

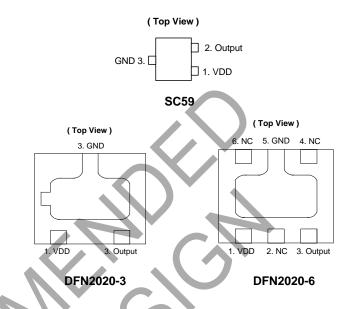
NOT RECOMMENDED FOR NEW DESIGN USE AH1808

AH1801

MICROPOWER, ULTRA-SENSITIVE HALL EFFECT SWITCH

Description

AH1801 is a Micropower, Ultra-sensitive Hall Effect Switch, which is with two Hall effect plates and a output driver, mainly designed for battery–operation, hand-held equipment (such as Cellular and Cordless Phone, PDA). The total operation power is down to $24\mu W$ in the 3V supply.

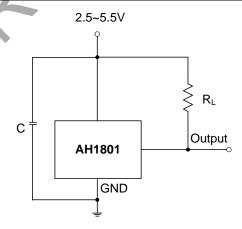

Either north or south pole of sufficient strength will turn the output off. The output will be turned on under no magnetic field.

While the magnetic flux density (B) is larger than operate point (Bop), the output will be turned off, the output is held until B is lower than release point (Brp), then turned on.

Features

- Micropower Operation
- Operation with North or South Pole
- 2.5V to 5.5V Battery Operation
- Inverted Output-on without Magnet Present
- Chopper Stabilized
 - Superior Temperature Stability
 - Extremely Low Switch-Point Drift
 - Insensitive to Physical Stress
- Good RF Noise Immunity
- -40°C to +85°C Operating Temperature
- Low Profile 3 Pin SC59 (Commonly Known as SOT23 in Asia) and DFN2020-3, DFN2020-6 Packages
- ESD (HBM) > 5KV for DFN2020-3 and DFN2020-6
 - > 6KV for SC59
- SC59, DFN2020-3 and DFN2020-6: Available in "Green" Molding Compound (No Br, Sb)
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments

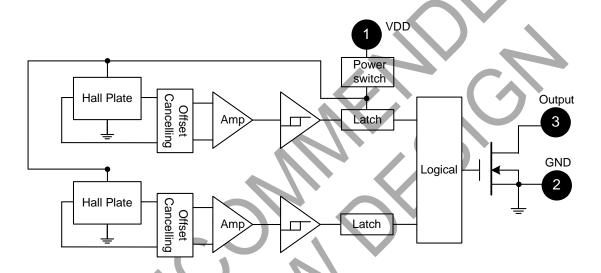

Applications

- Cellular Phone
- PDA
- Cordless Phone

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Typical Applications Circuit


Notes: 4. C is for power stabilization and to strengthen the noise immunity, the recommended capacitance is 10nF to 100nF. R_L is the pull-up resistor, the recommended resistance is 10K Ω to 100K Ω .

Pin Descriptions

Pin Name	P/I/O	Description
VDD	P/I	Power Supply Input
GND	P/I	Ground
Output	0	Output Pin
NC		No Connected

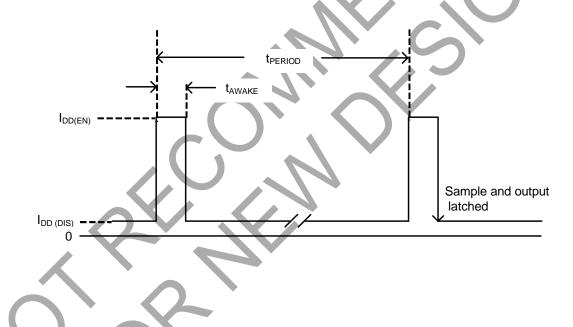
Functional Block Diagram

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Rating	Unit	
V_{DD}	Supply Voltage	7	V	
В	Magnetic Flux Density	Unlimited		
Ts	Storage Temperature Range	-65 to +150	°C	
P _D	Package Power Dissipation	SC59 DFN2020-3 DFN2020-6	230	mW
TJ	Maximum Junction Temperature	+150	°C	

Recommended Operating Conditions (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Conditions	Rating	Unit
V_{DD}	Supply Voltage	Operating	2.5 to 5.5	V
TA	Operating Temperature Range	Operating	-40 to +85	°C


NOT RECOMMENDED FOR NEW DESIGN USE AH1808

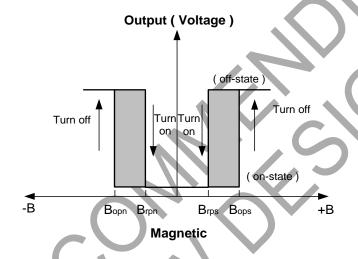
AH1801

Electrical Characteristics (@ $T_A = +25^{\circ}C$, $V_{DD} = 3V$, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OUT}	Output On Voltage	I _{OUT} = 1mA	-	0.1	0.3	V
loff	Output Leakage Current	$V_{OUT} = 5.5V$, Output off	-	<0.1	1	μA
		Chip enable, $T_A = +25^{\circ}C$, $V_{DD} = 3V$	-	3	6	mA
I _{DD(EN)}	Supply Current	Chip enable, $T_A = -40$ to $+85^{\circ}$ C, $V_{DD} = 2.5$ V to 5.5 V	-	3	9	mA
		Chip disable, $T_A = +25^{\circ}C$, $V_{DD} = 3V$	-	5	10	μA
I _{DD(DIS)}		Chip disable, $T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.5\text{V to } 5.5\text{V}$	-	5	18	μA
		Average supply current, T _A = +25°C, V _{DD} = 3V	-	8	16	μΑ
I _{DD(AVG)}		Average supply current, T _A = -40 to +85°C, V _{DD} = 2.5V to 5.5V	1	8	27	μΑ
t _{AWAKE}	Awake Time	(Note 5)	-	75	150	μs
tperiod	Period	(Note 5)	-	75	150	ms
D.C.	Duty Cycle		-	0.1	-	%

Notes: 5. When power is initially on, the operating V_{DD} (2.5V to 5.5V) must be applied to be guaranteed for the output sampling. The output state is valid after the second operating phase (typical 150ms).

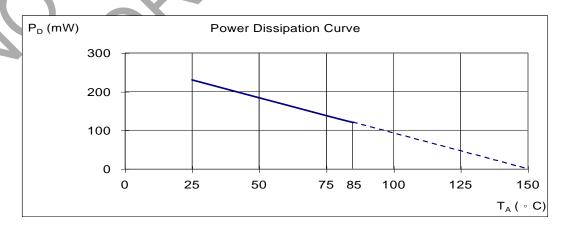
AH1801


$\label{eq:magnetic Characteristics} \textbf{Magnetic Characteristics} \ (@T_A = +25^{\circ}C,\ V_{DD} = 3V,\ unless \ otherwise \ specified.)$

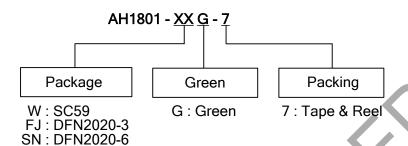
(1mT=10 Gauss)

Symbol	Characteristic	Min	Тур	Max	Unit
Bops(south pole to brand side)	Operate Daint	=	40	60	
Bopn(north pole to brand side)	Operate Point	-60	-40	=	
Brps(south pole to brand side)	Release Point	10	30	=	Gauss
Brpn(north pole to brand side)	Release Point	=	-30	-10	Gaacc
Bhy(Bopx-Brpx)	Hysteresis	-	10	-	

Notes: 6. Typical data is at T_A = +25°C, V_{DD} =3V, and for design information only.


^{7.} Operate point and release point will vary with supply voltage and operating temperature.

Performance Characteristics


(1) SC59 / DFN2020-3 /DFN2020-6

T _A (°C)	25	50	60	70	80	85	90	100	110	120	130	140	150
P _D (mW)	230	184	166	147	129	120	110	92	74	55	37	18	0

Ordering Information

Dort Number	Status	Backage Code	Packaging	7" Tape a	and Reel
Part Number	(Note 9)	Package Code	(Note 8)	Quantity	Part Number Suffix
AH1801-WG-7	NRND	W	SC59	3000/Tape & Reel	-7
AH1801-FJG-7	NRND	FJ	DFN2020-3	3000/Tape & Reel	-7
AH1801-SNG-7	NRND	SN	DFN2020-6	3000/Tape & Reel	-7

8. Pad layout as shown on Diodes Incorporated's suggested pad layout document, which can be found on our website at http://www.diodes.com/package-outlines.html.

9. NRND = Not Recommended for New Design

Marking Information

Top View)

XX YWX

 \underline{XX} : Identification code \underline{Y} : Year 0~9

 \underline{W} : Week : A~Z : 1~26 week; a~z : 27~52 week; z represents

52 and 53 week

X : A~Z : Green

Part Number	Package	Identification Code
AH1801	SC59	KB

Marking Information (Cont.)

(2) DFN2020-3

(Top View)

► Pin 1 indicator

<u>X X</u> $\underline{Y}\underline{W}\underline{X}$ XX: Identification Code

<u>Y</u> : Year : 0~9

<u>W</u>: Week: A~Z: 1~26 week;

a~z: 27~52 week; z represents

52 and 53 week \underline{X} : A~Z: Green

Part Number	Package	Identification Code
AH1801	DFN2020-3	K1

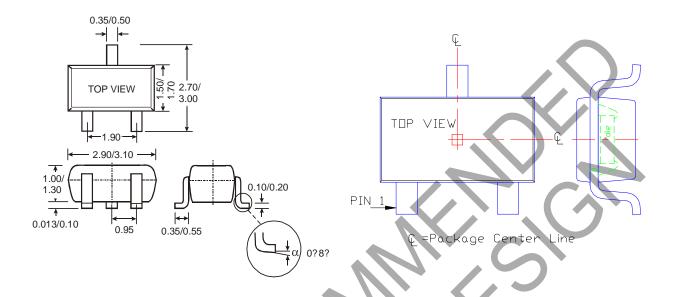
(3) DFN2020-6

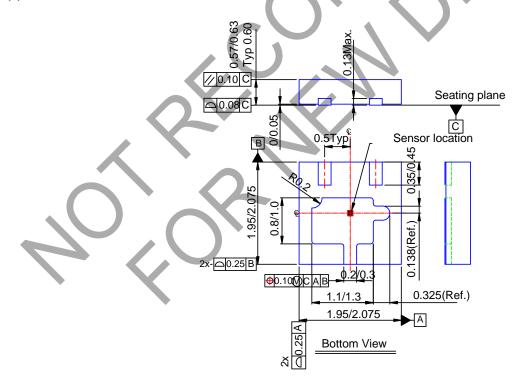
(Top View)

► Pin 1 indicator

<u>X X</u> XX: Identification Code

Y: Year: 0~9
W: Week: A~Z: 1~26 week;
a~z: 27~52 week; z represents
52 and 53 week
X: A~Z: Green

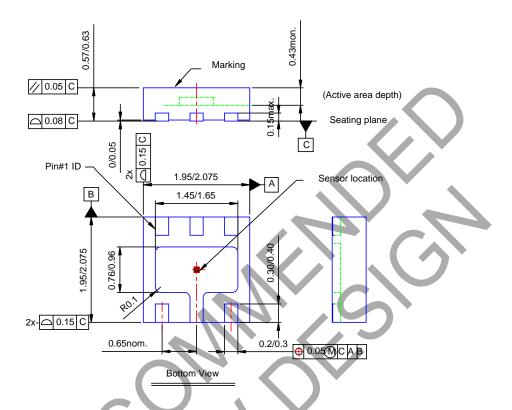

Part Number	Package	Identification Code
AH1801	DFN2020-6	KB


Package Outline Dimensions (All dimensions in mm.)

Please see http://www.diodes.com/package-outlines.html for the latest version.

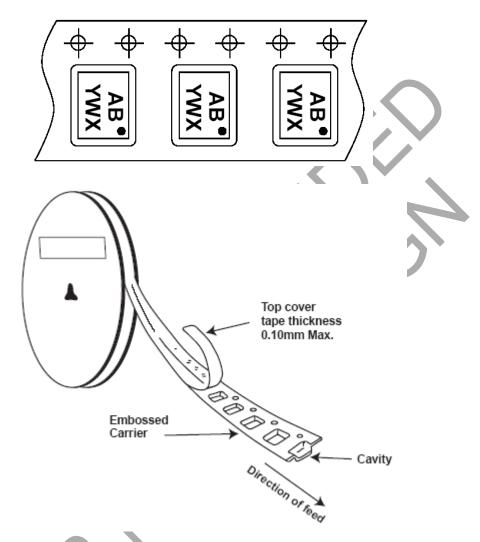
(1) SC59 (Commonly Known as SOT23 in Asia)

(2) DFN2020-3



Package Outline Dimensions (All dimensions in mm.) (Cont.)

Please see http://www.diodes.com/package-outlines.html for the latest version.


(3) DFN2020-6

Taping Orientation

(1) DFN2020-3 and DFN2020-6

Notes: 10. The taping orientation of the other package type can be found on our website at http://www.diodes.com/datasheets/ap02007.pdf.

NOT RECOMMENDED FOR NEW DESIGN USE AH1808

AH1801

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com