
code insertion by the assembler are demonstrated below.

Initial Assembly Code
MOVE DPI[0], #0100h

MOVE A[15], A[7]

MOVE A[8], #3040h

Assembler Output
MOVE PFX[0], #01h
MOVE DP[0], #00h
MOVE PFX[2], anysrc
MOVE A[7], A[7]
MOVE PFX[2], #30h
MOVE A[0], #40h

MOVE Acc., C

Move Carry Flag to Accumulator Bit

Description: Replaces the specified bit of the active accumulator with the Carry bit.
Status Flags: S, Z
Operation: Acc. « C
Encoding: 15 0
| 1111 | 1010 | bbbb 1010
Example(s): ; Acc = 8000h, S=1, Z=0, C=0
MOVE Acc.15, C ; Acc = 0000h, S=0, Z=1

MOVE C, Acc.

Move Accumulator Bit to Carry Flag

Description: Replaces the Carry (C) status flag with the specified active accumulator bit.
Status Flag: C
Operation: C « Acc.
Encoding: 15 0

| 1110 | 1010 bbbb | 1010
Example(s): ; Acc = 01COh, C=0

MOVE C, Acc.8 ; C =1

16-12 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

MOVE C, src. Move Bit to Carry Flag
Description: Replaces the Carry (C) status flag with the specified source bit src..
Status Flag: C
Operation: C « src.
Encoding: 15 0

| fobb | 0111 | SSSS | $SSS |
Example(s): ; MO[O] = FEh; C=1 (assume MO[0Q] is an 8-bit register)

MOVE C, MO0[0].0 ; C=0

MOVE C, #0 Clear Carry Flag
Description: Clears the Carry (C) processor status flag.
StatusFlag: C « 0
Operation: C«0
Encoding: 15 0

| 1101 | 1010 0000 | 1010 |
Example(s): ;C=1

MOVE C, #0 ;C«0

MOVE C, #1 Set Carry Flag
Description: Sets the Carry (C) processor status flag.
Status Flags: C « 1
Operation: C«1
Encoding: 15 0

| 1101 | 1010 0001 | 1010
Example(s): ;C=0

MOVE dst., #0

Clear Bit

Description: Clears the bit specified by dst..
Status Flags: C, E (if dstis PSF)
Operation: dst. « 0
Encoding: 15 0
| 1ddd | dddd | opbbb | o111 |
Example(s): ; MO[O] = FEh
MOVE MO[0].1, #0 ; MO[0] = FCh
MOVE MO[0].7, #0 ; MO[0] = 7Ch
I

Special Notes:

Only system module 8 and periphera

Maxim Integrated

16-13

MAXQ612/MAXQ622 User’s Guide

MOVE dst., #1 Set Bit

Description: Sets the bit specified by dst..
Status Flags: C, E (if dstis PSF)

Operation: dst. « 1
Encoding: 15 0
| 1ddd | dddd | 1bbb | 0111 |
Example(s): ; MO[O] = 00h
MOVE MO[0].1, #1 ; MO[O] = 02h
MOVE MO[0].7, #1 ; MO[O] = 82h

Special Notes: Only system module 8 and peripheral modules (0 to 5) are supported by MOVE dst., #1.

NEG Negate Accumulator

Description: Performs a negation (two’s complement) of the active accumulator and returns the result back to the
active accumulator.

Status Flags: S, Z

Operation: Acc « ~Acc + 1
Encoding: 15 0
| 1000 | 1010 1001 1010 |
Example(s): ; Acc = OFEEDh, S=1, Z=0
NEG ; Acc = 0113h, S=0, Z=0
OR src Logical OR

Description: Performs a logical-OR between the active accumulator (Acc or A[AP]) and the specified src data.
For the complete list of src specifiers, reference the MOVE instruction. The PFX[n] register may be
used to supply the high byte of data for 8-bit sources.

Status Flags: S, Z

Operation: Acc « Acc OR src
Encoding: 15 0
| f010 | 1010 | ssss | ssss |
Example(s): ; Acc = 2345h for each example
OR A[3] ; A[3]= OFOFh — Acc = 2F4Fh
OR #1133h ; MOVE PFEX[0], #11h (smart-prefixing)

; OR #33h — Acc = 3377h
Special Notes: The active accumulator (Acc) is not allowed as the src for this operation.

16-14 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

OR Acc. Logical OR Carry Flag with Accumulator Bit

Description: Performs a logical-OR between the Carry (C) status flag and a specified bit of the active accumulator
(Acc.) and returns the result to the Carry.

Status Flags: C
Operation: C « C OR Acc.

Encoding: 15 0
| 1010 | 1010 | bbbb 1010
Example(s): OR Acc.1 ; Acc.1=0 — C=0
OR Acc.2 ; Acc.2=1 — C=1
POP dst Pop Word from the Stack

Description: Pops a single word from the stack (@SP) to the specified dst and decreases the stack depth (incre-
ments the stack pointer SP).

Status Flags: S, Z (if dst = Acc or AP or APC)
C, E (if dst = PSF)

Operation: dst « @SP--

Encoding: 15 0
| 1ddd | dddd | o000 | 1101 |
Example(s): POP GR ; GR « 1234h
POP @DP[0] ; @DP[0] « 76h (WBS0=0)
; @DP[0] « 0876h (WBS0=1)
Stack Data:
xxxxh
xxxxh « SP (after POP @DP[0])
0876h « SP (after POP GR)
1234h « SP (initial)
xxxxh
POPI dst Pop Word from the Stack Enable Interrupts

Description: Pops a single word from the stack (@SP) to the specified dst and decreases the stack depth (incre-
ments the stack pointer SP). Additionally, POPI returns the interrupt logic to a state in which it can
acknowledge additional interrupts.

Status Flags: S, Z (if dst = Acc or AP or APC)

C, E (if dst = PSF)

Operation: dst « @SP--

IPS « 11b

Encoding: 15 0
| 1ddd | dddd 1000 1101

Example(s): See POP

Maxim Integrated 16-15

MAXQ612/MAXQ622 User’s Guide

PUSH src Push Word to the Stack

Description: Increases the stack depth (decments the stack pointer SP) and pushes a single word specified by
src to the stack (@SP).

Status Flags: None
Operation: SP « ++SP

Encoding: 15 0
| f000 | 1101 ssss | ssss |
Example(s): PUSH GR ; GR=0F3Fh
PUSH #40h
Stack Data:
xXxxxh
XXxxh « SP (initial)

OF3Fh « SP (after PUSH GR)

0040h <« SP (after PUSH #40h)
xxxxh

RET Return from Subroutine

Description: RET pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decreases the stack
depth (increments the stack pointer SP). The modified SP is saved as the new stack pointer (SP).

Status Flags: None
Operation: IP « @SP--

Encoding: 15 0
| 1000 | 1100 0000 1101

Example(s): RET

Code Execution:

Addr (IP) Opcode
0311h
0312h RET

— 0103h

Stack Data:

Xxxxh
Xxxxh « SP (after RET)

0103h « SP (before RET)
xxxxh
xxxxh

16-16 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

RET C/RET NC
RET Z/RET Nz Conditional Return on Status Flag
RET S

Description: Performs conditional return (RET) based upon the state of a specific processor status flag. RET C
returns if the Carry flag is set while RET NC returns if the Carry flag is clear. RET Z returns if the Zero
flag is set while RET NZ returns if the Zero flag is clear. RET S returns if the Sign flag is set. See RET
for additional information on the return operation.

Status Flags: None

RET C

Operation: C=1: IP « @SP--
C=0: P« IP + 1

Encoding: 15 0

| 1010 | 1100 | oooo | 1101 |
Example(s): RETC ; C=1, return (RET) is performed
RET NC

Operation: C=0: IP « @SP--
C=1:IP « IP +1

Encoding: 15 0

| 1110 | 1100 | oooo | 1101 |
Example(s): RET NC ; C=1, return (RET) does not occur
RET Z

Operation: 7=1: IP « @SP--
Z=0:IP « IP + 1

Encoding: 15 0

| 1001 | 1100 | 0000 1101 |
Example(s): RET Z ; Z=0, return (RET) does not occur
RET NZ

Operation: 7=0: IP « @SP--
Z=1:1P < IP +1

Encoding: 15 0
| 1101 | 1100 | 0000 1101 |
Example(s): RET NZ ; Z=0, return (RET) is performed

Maxim Integrated 16-17

MAXQ612/MAXQ622 User’s Guide

RET S

Operation: S=1: |P « @SP--
S=0:IP « IP + 1

Encoding: 15 0
| 1100 | 1100 | oooo | 1101 |
Example(s): RETS ; S=0, return (RET) does not occur
RETI Return from Interrupt

Description: RETI pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decrements the
stack pointer (SP). Additionally, RETI returns the interrupt logic to a state in which it can acknowl-
edge additional interrupts.

Status Flags: None

Operation: IP « @SP--
IPS « 11b
Encoding: 15 0

| 1000 | 1100 1000 1101

Example(s): see RET

RETI C/RETI NC
RETI Z/RETI NZ Conditional Return from Interrupt on Status Flag
RETI S

Description: Performs conditional return from interrupt (RETI) based upon the state of a specific processor status
flag. RETI C returns if the Carry flag is set while RETI NC returns if the Carry flag is clear. RETI Z
returns if the Zero flag is set while RETI NZ returns if the Zero flag is clear. RETI S returns if the Sign
flag is set. See RETI for additional information on the return from interrupt operation.

Status Flags: None

RETIC

Description: RETI pops a single word from the stack (@SP) into the Instruction Pointer (IP) and decrements the
stack pointer (SP). Additionally, RETI returns the interrupt logic to a state in which it can acknowl-
edge additional interrupts.

Status Flags: None
Operation: C=1: IP « @SP--

IPS < 11b
C=0: 1P« IP +1
Encoding: 15 0

| 1010 | 1100 1000 | 1101 |

Example(s): RETIC ; C=1, return from interrupt (RETI) is performed.

16-18 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

RETI NC
Operation: C=0: IP « @SP--
IPS « 11b
C=1.IP « IP +1
Encoding: 15 0
| 1110 | 1100 1000 | 1101 |
Example(s): RETINC ; C=1, return from interrupt (RETI) does not occur
RETI Z
Operation: 7=1: IP « @SP--
IPS « 11b
Z=0: IP < IP + 1
Encoding: 15 0
| 1001 | 1100 1000 1101
Example(s): RETI Z ; Z=0, return from interrupt (RETI) does not occur
RETI NZ
Operation: 7=0: IP « @SP--
IPS « 11b
Z=1: 1P «IP + 1
Encoding: 15 0
| 1101 | 1100 1000 1101
Example(s): RETI NZ ; Z=0, return from interrupt (RETI) is performed
RETI S
Operation: S=1: |IP « @SP--
IPS « 11b
S=0: IP « IP + 1
Encoding: 15 0
| 1100 [1100 1000 | 1101 |
Example(s): RETIS ; S=0, return from interrupt (RETI) does not occur

Maxim Integrated

16-19

MAXQ612/MAXQ622 User’s Guide

RL/RLC

Rotate Left Accumulator Carry Flag Exclusive/Inclusive

Description:

Status Flags:

Rotates the active accumulator left by a single bit position. The RL instruction circulates the msbit of
the accumulator (bit 15) back to the Isbit (bit 0) while the RLC instruction includes the Carry (C) flag
in the circular left shift.

C (for RLC only), S, Z (for RLC only)

RL Operation:

15 Active Accumulator (Acc) 0

A A Ly

Acc.[15:1] « Acc.[14:0]; Acc.0 « Acc.15

Encoding: 15 0
1000 | 1010 | 0100 | 1010 |
Example(s): ; Acc = A345h, S=1, Z=0
RL ; Acc = 468Bh, S=0, Z=0
RL ; Acc = 8D16h, S=1, Z=0
RLC 15 Active Accumulator (Acc) 0 Carry Flag
Operation:
P LITTTTTTTTTTTTT T el e
Acc.[15:1] « Acc.[14:0]; Acc.0 « C; C « Acc.15
Encoding: 15 0
1000 | 1010 | o101 | 1010 |
Example(s): ; Acc = A345h, C=1, S=1, Z=0
RLC ; Acc = 468Bh, C=1, S=0, Z=0
RLC ; Acc = 8D17h, C=0, S=1, Z=0
16-20 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

RR/RRC Rotate Right Accumulator Carry Flag Exclusive/Inclusive

Description: Rotates the active accumulator right by a single bit position. The RR instruction circulates the Isbit
of the accumulator (bit 0) back to the msbit (bit 15) while the RRC instruction includes the Carry (C)
flag in the circular right shift.

Status Flags: C (for RRC only), S, Z (for RRC only)

RR Operation: 15 Active Accumulator (Acc) 0

illEEEEEEEEEEEEN

Acc.[14:0] « Acc.[15:1]; Acc.15 « Acc.0

Encoding: 15 0
| 1000 | 1010 | 1100 | 1010 |
Example(s): ; Acc = A345h, S=1, Z=0
RR ; Acc = D1A2h, S=1, Z=0
RR ; Acc = 68D1h, S=0, Z=0
RRC Operation: 15 Active Accumulator (Acc) 0 Carry Flag

pLL I T TTT T TTTTTTTTI=f]

Acc.[14:0] « Acc.[15:1]; Acc.15 « C; C « Acc.0

Encoding: 15 0
| 1000 | 1010 | 1101 | 1010 |
Example(s): ; Acc = A345h, C=1, S=1, Z=0
RRC ; Acc = D1A2h, C=1, S=1, Z=0
RRC ; Acc = E8D1h, C=0, S=1, Z=0

Maxim Integrated 16-21

MAXQ612/MAXQ622 User’s Guide

SLA/SLA2/SLA4 Shift Accumulator Left Arithmetically One, Two, or Four Times

Description:

Shifts the active accumulator left once, twice, or four times respectively for SLA, SLA2, and SLA4.
For each shift iteration, a 0 is shifted into the Isbit and the msbit is shifted into the Carry (C) flag. For
signed data, this shifting process effectively retains the sign orientation of the data to the point at
which overflow/underflow would occur.

Status Flags: C, S, Z
SLA Carry Flag 15 Active Accumulator (Acc) 0
Operation: [Je[[[[[T [T T T T T TTTT Jefo]

C « Acc.15; Acc.[15:1] « Acc.[14:0]; Acc.0 <« 0
Encoding: 15 0

| 1000 | 1010 | o010 | 1010 |
Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA ; Acc = C68Ah, C=1, S=1, Z=0

SLA ; Acc = 8D14h, C=1, S=1, Z=0
SLA2) Carry Flag 15 Active Accumulator (Acc) 0
Operation: [e[[[[T [T T T T T T TTTT Jefo]

C « Acc.14; Acc.[15:2] « Acc.[13:0]; Acc.[1:0] « O
Encoding: 15 0

| 1000 | 1010 | o011 | 1010 |
Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA2 ; Acc = 8D14h, C=1, S=1, Z=0
SLA4 Carry Flag 15 Active Accumulator (Acc) 0
Operation: [Je-[[[[[T [T T T T T TTTT Jfo]

C « Acc.12; Acc.[15:4] « Acc.[11:0]; Acc.[3:0] « O
Encoding: 15 0

| 1000 | 1010 | o110 | 1010 |
Example(s): ; Acc = E345h, C=0, S=1, Z=0

SLA4 ; Acc = 3450h, C=0, S=0, Z=0
16-22 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SR Shift Accumulator Right
SRA/SRA2/SRA4 Shift Accumulator Right Arithmetically One, Two, or Four Times

Description: Shifts the active accumulator right once for the SR, SRA instructions and 2 or 4 times respectively
for the SRA2, SRA4 instructions. The SR instruction shifts a 0 into the accumulator msbit while the
SRA, SRA2, and SRAA4 instructions effectively shift a copy of the current msbit into the accumulator,
thereby preserving any sign orientation. For each shift iteration, the accumulator Isbit is shifted into
the Carry (C) flag.

Status Flags: C, S (changes for SR only), Z

SR Operation: Active Accumulator (Acc) 0 Carry Flag

@%IIIIIIIIIIIIIIIIIAD%

Acc.15 « 0; Acc.[14:0] « Acc.[15:1]; C « Acc.0

Encoding: 15 0
| 1000 | 1010 | 1010 | 1010 |
Example(s): ; Acc = A345h, C=1, S=1, Z=0
SR ; Acc = 51A2h, C=1, S=0, Z=0
SR ; Acc = 28D1h, C=0, S=0, Z=0
SRA Operation: Active Accumulator (Acc) 0 Carry Flag

|i|| O O O O B A I B

Acc.[14:0] « Acc.[15:1]
Acc.15 « Acc.15

C « Acc.0
Encoding: 15 0
| 1000 | 1010 1111 1010 |
Example(s): ; Acc = 0003h, C=0, Z=0
SRA ; Acc = 0001h, C=1, Z=0
SRA ; Acc = 0000h, C=1, Z=1
SRA2 Operation: Active Accumulator (Acc) 0 Carry Flag

|i|| N O O O A I B

Acc.[13:0] « Acc.[15:2]
Acc.[15:14] « Acc.15

C « Acc.1
Encoding: 15 0
| 1000 | 1010 1110 1010 |
Example(s): ; Acc = 0003h, C=0, Z=0
SRA2 . Acc = 0000h, C=1, Z=1

Maxim Integrated 16-23

MAXQ612/MAXQ622 User’s Guide

SRA4 Operation: 15 Active Accumulator (Acc) 0 Carry Flag

0 A O O I O

Acc.[11:0] « Acc.[15:4]
Acc.[15:12] « Acc.15

C « Acc.3
Encoding: 15 0
| 1000 | 1010 1011 1010 |
Example(s): ; Acc = 9878h, C=0, Z=0
SRA4 ; Acc = F987h, C=1, Z=0
SRA4 ; Acc = FF98h, C=0, Z=0
SUB/SUBB src Subtract/Subtract with Borrow

Description: Subtracts the specified src from the active accumulator (Acc) and returns the result back to the active
accumulator. The SUBB additionally subtracts the borrow (Carry Flag) which may have resulted from
previous subtraction. For the complete list of src specifiers, reference the MOVE instruction. The
PFX[n] register may be used to supply the high byte of data for 8-bit sources.

Status Flags: C, S, Z, OV

SuB
Operation: Acc « Acc - src
Encoding: 15 0
| f101 | 1010 | SSSS Ssss |
Example(s): ; Acc = 2345h to start, A[1]= 1250h
SUB A[1] ; Acc = 10F5h, C=0, S=0, Z=0, OV=0
SUB A[1] ; Acc = FEABh, C=1, S=1, Z=0, OV=0
SUB A[2] ; A[2] =7FFFh
; = Acc = 7EA6h; C=0, S=0, Z=0, OV=1
SUBB
Operation: Acc « Acc — (src + C)
Encoding: 15 0
| f111 | 1010 | $88S ssss |
Example(s): ; Acc = 2345h, A[1]= 1250h, C=1
SUBB A[1] ; Acc = 10F4h, C=0, S=0, Z=0
SUBB A[1] ; Acc = FEA4h, C=1, S=1, Z=0

Special Notes: The active accumulator (Acc) is not allowed as the src for these operations.

16-24 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

XCH Exchange Accumulator Bytes
Description: Exchanges the upper and lower bytes of the active accumulator.
Status Flags: S
Operation: Acc.[15:8] « Acc.[7:0]

Acc.[7:0] « Acc.[15:8]
Encoding: 15 0

1000 | 1010 | 1000 1010

Example(s): ; Acc = 2345h

XCH ; Acc = 4523h
XCHN Exchange Accumulator Nibbles
Description: Exchanges the upper and lower nibbles in the active accumulator byte(s).
Status Flags: S
Operation: Acc.[7:4] « Acc.[3:0]

Acc.[3:0] « Acc.[7:4]

Acc.[15:12] « Acc.[11:8]

Acc.[11:8] « Acc.[15:12]
Encoding: 15 0

| 1000 | 1010 | o111 | 1010

Example(s): ; Acc = 2345h

XCHN ; Acc = 3254h
XOR src Logical XOR
Description: Performs a logical-XOR between the active accumulator (Acc or A[AP]) and the specified src data.

Status Flags:
Operation:

Encoding:

Example(s):

Special Notes:

For the complete list of src specifiers, reference the MOVE instruction. The PFX[n] register may be
used to supply the high byte of data for 8-bit sources.

S, Z
Acc « Acc XOR src

15 0
f011 | 1010 | Ssss | Ssss |
: Acc = 2345h
XOR A[2] ; A[2]=0F0Fh; Acc « 2C4Ah

The active accumulator (Acc) is not allowed as the src for this operation.

Maxim Integrated

16-25

MAXQ612/MAXQ622 User’s Guide

XOR Acc. Logical XOR Carry Flag with Accumulator Bit

Description: Performs a logical-XOR between the Carry (C) status flag and a specified bit of the active accumu-
lator (Acc.) and returns the result to the Carry.

Status Flags: C
Operation: C « C XOR Acc.

Encoding: 15 0
| 1011 | 1010 bbbb 1010 |
Example(s): ; Acc = 2345h, C=1 at start
XOR Acc.1 ; Acc.1=0 — C=1
XOR Acc.2 : Acc.2=1 — C=0

16-26 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

SECTION 17: UTILITY ROM

This section contains the following information:

17.1 In-Application Programming FUNCHIONSo 17-3
17131 UROM_flashWIite 17-3
17.1.2 UROM_flashErasePage 17-3
17.1.3 UROM_flashEraseAll 17-3

17.2 Data Transfer FUNCHIONS. 17-4
17.2.1 UROM_MOoVEDPO . . o 17-4
17.2.2 UROM_MOVEDPOINGC. . . . o 17-4
17.2.3 UROM_MOoVEDPOAEC o o 17-4
17.2.4 UROM_MOVED P . 17-5
17.2.5 UROM_MOoVEDPIING. . . o 17-5
17.2.6 UROM_MOVEDPIAEC o 17-5
17.2.7 UROM _mMoOVER P . 17-6
17.2.8 UROM_MOVEFPING 17-6
17.2.9 UROM_MOVEFPAEC o 17-6
17.210 UROM_MOVEBP 17-7
17.2.11 UROM _copyBUer 17-7

17.3 Miscellaneous FUNCHIONS 17-7
17.3.1 UROM_StOPMOdE.o 17-7

17.4 ROM Example 1: Calling A Utility ROM Function Directly. 17-8

17.5 ROM Example 2: Calling A Utility ROM Function Indirectly, 17-9

LIST OF TABLES

Table 17-1. Functions for MAXQ612/MAXQ622 Utility ROM Version 1.00 i, 17-2

Maxim Integrated 171

MAXQ612/MAXQ622 User’s Guide

SECTION 17: UTILITY ROM

The MAXQ612/MAXQ622 utility ROM includes routines that provide the following functions to application software.
e In-application programming routines for flash memory (program, erase, mass erase)

e Single word/byte copy and buffer copy routines for use with lookup tables
e Entry into stop mode
¢ Ability to check a value against a stored secret

To provide backwards compatibility among different versions of the utility ROM, a function address table is included
that contains the entry points for all user-callable functions. With this table, user code can determine the entry point for
a given function as follows:

1) Read the location of the function address table from address 0800Dh in the utility ROM.

2) The entry points for each function listed below are contained in the function address table, one word per function,
in the order given by their function numbers.

For example, the entry point for the UROM_flashEraseAll function can be determined by the following procedure:
1) functionTable = dataMemory[0800Dh]
2) flashWriteEntry = dataMemory[functionTable + 0]

Table 17-1. Functions for MAXQ612/MAXQ622 Utility ROM Version 1.00

ENTRY
INDEX FUNCTION NAME POINT SUMMARY
0 UROM_flashWrite 802Fh Programs a single word of flash memory.
1 UROM_flashErasePage 8031h Erases (programs to FFFFh) a 512-word sector of flash memory.
2 UROM_flashEraseAll 802Bh Erases (programs to FFFFh) all flash memory.
3 UROM_moveDPO 8013h Reads a byte/word at DP[O].
4 UROM_moveDPQinc 8015h Reads a byte/word at DP[0], then increments DP[0].
5 UROM_moveDP0Odec 8017h Reads a byte/word at DP[0], then decrements DP[0].
6 UROM_moveDP1 8019h Reads a byte/word at DP[1].
7 UROM_moveDP1inc 801Bh Reads a byte/word at DP[1], then increments DP[0].
8 UROM_moveDP1dec 801Dh Reads a byte/word at DP[1], then decrements DP[0].
9 UROM_moveFP 801Fh Reads a byte/word at BP[OFFS].
10 UROM_moveFPinc 8021h Reads a byte/word at BP[OFFS], then increments OFFS.
11 UROM_moveFPdec 8023h Reads a byte/word at BP[OFFS], then decrements OFFS.
12 UROM_copyBuffer 8025h Copies LC[0] values (up to 255) from DP[0] to BP[OFFS].
13 UROM_stopMode 8027h Enters stop mode.

It is also possible to call utility ROM functions directly, using the entry points given above. Standard include files are
provided for this purpose with the MAXQ development toolset. This method calls functions more quickly, but the appli-
cation might need to be recompiled in order to run properly with a different version of the utility ROM.

17-2 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

17.1 In-Application Programming Functions
17.1.1 UROM_flashWrite

Function: UROM_flashWrite

Summary: Programs a single word of flash memory.

Inputs: A[O]: Word address in program flash memory to write to.
A[1]: Word value to write to flash memory.

Outputs: Carry: Set on error and cleared on success.

Destroys: PSF, LC[1]

Notes:

e This function uses one stack level to save and restore values.
e |f the watchdog reset function is active, it should be disabled before calling this function.

e [f the flash location has already been programmed to a non-FFFF value, this function returns with an error (carry set).
To reprogram a flash location, it must first be erased by calling UROM_flashErasePage or UROM_flashEraseAll.

17.1.2 UROM_flashErasePage

Function: UROM_flashErasePage

Summary: Erases (programs to OFFFFh) a 256-word page of flash memory.

Inputs: A[O]: Word address located in the page to be erased. (The page number is the high byte of A[0].)
Outputs: Carry: Set on error and cleared on success.

Destroys: LC[1], A[O]

Notes:

e [f the watchdog reset function is active, it should be disabled before calling this function.

e When calling this function from flash, care should be taken that the return address is not in the page that is being
erased.

17.1.3 UROM _flashEraseAll

Function: UROM_flashEraseAll

Summary: Erases (programs to OFFFFh) all locations in flash memory.
Inputs: None.

Outputs: Carry: Set on error and cleared on success.

Destroys: LC[1], A[O]

Notes:

e |f the watchdog reset function is active, it should be disabled before calling this function.

e This function can only be called by code running from the RAM. Attempting to call this function while running from
the flash results in an error.

Maxim Integrated 17-3

MAXQ612/MAXQ622 User’s Guide

17.2 Data Transfer Functions
17.2.1 UROM_moveDPO

Function: UROM_moveDPO

Summary: Reads the byte/word value pointed to by DP[0].
Inputs: DP[0]: Address to read from.

Outputs: GR: Data byte/word read.

Destroys: None.

Notes:

e Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

e The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointer before reading the byte/word value.

17.2.2 UROM_moveDP0Oinc

Function: UROM_moveDPOinc
Summary: Reads the byte/word value pointed to by DP[0], then increments DP[0].
Inputs: DP[0]: Address to read from.
Outputs: GR: Data byte/word read.
DP[0] is incremented.
Destroys: None.
Notes:

e Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

e The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointer before reading the byte/word value.

17.2.3 UROM_moveDP0Odec

Function: UROM_moveDP0Odec
Summary: Reads the byte/word value pointed to by DP[0], then decrements DP[Q].
Inputs: DP[0]: Address to read from.
Outputs: GR: Data byte/word read.
DP[0] is decremented.
Destroys: None.
Notes:

e Before calling this function, DPC should be set appropriately to configure DP[0] for byte or word mode.

e The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointer before reading the byte/word value.

17-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

17.2.4 UROM_moveDP1

Function: UROM_moveDP1

Summary: Reads the byte/word value pointed to by DP[1].
Inputs: DP[1]: Address to read from.

Outputs: GR: Data byte/word read.

Destroys: None.

Notes:

e Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

e The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointer before reading the byte/word value.

17.2.5 UROM_moveDP1inc

Function: UROM_moveDP1inc
Summary: Reads the byte/word value pointed to by DP[1], then increments DP[1].
Inputs: DP[1]: Address to read from.
. GR: Data byte/word read.
Outputs: DP[1] is incremented.
Destroys: None.
Notes:

e Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

e The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointer before reading the byte/word value.

17.2.6 UROM_moveDP1dec

Function: UROM_moveDP1dec
Summary: Reads the byte/word value pointed to by DP[1], then decrements DP[1].
Inputs: DP[1]: Address to read from.
Outputs: G: Data byte/word read.
DP[1] is decremented.
Destroys: None.
Notes:

e Before calling this function, DPC should be set appropriately to configure DP[1] for byte or word mode.

e The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointer before reading the byte/word value.

Maxim Integrated 17-5

MAXQ612/MAXQ622 User’s Guide

17.2.7 UROM_moveFP

Function: UROM_moveFP

Summary: Lookup table access using BP[OFFS].

Inputs: BP[OFFS]: Location to read from in data space.
Outputs: GR: Data byte/word read.

Destroys: None.

Notes:

e Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

e The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointer before reading the byte/word value.

17.2.8 UROM_moveFPinc

Function: UROM_moveFPinc
Summary: Lookup table access using BP[OFFS], then increments OFFS.
Inputs: BP[OFFS]: Location to read from in data space.
Outputs: GR: Data byte/word read.
OFFS is incremented.
Destroys: None.
Notes:

e Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

e The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointer before reading the byte/word value.

17.2.9 UROM_moveFPdec

Function: UROM_moveFPdec
Summary: Lookup table access using BP[OFFS], then decrements OFFS.
Inputs: BP[OFFS]: Location to read from in data space.
Outputs: GR: Data byte/word read.
OFFS is decremented.
Destroys: None.
Notes:

e Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

e The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointer before reading the byte/word value.

17-6 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

17.2.10 UROM_moveBP

Function:
Summary:
Inputs:
Outputs:
Destroys:

Notes:

e Before calling this function, DPC should be set appropriately to configure BP[OFFS] for byte or word mode.

UROM_moveBP

Reads the byte/word value pointed to by BP[OFFS].

BP[OFFS]: Address to read from.
GR: Data byte/word read.
None.

e The address passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointer before reading the byte/word value.

17.2.11 UROM_copyBuffer

Function:
Summary:
Inputs:

Outputs:

Destroys:

Notes:

UROM_copyBuffer

Copies LC[0] bytes/words (up to 255) from DP[0] to BP[OFFS].

DP[O]: Address to copy from.

BP[OFFS]: Address to copy to.

LC[0]: Number of bytes or words to copy.
OFFS is incremented by LC[O].

DPI[0] is incremented by LC[O0].

LC[O].

e Before calling this function, DPC should be set appropriately to configure DP[0] and BP[OFFS] for byte or word
mode. Both DP[0] and BP[OFFS] should be configured to the same mode (byte or word) for correct buffer copying.

e The addresses passed to this function should be based on the data memory mapping for the utility ROM, as shown
in Figure 2-4 and Figure 2-5. When a byte mode address is used, CDAO must be set appropriately to access either
the upper or lower half of program flash/ROM memory.

e This function automatically refreshes the data pointers before reading the byte/word values.

17.3 Miscellaneous Functions
17.3.1 UROM_stopMode

Function:
Summary:
Inputs:
Outputs:
Destroys:

Maxim Integrated

UROM_stopMode
Enters stop mode.
None.
None.
None.

17-7

MAXQ612/MAXQ622 User’s Guide

17.4 ROM Example 1: Calling A Utility ROM Function Directly

This example shows the direct addressing method for calling utility functions, using the function moveDP1inc to read
a static string from code space. Note the equate UROM_MOVEDP1INC.

UROM MOVEDP1INC EQU 087DBh

Text:
DB “Hello World!”,O0 ; Define a string in code space.
PRI i i i iR i i i i iR i i i i i i i i i
;; Function: PrintText
;; Description: Prints the string stored at the “Text” label.
;; Returns: N/A
;; Destroys: ACC, DP[1], DP[O], and GR.
;; Notes: This function assumes that DP[0] is set to word mode,
HY DP[1] is in byte mode, and the device has 16-bit accumulators.
PrintText:
move DP[1], #Text ; Point to the string to display.
move ACC, DP[1] ; “Text” 1is a word address and we need a
sla ; byte address, so shift left 1 bit.
or #08000h ; Code space is mapped to 8000h when running
move DP[1], ACC ; from the ROM, so the address must be masked.

PrintText Loop:
call UROM MOVEDPIINC ; Fetch the byte from code space.
move ACC, GR
jump Z, PrintText Done ; Reached the null terminator.
call PrintChar ; Call a routine to output the char in ACC
jump PrintText Loop ; Process the next byte.
PrintText Done:

ret

17-8 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

17.5 ROM Example 2: Calling A Utility ROM Function Indirectly

The second example shows the indirect addressing method (lookup table) for calling utility functions. We use the
same function (UROM_MoveDP1Inc) to read our static string, but this time we must figure out the address we want
dynamically. Note the inserted code where we before had a direct call to the function. Also note that the function index
of moveDP1inc is 7.

Text:
DB “Hello World!”,O0 ; Define a string in code space.
;; Function: PrintText
;; Description: Prints the string stored at the “Text” label.
;; Returns: N/A
;; Destroys: ACC, DP[1], DP[O], and GR.
;7 Notes: This function assumes that DP[0] is set to word mode,
HE DP[1] is in byte mode, and the device has 16-bit
¥ accumulators.
PrintText:
move DP[1], #Text ; Point to the string to display.
move ACC, DP[1] ; “Text” is a word address and we need a
sla ; byte address, so shift left 1 bit.
or #08000h ; Code space is mapped to 8000h when running
move DP[1], ACC ; from the ROM, so the address must be masked.

PrintText Loop:

’

; Fetch the byte from code space.
move DP[0], #0800Dh ; This is where the address of the table is stored.
move ACC, @DP[O] ; Get the location of the function table.
add #7 ; Add the index to the moveDPlinc function.
move DP[0], ACC ; Point to where the address of moveDPl is stored.
move ACC, @DP[OQ] ; Retrieve the address of the function.
call ACC ; Execute the function.
move ACC, GR
jump Z, PrintText Done ; Reached the null terminator.
call PrintChar ; Call a routine to output the char in ACC
jump PrintText Loop ; Process the next byte.

PrintText Done:

ret

Maxim Integrated

17-9

MAXQ612/MAXQ622 User’s Guide

APPENDIX 1: DATA POINTER USAGE EXAMPLES

IMPORTANT : MAXQ20 family pointer mode (DPC.WBS) bits and source select

(DPC.SDPS) bits should not be changed simultaneously.
Writing immediate values to DPC (e.g. MOVE DPC, #4)
without knowing the previous contents can implicitly
setup a situation where the mode and select bits are
changed simultaneously. A function call with
foo:

push DPC

move DPC, #4

pop DPC

ret
will, in many cases, setup a situation where mode and
select bits are changed simultaneously. If you are
ever in doubt about the contents of DPC then read the
contents, change only the desired bits using a bit mask and
write the modified value back to DPC.

NOTE: Compilers already manage DPC correctly. These examples are intended to benefit
people that write assembly language routines, modules or applications.

NOTE: All data pointers are implemented with 17 bits, with sliding windows that expose
the upper 16 bits when the corresponding DPC.WBS is set to 1 (word mode) and expose
the lower 16 bits if the corresponding DPC.WBS is cleared to 0 (byte mode).

MAXQ 17-bit Internal Pointer Representation (DP[0], DP[1], BP[OFFS]

[, CP where applicablel]):

internal bit position: 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
word mode window: ++ ++ ++ ++ ++ ++ ++ ++ ++ H+ +H+ A+ H+

byte mode window: ++ ++ ++ ++ ++ ++ ++ ++ ++ H+ ++ A+ H+ F+ HE

If you need to preserve a pointer across an interrupt service routine

or a function call and you modify the pointer’s mode then you must
preserve all 17 bits of any pointer used. The most basic form of this

operation looks like (DP[0] example)

foo:

push DPC ; preserve DPC

move DPC, #0h ; save the

push DP[0] ; byte mode version of DP[0]
move DPC, #4h ; save the

push DP[0] ; word mode version of DP[0]

’

Maxim Integrated A1-1

MAXQ612/MAXQ622 User’s Guide

; execute function code here

move DPC, #4 ; restore the

pop DP[0] ; word mode version of DP[O0]

move DPC, #0 ; restore the

pop DP[0] ; byte mode version of DP[0]

pop DPC ; restore DPC

ret ; or reti ;

HINT: If your application is written entirely in assembly code, you can
avoid the extra work required to save and restore all 17 bits of
each pointer by generating your own set of programming guidelines.
For example, 1if you dedicate DP[0] to always be used in byte mode
and dedicate DP[1l] to always be used in word mode (you have to be
sure that the DPC.WBS bits corresponding to these registers are
never changed after they are initialized) then you can simply
push/pop these registers once for any function call. The above

code can be simplified to (DP[0] example)

foo2:

push DP[0]

; execute function code here

pop DP[O]

ret ; or reti

However, if you are mixing C code with assembly code you are not
free to setup such guideines and will be forced to use the

register usage rules dictated by your C compiler.

Pointer Activation

All MAXQ pointer reads require pointer activation before the correct
data can be read. Pointer writes do not require activation. There are
a number of way to activate a pointer.

1) Write the DPC.SDPS bits directly.

move DPC, #81h ; activate DP[1]

2) Write an address to the pointer.

move DP[1], #1234h

3) Recirculate the contents of a pointer.

move DP[1], DP[1]

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

Pointer deactivation

Any time a pointer is activated another is deactivated.

1) Writing addresses to two pointers.

move DP[0], #1234h ; activates pointer DP[O0]

move DP[1], #4567h ; pointer DP[0] deactivated, activates pointer DP[1]
2) Auto-Incrementing Pointers (buffer access).

BadLoop:

; DP[0]++ activates DP[0] after the data is read from memory
; (activation through address change) however ++DP[1]

; increments DP[1l] (activation through address change)

; leaving DP[0] deactivated at the top of the next loop.
move @++DP[1], @DP[O]++

djnz LC[0], BadLoop

The correct usage looks like:

GoodLoop:

move DP[0], DP[O] ; recirculate DP[0] to activate it

move @++DP[1], @DP[O]++

djnz LC[O0], GoodLoop

Predefined masks and constants

#define DPO_WORD MODE OR MASK 04h

#define DPO_BYTE MODE AND MASK ~04h

#define DP1 WORD MODE OR MASK 08h

#define DP1 BYTE MODE AND MASK ~08h

#define BP WORD MODE OR MASK 10h

#define BP BYTE MODE AND MASK ~10h

#define DPO_SELECT 00h

#define DP1 SELECT 0Olh

#define BP SELECT 02h
*k****k*****:*k****k****k****k*****k****k****k***************************************
Example 1, Basic Single Pointer Configuration (selecting DP[1l] as the
active source pointer)

Assumptions: We know the contents of DPC. DPC contains #l1ch

(Word mode: DP[Q0], DP[1], BP[Offs], DP[0] is selected)

R R S S e b i S I b S I S e 2 b I b b S I S e S I b b b S b S b Sb b S b b S b S b Sb I S b b b b S I S b db S b b b Sb e S I b b Sb S 2b 2b b Sb 4 4
move DPC, #BP WORD MODE OR MASK|BP_WORD MODE OR MASK

; change DP[1l] to byte mode by setting DPC.3 to O

move DPC, #BP WORD MODE OR MASK|BP WORD MODE OR MASK|DP1 SELECT

; select DP[1l] as the active source pointer by setting

; DPC.1:DPC.0 to #1

Maxim Integrated A1-3

MAXQ612/MAXQ622 User’s Guide

move ACC, @DP[1l] ; DP[1l] is now properly configured properly to read

R I e I b b dh S b S b Sb I S b b b b S b Sh S Sb b 2b b b Sb b 2 b Sb I db b 2b S b S b Sh b SR b b S b S e 2 b 2b I db S b 2 b Sb b 2b I b S 2b S S Sb I Sb I 2b i 4
Example la, Incorrect Basic Single Pointer configuration

Assumptions: Same as Example 1

KRR R AR AR A A A A R A AR A AR A A A A A A AR AR AR A A A AR AR AR A A A AR AR A KR A AR AR AR A AR AR AR AR AR R AR AR AR AR kKK
move DPC, #BP WORD MODE OR MASK|BP WORD MODE OR MASK|DPl SELECT

; *WRONG*. Attempt to change mode and select DP[1l] in a

; single instruction

move ACC, @DP[1l] ; DP[1l] is *NOT* properly configured properly to read

R I e I R e I I I I I I S I S e S I b I b S I S e S I b I b I I S I S e b I R I I S I S e A b b b b S b b I SR b I b S 2h S 2 Ih I Sh 3 b 4
Example 2, Basic Single Pointer Configuration with address assignment just
prior to pointer read.

Assumptions: We know the contents of DPC. DPC contains #lch

(Word mode: DP[O], DP[1], BP[Offs], DP[0] is selected)

KA A A AR AR A A A A A A A A A A A A A A A A A A AR A A A A A A A A KA A A A A AR AR A AR A A A A AR A A A A A A A A A A Ak A kA A vk kA ko k%
move DPC, #BP WORD MODE OR MASK|BP WORD MODE OR MASK

; change DP[1l] to byte mode by setting DPC.3 to 0

move DP[1], #1234h ; writing an address to a pointer register selects that
; pointer as the active source.

move ACC, @DP[1] ; DP[1l] is now properly configured properly to read

A A AR AR A A A A A AR A AR A A A AR A A A A AR A A A AR AR AR A A A AR AR A A A A A A A A A Ak Ak A Ak Ak Ak Ak Ak hk ko kkx
Example 2a, Incorrect Basic Single Pointer Configuration with address
assignment just prior to pointer read.

Assumptions: We know the contents of DPC. DPC contains #lch

(Word mode: DP[0], DP[1], BP[Offs], DP[0] is selected)

R I S b b b S b S b Sb b S b b S b S b Sh b Sb b 2b b b Sb b 2 b Sb b db b 2b S b S b Sb b Sb b b S b S e 2 I Ib b db S b S S Sb b 2b I b S 2b S S Sb I Sb I 2b i 4
move DP[1], #1234h ; *WRONG* writing an address to a pointer register before
; setting the mode will result in an incorrect

; address after the pointer mode is changed.

move DPC, #BP WORD MODE OR MASK|BP WORD MODE OR MASK

; *WRONG* writing the DPC register after selecting a

; pointer can de-select the active source pointer

move ACC, @DP[1] ; DP[1l] is *NOT* properly configured properly to read

R I I I I I I R I S I I S I S e b I R I b S S e S b S b b R S I S e b b SR I I S I S e b I b b b S b b I b b I R b 2 S 2 Sh I Sb 3 b 4
Example 3, Basic Single Pointer Configuration

Assumptions: We DO NOT know the contents of DPC.

R I S b I b S b S b S I S b b b b S b Sh I Sb b b b b Sb b S b Sb b db b 2b S b S I Sh b Sb S b S b Sb e S I db b b S b 2b S Sb I 2b S b S 2b S b 2b I Sb I 2b 4
move ACC, DPC ; get the current DPC value

and #DP1 BYTE MODE AND MASK

; change DP[1l] to byte mode by setting DPC.3 to O

move DPC, ACC ; write the new mode value

A1-4 Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

move DP[1], DP[1] ; select DP[1l] as the active source pointer by

; writing to the pointer register

move ACC, @DP[1] ; DP[1l] is now properly configured properly to read

KA K A A A A AR A A A A A A A A A A AR A A A A A A A AR AR A A A A A AR A KR A A I AR AR AR A AR AR AR AR AN A A AR A A A A AR A AR A x k%
Example 4, Basic Single Pointer Configuration in a function call.
Assumptions: We DO NOT know the contents of DPC. DPC needs to be preserved
across the call. DP[1] can be destroyed.

KA KA AR A A A A A A AR A A A AR A A AR A AR A AR AR A A A A A A A A A A Ak A A kA kA Ak Ak Ak hk kA Ak hk kA hkhk kA kA kkkhkxx
food:

push DPC ; save the existing DPC wvalue

move ACC, DPC ; get the current DPC value

and #DP1 BYTE MODE AND MASK

; change DP[1l] to byte mode by setting DPC.3 to O

move DPC, ACC ; write the new mode value

move DP[1], DP[1] ; select DP[1l] as the active source pointer by

; writing to the pointer register

move ACC, @DP[1l] ; DP[1l] is now properly configured properly to read

;... perform other operations here

pop DPC ; restore the existing DPC value.

ret ;

R R I S e i I b S I S e b I b S b S b S e S b b b S b S b b S b b b b S e b I SR I b S R S I S b db b b b b S I S I b S Sh b 2b S b Sb 4 4
Example 5, Basic Single Pointer Configuration in a function call.
Assumptions: We DO NOT know the contents of DPC. DPC needs to be preserved
across the call. DP[1] must also be preserved.

KA KR AR A A A A A A A A A A A A A AR A A A A A A A AR A A A A A A A A A AR A A A A A A A AR AR A AR AR AR AN A A A A A A A A A A A Ak Ak k%
foo5:

push DPC ; save the existing DPC value

; in this case we need to save DP[1l] in word and byte modes to save all

; 17 bits

move DP[1], DP[1] ; activate DP[1l] for push (read) operation

move ACC, DPC ; get the current DPC value

or #DP1 WORD MODE OR MASK

; change DP[1l] to word mode by setting DPC.3 to 1

move DPC, ACC ; write the new mode value

push DP[1] ; save word mode bits

and #DP1 BYTE MODE AND MASK

; change DP[1] to byte mode by clearing DPC.3 to 0

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

move DPC, ACC ; write the new mode value
push DP[1l] ; save byte mode bits
move DP[1], DP[1l] ; select DP[1l] as the active source pointer by

; writing to the pointer register

move ACC, @DP[1] ; DP[1l] is now properly configured properly to read

;... perform other operations here

pop DP[1] ; pop byte mode bits

move ACC, DPC ; get the current DPC value

or #DP1 WORD MODE OR MASK

; change DP[1] to word mode by setting DPC.3 to 1

move DPC, ACC ; write the new mode value

pop DP[1] ; pop word mode bits

pop DPC ; restore the existing DPC wvalue.

ret ;

R b Sh b b b b b b b b b b b b b b b 2 2 2 S S db 2 dh dh Sh S Ih Sb b b b b b b b b b b b b 2 2 2 2 g dh 4b db db db b b b b b b b b b b b b b b b 2 g 4
Example 6, Basic Multiple Pointer Configuration with address assignment
just prior to pointer read.

Assumptions: We know the contents of DPC. DPC contains #1lch

(Word mode: DP[0], DP[1l], BP[Offs], DP[0] is selected)

R b I i b b b b I I b I I I I I I I e e I b b b b b b b b b b b b b b I I I I I I I I I b b b b b b b b b b b b b b b b b b I b b b 4
move DPC, #BP WORD MODE OR MASK|BP WORD MODE OR MASK

; change DP[1] to byte mode by setting DPC.3 to O

move DP[1], #1234h ; writing an address to a pointer register selects that
; pointer as the active source.

move ACC, @DP[1l] ; DP[1l] is now properly configured properly to read

move DP[0], #5678h ; writing an address to a pointer register selects that
; pointer as the active source.

move ACC, @DP[0] ; DP[0O] is now properly configured properly to read

R R R S R R RS R SR R R SRS R R R R I R I R I I I I I R b I b I R I b S 2 b I Sh I b 1
Example 6a, Basic Multiple Pointer Configuration with address assignment
just prior to pointer read.

Assumptions: We know the contents of DPC. DPC contains #1lch

(Word mode: DP[0], DP[1], BP[Offs], DP[0] is selected)

R b b I b S b b b b S I b b I I I b b b e b b I b b b b b I b b b b b b b b b b b I b b 2 I b I I b b db ab b ab b ah b b b b b b b b b b b b b b 4
move DPC, #BP WORD MODE OR MASK|BP WORD MODE OR MASK

; change DP[1l] to byte mode by setting DPC.3 to O

move DP[1], #1234h ; writing an address to a pointer register selects that
; pointer as the active source.

move DP[0], #5678h ; writing an address to a pointer register selects that

A1-6

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

; pointer as the active source.

move ACC, @DP[1l] ; *WRONG* DP[1l] is *NOT* properly configured properly
move ACC, @DP[0] ; DP[0] is now properly configured properly to read
END

All of the single pointer examples can be extended to multiple pointer
versions. It is assumed that those operations can be extrapolated from
the given examples.

Conclusions:

- pointer mode and pointer selection/activation need to be preformed in
separate instructions.

- pointer mode has to be set before writing an address to a pointer
register.

- pointer activation can be performed by direct writes to the DPC.SDPS
bits, by writing an address to a pointer register, by recirculating the
contents of a pointer register or by using auto-inc (++) or auto-dec
(--) pointer operations.

- If a pointer is used (in the context of the global application, not
the local assembler module) in both byte and word modes, then all 17-bits

of a pointer should be saved and restored.

Maxim Integrated

A1-7

MAXQ612/MAXQ622 User’s Guide

INDEX
clock 12C nanopower ring oscillator

2-23, 2-25, 3-18, 3-19, 3-20,
6-2,6-3, 7-2, 7-4, 7-8, 7-9,
8-2, 8-4, 8-5, 8-6, 8-10, 9-2,
9-4, 9-6, 9-7, 9-8, 9-9, 9-10,
9-11, 10-2, 10-3, 10-4, 10-5,
10-6, 10-7, 10-8, 11-2, 11-3,
11-4, 11-6, 11-7, 11-8, 11-9,
11-10, 11-11, 11-12, 12-2,
13-2, 14-10, 14-11

clock cycle
2-4,2-7, 2-25, 2-26, 2-29,
2-31,7-2,11-8, 11-9

D

debug
2-6, 2-21, 2-22, 2-23, 2-32,
4-9, 4-10, 13-2, 13-3, 13-4,
13-5, 13-6, 14-2, 14-3, 14-4,
14-5, 14-6, 14-7, 14-8, 14-9,
14-10, 14-11, 14-12, 14-13,
15-2, 15-3

debugger
14-2

debugging
2-20, 14-2, 15-2, 15-3

divide by 8
3-20, 9-8

divide by 12

F

fall time
11-7

flash
2-6, 2-7, 2-8, 2-15, 2-19,
2-20, 2-21, 2-27, 4-9, 4-10,
4-12, 14-2, 15-2, 15-3, 16-2,
17-2,17-3, 17-4, 17-5, 17-6,
17-7

GPIO
12-3

Maxim Integrated

2-3,11-2, 11-3, 11-4, 11-
5,11-6, 11-7, 11-8, 11-9,
11-10, 11-11, 11-12, 11-13,
11-14, 11-15
I2C interface
11-2
instruction set
1-1, 2-4, 2-5, 3-3, 16-1, 16-2
IR
2-27,6-2, 8-2, 8-4, 8-5, 8-6,
8-10, 8-11, 8-12, 13-2, 13-3,
13-4, 13-5, 13-6, 14-2, 14-3,
14-7, 15-2
IR timer
2-27, 8-2, 8-4, 8-5, 8-6,
8-11, 8-12

J

JTAG
2-7,2-22,6-2, 6-3, 13-2,
13-4, 13-6, 14-2, 14-3,
14-12, 15-2

M

MAXQ
1-1,2-4, 2-5, 2-23, 7-2, 11-7,
12-2,17-2, A1-1, A1-2

memory
1-1,2-4, 2-5, 2-6, 2-7, 2-8,
2-9, 2-12, 2-14, 2-15, 2-16,
2-17, 2-18, 2-19, 2-20, 2-21,
2-22, 2-23, 2-26, 2-29, 3-3,
3-16, 3-17, 4-4, 14-2, 14-5,
14-6, 14-7, 14-8, 14-9,
14-10, 14-11, 14-12, 15-2,
15-3, 16-7, 17-2, 17-3, 17-4,
17-5,17-6, 17-7

memory management unit (MMU)
2-3, 2-7

2-29, 2-30
nondebug
14-3, 14-6, 14-10

peripheral register
1-1, 2-3, 2-4, 2-5, 8-10, 9-10,
10-6, 11-8, 12-4, 14-2
PMM
2-24, 14-10
PMME
2-25, 2-27, 2-31, 2-32, 3-20,
4-3, 4-12, 9-8, 10-4
power-management mode
2-25, 2-27, 2-29, 2-31, 2-32,
3-20, 4-12, 9-2, 9-8, 10-4,
14-10

R

RAM
2-16, 2-18, 2-19, 2-20, 17-3
receiver
9-2, 9-4, 9-10, 11-2, 11-4,
11-6, 11-7, 11-9, 11-10,
11-11, 12-3
regulator
2-30, 2-32
RISC
1-1
ROM

6KB
2-8

utility ROM
2-6, 2-7, 2-8, 2-9, 2-10,
2-11, 2-12, 2-14, 2-16,
2-18, 2-21, 2-22, 2-29,
2-30, 2-31, 2-32, 4-6, 4-8,
4-9, 4-10, 14-2, 14-6,
14-7, 14-8, 14-9, 14-11,
14-12, 14-13, 15-2, 15-3,
17-2, 17-4,17-5, 17-6,
17-7

MAXQ612/MAXQ622 User’s Guide

INDEX (continued)

S

SIE
12-3
SPI

1-2, 2-3, 2-31, 2-32, 6-2, 6-3,

10-2, 10-3, 10-4, 10-5, 10-6,
10-7, 10-8, 16-2, 16-10
SPI interface
10-2
SRAM
2-7, 2-8, 2-30, 3-15, 12-3
6KB

2-7,2-8
T

TAP
4-3, 4-9, 6-2, 13-2, 13-3,
13-4, 13-5, 13-6, 14-2, 14-3,
14-6, 14-7, 14-11, 14-12,
14-13, 15-2, 15-3
test access port
4-9,13-2
timer
1-2, 2-4, 2-23, 2-25, 2-26,
2-27, 2-29, 2-31, 2-32, 3-18,
4-13, 6-2, 7-2, 7-4, 7-5, 7-6,
7-7,7-8,7-9, 8-2, 8-4, 8-5,
8-6, 8-11, 8-12, 11-7, 11-8,
11-12, 14-7, 14-10
IR timer
2-27, 8-2, 8-4, 8-5, 8-6,
8-11, 8-12
timer BO
2-27
timer/counter type B
7-2
wake-up timer
2-23, 2-25, 2-26, 2-29,
2-32
watchdog timer
2-29, 3-18, 3-19, 4-13,
4-14,14-7
transmitter
9-2, 11-2, 11-4, 11-6, 11-7,
11-9, 11-10, 11-13

U

USART
1-2, 2-3, 2-31, 2-32, 6-2, 9-2,
9-4,9-7, 9-8,9-9, 9-10

USB
1-2,12-2, 12-3, 12-4, 12-5,
12-6, 12-7, 12-8, 12-11,
12-13, 12-14, 12-15, 12-16,
12-17

USB SIE
12-2,12-3, 12-5

utility ROM
2-10, 2-11, 4-6, 4-8, 4-9,
4-10, 14-2, 14-6, 14-7, 14-8,
14-9, 14-11, 14-12, 14-13,
15-2, 15-3, 17-2, 17-4, 17-5,
17-6,17-7

\'

voltage monitor
2-32

w

watchdog
2-4, 2-26, 2-30, 2-31, 3-18,
3-20, 4-13, 4-14, 14-7,
16-10, 16-11, 17-3
watchdog timer
3-2, 3-18, 3-19, 4-13, 14-7

Maxim Integrated

MAXQ612/MAXQ622 User’s Guide

REVISION HISTORY

REVISION | REVISION | SECTION PAGES
NUMBER DATE NUMBER DESCRIPTION CHANGED
0 6/10 — Initial release —

Changed USBCFG bits 2:1 from SOFO and BACTO to reserved in
Section 12.4.3: USB Configuration Register (USBCFG); added a note 196 12.7
12 about the self-clearing mechanism for USBIEN and EPIEN bits to 1'2_8 '
Section 12.4.4: USB Interrupt Enable Register (USBIEN) and Section
1 7110 12.4.6: Endpoint Interrupt Enable Register (EPIEN,).
Added two bullet points to Section 14.3.5: Debug Mode Special
14 Considerations to explain how to debug UAPP/ULDR and note that the 14-11
stack plug-in should be disabled.
5 Updated reference to connect HFXOUT to GND in Section 2.7.2 (was .05
“leave HFXOUT unconnected”).
5 013 2 Corrected references of IPV register to IVP register 2-27, 2-28
5 Changed PWCN register bits 15:10 from Reserved to PFWARNCN[1:0], 5.3 5.13
CKRY, CTM, CTMS, and FRCVDD; added full descriptions (Table 5-2) ’
9 Corrected reference of “2:1” to “1:2” for SCON register bits 6:5 9-10
maxim
integrated.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000
© 2013 Maxim Integrated Products, Inc.

R-1

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

	TABLE OF CONTENTS
	SECTION 1: Overview
	SECTION 2: Architecture
	2.1 Instruction Decoding
	2.2 Register Space
	2.3 Memory Organization
	2.3.1 Program Memory
	2.3.2 Utility ROM
	2.3.3 Data Memory
	2.3.4 Stack Memory

	2.4 Memory Management Unit
	2.5 Memory Mapping
	2.5.1 Memory Mapping Into Data Space
	2.5.2 Memory Mapping into Code Space
	2.5.3 Memory Mapping Rules
	2.5.4 Code Examples

	2.6 Memory Protection
	2.6.1 Rules for System Software
	2.6.2 Privilege Exception Interrupt
	2.6.3 Memory Access Protection Impact on Data Pointers (and Code Pointer)
	2.6.4 Debugging
	2.6.5 Enabling Memory Protection
	2.6.6 Reset Procedure and Setup of Memory Protection
	2.6.7 Loader Access Control
	2.6.8 Disabling MAXQ612/MAXQ622-Specific Memory Access Features

	2.7 Clock Generation
	2.7.1 External Clock (Crystal/Resonator)
	2.7.2 External Clock (Direct Input)
	2.7.3 Internal System Clock Generation

	2.8 Wake-Up Timer
	2.8.1 Using the Wake-Up Timer to Exit Stop Mode

	2.9 Interrupts
	2.9.1 Servicing Interrupts
	2.9.2 Interrupt System Operation
	2.9.3 Synchronous vs. Asynchronous Interrupt Sources
	2.9.4 Interrupt Prioritization by Software
	2.9.5 Interrupt Exception Window

	2.10 Operating Modes
	2.11 Reset Mode
	2.11.1 Power-On/Power-Fail Reset
	2.11.2 External Reset
	2.11.3 Watchdog Timer Reset
	2.11.4 Internal System Reset

	2.12 Power-Management Mode
	2.12.1 Switchback

	2.13 Stop Mode

	SECTION 3: Programming
	3.1 Addressing Modes
	3.2 Prefix Operations
	3.3 Reading and Writing Registers
	3.3.1 Loading an 8-Bit Register with an Immediate Value
	3.3.2 Loading a 16-Bit Register with a 16-Bit Immediate Value
	3.3.3 Moving Values Between Registers of the Same Size
	3.3.4 Moving Values Between Registers of Different Sizes
	3.3.5 8-Bit Destination ← Low Byte (16-Bit Source)
	3.3.6 8-Bit Destination ← High Byte (16-Bit Source)
	3.3.7 16-Bit Destination ← Concatenation (8-Bit Source, 8-Bit Source)
	3.3.8 Low (16-Bit Destination) ← 8-Bit Source
	3.3.9 High (16-Bit Destination) ← 8-Bit Source

	3.4 Reading and Writing Register Bits
	3.5 Using the Arithmetic and Logic Unit
	3.5.1 Selecting the Active Accumulator
	3.5.2 Enabling Autoincrement and Autodecrement
	3.5.3 ALU Operations Using the Active Accumulator and a Source
	3.5.4 ALU Operations Using Only the Active Accumulator
	3.5.5 ALU Bit Operations Using Only the Active Accumulator
	3.5.6 Example: Adding Two 4-Byte Numbers Using Autoincrement

	3.6 Processor Status Flag Operations
	3.6.1 Sign Flag
	3.6.2 Zero Flag
	3.6.3 Equals Flag
	3.6.4 Carry Flag
	3.6.5 Overflow Flag

	3.7 Controlling Program Flow
	3.7.1 Obtaining the Next Execution Address
	3.7.2 Unconditional jumps
	3.7.3 Conditional Jumps
	3.7.4 Calling Subroutines
	3.7.5 Loop Operations
	3.7.6 Conditional Returns
	3.7.7 Conditional Return from Interrupt

	3.8 Accessing the Stack
	3.9 Accessing Data Memory
	3.9.1 Word/Byte Access Mode
	3.9.2 Data Pointer Activation

	3.10 Using the Watchdog Timer

	SECTION 4: System Register Description
	4.1 System Register Descriptions

	SECTION 5: Peripheral Register Modules
	5.1 Peripheral Register Bit Descriptions

	SECTION 6: General-Purpose I/O Module
	6.1 Port Pin Register Descriptions
	6.1.1 Port Pin Example 1: Driving Outputs on Port 0
	6.1.2 Port Pin Example 2: Receiving Inputs on Port 1

	6.2 External Interrupt Register Descriptions

	SECTION 7: Timer/Counter Type B
	7.1 Timer B
	7.1.1 Timer B Mode: Autoreload Mode
	7.1.2 Timer B Mode: Capture Mode
	7.1.3 Timer B Mode: Up/Down Autoreload Mode
	7.1.4 Timer B Mode: Clock Output Mode
	7.1.5 Timer B Mode: PWM Output Function
	7.1.5.1 Timer B Mode: Up-Counting PWM Output Mode
	7.1.5.2 Timer B Mode: Up/Down-Count PWM Output Mode

	7.1.6 Timer B Input Clock

	7.2 Timer/Counter B Peripheral Registers
	7.2.1 Timer B Control Register (TBCN)
	7.2.2 Timer B Value Register (TBV)
	7.2.3 Timer B Capture/Reload Value Register (TBR)
	7.2.4 Timer B Compare Register (TBC)

	SECTION 8: IR Timer
	8.1 Carrier Generation Module
	8.2 IR Transmission
	8.3 IR Transmit—Independent External Carrier and Modulator Outputs
	8.4 IR Receive
	8.5 Carrier Burst-Count Mode
	8.6 IRV Stand-Alone Count Mode
	8.7 IR Timer Peripheral Registers
	8.7.1 IR Control Register (IRCN)
	8.7.2 IR Control Register B (IRCNB)
	8.7.3 IR Value Register (IRV)
	8.7.4 IR Carrier Register (IRCA)
	8.7.5 IR Modulator Time Register (IRMT)

	SECTION 9: Serial I/O Module
	9.1 USART Modes
	9.1.1 USART Mode 0
	9.1.2 USART Mode 1
	9.1.3 USART Mode 2
	9.1.4 USART Mode 3

	9.2 Baud-Rate Generation
	9.2.1 Mode 0 Baud Rate
	9.2.2 Mode 2 Baud Rate
	9.2.3 Mode 1 or 3 Baud Rate
	9.2.4 Baud-Clock Generator

	9.3 Framing Error Detection
	9.4 USART Peripheral Registers
	9.4.1 Serial Control Register (SCON)
	9.4.2 Serial Port Mode Register (SMD)
	9.4.3 Serial Port Data Buffer Register (SBUF)
	9.4.4 Serial Port Phase Register (PR)

	SECTION 10: Serial Peripheral Interface (SPI) Module
	10.1 SPI Transfer Formats
	10.2 SPI Slave Select
	10.3 SPI Character Lengths
	10.4 SPI Transfer Baud Rates
	10.5 SPI System Errors
	10.5.1 Mode Fault
	10.5.2 Receive Overrun
	10.5.3 Write Collision While Busy

	10.6 SPI Master Operation
	10.7 SPI Slave Operation
	10.8 SPI Peripheral Registers
	10.8.1 SPI Control Register (SPICNn)
	10.8.2 SPI Configuration Register (SPICFn)
	10.8.3 SPI Clock Register (SPICKn)
	10.8.4 SPI Data Buffer Register (SPIBn)

	SECTION 11: I2C Interface
	11.1 I2C Mode of Operation
	11.1.1 Master-Transmitter

	11.1.2 Master-Receiver
	11.1.3 Slave-Transmitter
	11.1.4 Slave-Receiver

	11.2 I2C Clock Generation
	11.3 I2C Controller Reset
	11.4 I2C Peripheral Register Descriptions
	11.4.1 I2C Control Register (I2CCN)
	11.4.2 I2C Status Register (I2CST)
	11.4.3 I2C Data Buffer Register (I2CBUF)
	11.4.4 I2C Interrupt Enable Register (I2CIE)
	11.4.5 I2C Clock Control Register (I2CCK)
	11.4.6 I2C Timeout Register (I2CTO)
	11.4.7 I2C Slave Address Register (I2CSLA)

	11.5 I2C Examples
	11.5.1 I2C Example: Master Mode, Transmit
	11.5.2 I2C Example: Master Mode, Receive
	11.5.3 I2C Example: Slave Mode, Receive
	11.5.4 I2C Example: Slave Mode, Transmit

	SECTION 12: Universal Serial Bus (USB) Interface
	12.1 USB SIE Endpoint Description
	12.2 USB SIE Features
	12.3 USB Peripheral Register Descriptions
	12.3.1 USB Register Address Register
	12.3.2 USB Data Register (UDATA)

	12.4 USB SIE Internal Register Descriptions
	12.4.1 Function Address Register (FNADDR)
	12.4.2 USB Control Register (USBCN)
	12.4.3 USB Configuration Register (USBCFG)
	12.4.4 USB Interrupt Enable Register (USBIEN)
	12.4.5 USB Interrupt Register (USBINT)
	12.4.6 Endpoint Interrupt Enable Register (EPIEN)
	12.4.7 Endpoint Interrupt Register (EPINT)
	12.4.8 Endpoint Stall Register (EPSTL)
	12.4.9 Endpoint NAK Register (EPNAK)
	12.4.10 Endpoint Clear Data Toggle Register (EPCTG)
	12.4.11 Endpoint 0 Byte Count Register (EP0BC)
	12.4.12 Endpoint 1 OUT Byte Count Register (EP1BC)
	12.4.13 Endpoint 2 IN Byte Count Register (EP2BC)
	12.4.14 Endpoint 3 IN Byte Count Register (EP3BC)
	12.4.15 Endpoint 0 Buffer Register (EP0BUF)
	12.4.16 Endpoint 1 Buffer Register (EP1BUF)
	12.4.17 Endpoint 2 Buffer Register (EP2BUF)
	12.4.18 Endpoint 3 Buffer Register (EP3BUF)
	12.4.19 Setup Data Buffer Register (SUDBUF)

	12.5 USB Examples
	12.5.1 USB Example 1: Reading from an Internal USB Register (EPINT)
	12.5.2 USB Example 2: Writing to an Internal USB Register (EP2BC)

	SECTION 13: Test Access Port (TAP)
	13.1 TAP Controller
	13.2 TAP State Control
	13.2.1 Test-Logic-Reset
	13.2.2 Run-Test-Idle
	13.2.3 IR-Scan Sequence
	13.2.4 DR-Scan Sequence

	13.3 Communication Through TAP
	13.3.1 TAP Communication Examples—IR-Scan and DR-Scan

	SECTION 14: In-Circuit Debug Mode
	14.1 Background Mode Operation
	14.2 Breakpoint Registers
	14.2.1 Breakpoint n Register (BPn, n = 0 to 3)
	14.2.2 Breakpoint 4 Register (BP4)
	14.2.3 Breakpoint 5 Register (BP5)
	14.2.4 Using Breakpoints

	14.3 Debug Mode
	14.3.1 Debug Mode Commands
	14.3.2 Read Register Map Command Host-Utility ROM Interaction
	14.3.3 Single-Step Operation (Trace)
	14.3.4 Return
	14.3.5 Debug Mode Special Considerations

	14.4 In-Circuit Debug Peripheral Registers
	14.4.1 In Circuit Debug Temp 0/1 Register (ICDT0/ICDT1)
	14.4.2 In-Circuit Debug Control Register (ICDC)
	14.4.3 In-Circuit Debug Flag Register (ICDF)
	14.4.4 In-Circuit Debug Buffer Register (ICDB)
	14.4.5 In-Circuit Debug Data Register (ICDD)
	14.4.6 In-Circuit Debug Address Register (ICDA)

	SECTION 15: In-System Programming (JTAG)
	15.1 JTAG Bootloader Operation
	15.2 Password-Protected Access
	15.2.1 Entering Passwords

	SECTION 16: MAXQ612/MAXQ622 Instruction Set Summary
	SECTION 17: Utility ROM
	17.1 In-Application Programming Functions
	17.1.1 UROM_flashWrite
	17.1.2 UROM_flashErasePage
	17.1.3 UROM_flashEraseAll

	17.2 Data Transfer Functions
	17.2.1 UROM_moveDP0
	17.2.2 UROM_moveDP0inc
	17.2.3 UROM_moveDP0dec
	17.2.4 UROM_moveDP1
	17.2.5 UROM_moveDP1inc
	17.2.6 UROM_moveDP1dec
	17.2.7 UROM_moveFP
	17.2.8 UROM_moveFPinc
	17.2.9 UROM_moveFPdec
	17.2.10 UROM_moveBP
	17.2.11 UROM_copyBuffer

	17.3 Miscellaneous Functions
	17.3.1 UROM_stopMode

	17.4 ROM Example 1: Calling A Utility ROM Function Directly
	17.5 ROM Example 2: Calling A Utility ROM Function Indirectly

	APPENDIX 1: Data Pointer Usage Examples
	INDEX
	REVISION HISTORY

