Micropower 5.0 V, 100 mA Low Dropout Linear Regulator with RESET and ENABLE The CS8101 is a precision 5.0 V micropower voltage regulator with very low quiescent current (70 μA typ at 100 μA load). The 5.0 V output is accurate within $\pm 2.0\%$ and supplies 100 mA of load current with a typical dropout voltage of only 400 mV. Microprocessor control logic includes an \overline{ENABLE} input and an active \overline{RESET} . This combination of low quiescent current, outstanding regulator performance and control logic makes the CS8101 ideal for any battery operated, microprocessor controlled equipment. The active \overline{RESET} circuit includes hysteresis, and operates correctly at an output voltage as low as 1.0 V. The \overline{RESET} function is activated during the power up sequence or during normal operation if the output voltage drops outside the regulation limits by more than 200 mV typ. The logic level compatible \overline{ENABLE} input allows the user to put the regulator into a shutdown mode where it draws only 20 μA typical of quiescent current. The regulator is protected against reverse battery, short circuit, over voltage, and thermal overload conditions. The device can withstand load dump transients making it suitable for use in automotive environments. The CS8101 is functionally equivalent to the National Semiconductor LP2951 series low current regulators. #### **Features** - 5.0 V ±2.0% Output - Low 70 µA Quiescent Current - Active RESET - ENABLE Input for ON/OFF and Active/Sleep Mode Control - 100 mA Output Current Capability - Fault Protection - +60 V Peak Transient Voltage - -15 V Reverse Voltage Short Circuit Thermal Overload - Low Reverse Current (Output to Input) - Internally Fused Leads Available in SO-20 WB Package - These are Pb-Free Devices # ON Semiconductor® http://onsemi.com SO-20 WB DWF SUFFIX CASE 751D SOIC-8 D SUFFIX CASE 751 #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet. #### **DEVICE MARKING INFORMATION** See general marking information in the device marking section on page 9 of this data sheet. # **PIN CONNECTIONS** Figure 1. Block Diagram # **MAXIMUM RATINGS*** | Rating | Value | Unit | | |--|---|----------------------|----------| | Power Dissipation | | Internally Limited | - | | Peak Transient Voltage (46 V Load Dump @ V _{IN} = 14 V) | | -15, 60 | V | | Operating DC Voltage | | 30 | V | | ENABLE (Up to V _{IN} with external resistor) | | 10 | V | | Output Current | | Internally Limited | - | | ESD Susceptibility (Human Body Model) | | 2.0 | kV | | ESD Susceptibility (Machine Model) | | 200 | V | | Operating Temperature | | -40 to +125 | °C | | Junction Temperature Range | | -40 to +150 | °C | | Storage Temperature Range | | -55 to +150 | °C | | Lead Temperature Soldering: | Wave Solder (through hole styles only) (Note 1)
Reflow (SMD styles only) (Notes 2 & 3) | 260 peak
240 peak | °C
°C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. - 1. 10 second maximum. 2. 60 second maximum above 183°C. 3. -5°C / +0°C allowable conditions. # $\textbf{ELECTRICAL CHARACTERISTICS} \quad (6.0 \text{ V} \leq V_{IN} \leq 26 \text{ V}; \text{ } I_{OUT} = 1.0 \text{ mA}; -40 \leq T_{A} \leq 125, -40 ^{\circ}\text{C} \leq T_{J} \leq 150 ^{\circ}\text{C},$ unless otherwise noted.) | Characteristic Test Conditions | | Min | Тур | Max | Unit | |---|---|-------------|-----------------|------------------|----------------| | Output Stage | | | | | | | Output Voltage, V _{OUT} | Output Voltage, V_{OUT} 9.0 V < V_{IN} < 16 V, 100 μ A \leq $I_{OUT} \leq$ 100 mA 6.0 V < V_{IN} < 26 V, 100 μ A \leq $I_{OUT} \leq$ 100 mA | | 5.00
5.00 | 5.10
5.15 | V
V | | Dropout Voltage (V _{IN} – V _{OUT}) | I _{OUT} = 100 mA
I _{OUT} = 100 μA | -
- | 400
100 | 600
150 | mV
mV | | Load Regulation | V_{IN} = 14 V, 100 μ A \leq I $_{OUT}$ \leq 100 mA | - | 5.0 | 50 | mV | | Line Regulation | 6.0 < V < 26 V, I _{OUT} = 1.0 mA | - | 5.0 | 50 | mV | | Quiescent Current, (I _Q) Active Mode | $I_{OUT} = 100 \mu A, V_{IN} = 6.0 \text{ V}$
$I_{OUT} = 50 \text{ mA}$
$I_{OUT} = 100 \text{ mA}$ | -
-
- | 70
4.0
12 | 140
6.0
20 | μΑ
mA
mA | | Quiescent Current, (I _Q) Sleep Mode | V _{OUT} = OFF, V _{IN} = 6.0 V, V _{ENABLE} = 2.0 V | - | 20 | 50 | μА | | Ripple Rejection | $7.0 \le V_{IN} \le 17 \text{ V}, I_{OUT} = 100 \text{ mA}, f = 120 \text{ Hz}$ | 60 | 75 | - | dB | | Current Limit | - | 105 | 200 | - | mA | | Short Circuit Output Current | V _{OUT} = 0 V | 25 | 125 | - | mA | | Thermal Shutdown | - | 150 | 180 | - | °C | | Overvoltage Shutdown | V _{OUT} ≤ 1.0 V | 30 | 34 | 38 | V | | Reverse Current | V _{OUT} = 5.0 V, V _{IN} = 0 V | - | 100 | 200 | μА | ^{*}The maximum package power dissipation must be observed. **ELECTRICAL CHARACTERISTICS (continued)** (6.0 V \leq V_{IN} \leq 26 V; I_{OUT} = 1.0 mA; $-40 \leq$ T_A \leq 125, -40° C \leq T_J \leq 150°C, unless otherwise noted.) | Characteristic | Test Conditions | Min | Тур | Max | Unit | |---|--|----------------|--------------|---|--------| | ENABLE Input (ENABLE) | | | | | | | Threshold
HIGH
LOW | (V _{OUT} OFF)
(V _{OUT} ON) | _
0.6 | 1.4
1.4 | 2.0
- | V
V | | Input Current | V _{ENABLE} = 2.4 V | - | 30 | 100 | μΑ | | Reset Functions (RESET) | • | | | | | | RESET Threshold
HIGH (V _{RH})
LOW (V _{RL}) | V _{OUT} Increasing
V _{OUT} Decreasing | 4.525
4.500 | 4.75
4.70 | V _{OUT} - 0.05
V _{OUT} - 0.075 | V
V | | RESET Hysteresis | (HIGH – LOW) | 25 | 50 | 100 | mV | | Reset Output Leakage
RESET = HIGH | V _{OUT} ≥ V _{RH} | - | - | 25 | μΑ | | Output Voltage
Low (V _{RLO)}
Low (VR _{PEAK}) | 1.0 V \leq V _{OUT} \leq V _{RL} , R _{RESET} = 10 k
V _{OUT} , Power up, Power down, R _{RESET} = 10 k | -
- | 0.1
0.6 | 0.4
1.0 | V
V | # PACKAGE LEAD DESCRIPTION | PACKAGE | LEAD# | | | |-------------------------------|--------|------------------------|---| | SO-20 WB | SOIC-8 | LEAD SYMBOL | FUNCTION | | 20 | 1 | V _{OUT} | 5.0 V, ±2.0%, 100 mA output. | | - | 2 | V _{OUT} SENSE | Kelvin connection which allows remote sensing of output voltage for improved regulation. If remote sensing is not required, connect to V _{OUT} . | | 1 | 3 | ENABLE | Logic level switches output off when toggled HIGH. | | 4, 5, 6, 7
14, 15, 16, 17 | 4 | GND | Ground. All GND leads must be connected to Ground. | | 10 | 5 | RESET | Active reset (accurate to V _{OUT} ≥ 1.0 V) | | 2, 3, 8, 9, 11,
12, 13, 18 | 6,7 | NC | No Connection. True no-connect (i.e. is floating) | | 19 | 8 | V _{IN} | Input voltage. | #### TYPICAL PERFORMANCE CHARACTERISTICS Figure 2. CS8101 Dropout Voltage vs. Load Over Temperature ### **CIRCUIT DESCRIPTION** #### **VOLTAGE REFERENCE AND OUTPUT CIRCUITRY** #### **Output Stage Protection** The output stage is protected against overvoltage, short circuit and thermal runaway conditions (Figure 3). Figure 3. Typical Circuit Waveforms for Output Stage Protection If the input voltage rises above 30 V (e.g. load dump), the output shuts down. This response protects the internal circuitry and enables the IC to survive unexpected voltage transients. Should the junction temperature of the power device exceed 180°C (typ) the load current capability is reduced thereby preventing thermal overload. This thermal management function is an effective means to prevent die overheating since the load current is the principle heat source in the IC. # **REGULATOR CONTROL FUNCTIONS** The CS8101 contains two microprocessor compatible control functions: ENABLE and RESET (Figure 4). - (1) = No Reset Delay Capacitor - (2) = With Reset Delay Capacitor Figure 4. Circuit Waveform #### **ENABLE** Function The \overline{ENABLE} function switches the output transistor ON and OFF. When the voltage on the \overline{ENABLE} lead exceeds 1.4 V typ, the output pass transistor turns off, leaving a high impedance facing the load. The IC will remain in Sleep mode, drawing only 50 μ A, until the voltage on this input drops below the \overline{ENABLE} threshold. # **RESET** Function A \overline{RESET} signal (low voltage) is generated as the IC powers up until V_{OUT} is within 250 mV of the regulated output voltage, or when V_{OUT} drops out of regulation, and is lower than 300 mV below the regulated output voltage. A hysteresis of 50 mV is included in the function to minimize oscillations. The \overline{RESET} output is an open collector NPN transistor, controlled by a low voltage detection circuit. The circuit is functionally independent of the rest of the IC thereby guaranteeing that the \overline{RESET} signal is valid for V_{OUT} as low as 1.0 V. Figure 5. RC Network for RESET Delay An external RC network on the lead (Figure 5) provides a sufficiently long delay for most microprocessor based applications. RC values can be chosen using the following formula: $$RTOTCRST = \left[\frac{-t_{Delay}}{ln(\frac{V_{T}-V_{OUT}}{V_{RST}-V_{OUT}})}\right]$$ where: $R_{RST} = \overline{RESET}$ Delay resistor $R_{IN} = \mu P$ port impedance $R_{TOT} = R_{RST}$ in parallel with R_{IN} $C_{RST} = \overline{RESET}$ Delay capacitor t_{Delay} = desired delay time $V_{RST} = V_{SAT}$ of \overline{RESET} lead (0.7 V @ turn - ON) $V_T = \overline{RESET}$ threshold. The circuit depicted in Figure 6 lets the microprocessor control its power source, the CS8101 regulator. An I/O port on the μP and the SWITCH port are used to drive the base of Q1. When Q1 is driven into saturation, the voltage on the \overline{ENABLE} lead falls below its lower threshold. The regulator's output is enabled. When the drive current is removed, the voltage on the \overline{ENABLE} lead rises, the output is switched off and the IC moves into Sleep mode where it draws 50 μA (max). By coupling these two controls with the ENABLE lead, the system has added flexibility. Once the system is running, the state of the SWITCH is irrelevant as long as the I/O port continues to drive Q1. The microprocessor can turn off its own power by withdrawing drive current, once the SWITCH is open. This software control at the I/O port allows the microprocessor to finish key housekeeping functions before power is removed. The logic options are summarized in Table 1. Table 1. Logic Control of CS8101 Output | Microprocessor
I/O Drive | Switch | ENABLE | Output | |-----------------------------|--------|--------|--------| | ON | Closed | LOW | ON | | | Open | LOW | ON | | OFF | Closed | LOW | ON | | | Open | HIGH | OFF | The I/O port of the microprocessor typically provides 50 μA to Q1. In automotive applications the SWITCH is connected to the ignition switch. #### **APPLICATION NOTES** Figure 6. Microprocessor Control of CS8101 Using External Switching Transistor Q1 The $\overline{\text{ENABLE}}$ pin of the CS8101 can be tied to the battery voltage provided a series resistor is used as shown in Figure 7. The maximum allowed voltage on the $\overline{\text{ENABLE}}$ pin without the resistor is 10 V. Direct voltages greater than 10 V applied to the pin without the series resistor may damage the device. The system designer should note the turn–on threshold (typ 1.4 V) is on the $\overline{\text{ENABLE}}$ pin. The threshold will be higher on the other side of $R_{\overline{\text{ENABLE}}}$. Figure 7. Using the $\overline{\text{ENABLE}}$ pin with V_{BAT} ### STABILITY CONSIDERATIONS The output or compensation capacitor helps determine three main characteristics of a linear regulator: start-up delay, load transient response and loop stability. *C_{IN} required if regulator is located far from the power supply filter. *C_{OUT} required for stability. Capacitor must operate at minimum temperature expected. Figure 8. Test and Application Circuit Showing Output Compensation The capacitor value and type should be based on cost, availability, size and temperature constraints. A tantalum or aluminum electrolytic capacitor is best, since a film or ceramic capacitor with almost zero ESR can cause instability. The aluminum electrolytic capacitor is the least expensive solution, but, if the circuit operates at low temperatures (-25°C to -40°C), both the value and ESR of the capacitor will vary considerably. The capacitor manufacturers data sheet usually provides this information. The value for the output capacitor C_{OUT} shown in Figure 8 should work for most applications, however it is not necessarily the optimized solution. To determine an acceptable value for C_{OUT} for a particular application, start with a tantalum capacitor of the recommended value and work towards a less expensive alternative part. **Step 1:** Place the completed circuit with a tantalum capacitor of the recommended value in an environmental chamber at the lowest specified operating temperature and monitor the outputs with an oscilloscope. A decade box connected in series with the capacitor will simulate the higher ESR of an aluminum capacitor. Leave the decade box outside the chamber, the small resistance added by the longer leads is negligible. **Step 2:** With the input voltage at its maximum value, increase the load current slowly from zero to full load while observing the output for any oscillations. If no oscillations are observed, the capacitor is large enough to ensure a stable design under steady state conditions. **Step 3:** Increase the ESR of the capacitor from zero using the decade box and vary the load current until oscillations appear. Record the values of load current and ESR that cause the greatest oscillation. This represents the worst case load conditions for the regulator at low temperature. **Step 4:** Maintain the worst case load conditions set in step 3 and vary the input voltage until the oscillations increase. This point represents the worst case input voltage conditions. **Step 5:** If the capacitor is adequate, repeat steps 3 and 4 with the next smaller valued capacitor. A smaller capacitor will usually cost less and occupy less board space. If the output oscillates within the range of expected operating conditions, repeat steps 3 and 4 with the next larger standard capacitor value. **Step 6:** Test the load transient response by switching in various loads at several frequencies to simulate its real working environment. Vary the ESR to reduce ringing. **Step 7:** Raise the temperature to the highest specified operating temperature. Vary the load current as instructed in step 5 to test for any oscillations. Once the minimum capacitor value with the maximum ESR is found, a safety factor should be added to allow for the tolerance of the capacitor and any variations in regulator performance. Most good quality aluminum electrolytic capacitors have a tolerance of \pm 20% so the minimum value found should be increased by at least 50% to allow for this tolerance plus the variation which will occur at low temperatures. The ESR of the capacitor should be less than 50% of the maximum allowable ESR found in step 3 above. # CALCULATING POWER DISSIPATION IN A SINGLE OUTPUT LINEAR REGULATOR The maximum power dissipation for a single output regulator (Figure 9) is: $P_{D(max)} = [V_{IN(max)} - V_{OUT(min)}]I_{OUT(max)} + V_{IN(max)}I_{Q}$ (1) where $V_{IN(max)}$ is the maximum input voltage, V_{OUT(min)} is the minimum output voltage, $I_{OUT(max)}$ is the maximum output current for the application, and I_Q is the quiescent current the regulator consumes at $I_{OUT(max)}$. Once the value of $P_{D(max)}$ is known, the maximum permissible value of $R_{\theta JA}$ can be calculated: $$R_{\Theta}JA = \frac{150\overline{Q} - T_{A}}{P_{D}}$$ (2) The value of $R_{\theta JA}$ can then be compared with those in the package section of the data sheet. Those packages with $R_{\theta JA}$'s less than the calculated value in equation 2 will keep the die temperature below $150^{\circ}C$. In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required. Figure 9. Single Output Regulator With Key Performance Parameters Labeled # **HEAT SINKS** A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air. Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\theta JA}$. $$R_{\Theta}JA = R_{\Theta}JC + R_{\Theta}CS + R_{\Theta}SA$$ (3) where: $R_{\theta JC}$ = the junction-to-case thermal resistance, $R_{\theta CS}$ = the case-to-heatsink thermal resistance, and $R_{\theta SA}$ = the heatsink-to-ambient thermal resistance. $R_{\theta JC}$ appears in the package section of the data sheet. Like $R_{\theta JA}$, it is a function of package type. $R_{\theta CS}$ and $R_{\theta SA}$ are functions of the package type, heatsink and the interface between them. These values appear in heat sink data sheets of heat sink manufacturers. ### **DEVICE ORDERING INFORMATION*** | Device | Package | Shipping [†] | |----------------|-----------------------|-----------------------| | CS8101YD8G | SOIC-8
(Pb-Free) | 98 Units/Rail | | CS8101YDR8G | SOIC-8
(Pb-Free) | 2500/Tape & Reel | | CS8101YDWF20G | SO-20 WB
(Pb-Free) | 38 Units/Tube | | CS8101YDWFR20G | SO-20 WB
(Pb-Free) | 1000/Tape & Reel | ^{*}Contact your local sales representative for D2PAK package option. # **MARKING DIAGRAMS** [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## SOIC-8 NB CASE 751-07 **ISSUE AK** **DATE 16 FEB 2011** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. - 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. | | MILLIMETERS | | INC | HES | |-----|-------------|-------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | C | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 | 7 BSC | 0.050 BSC | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | 7 | 0.19 | 0.25 | 0.007 | 0.010 | | K | 0.40 | 1.27 | 0.016 | 0.050 | | М | 0 ° | 8 ° | 0 ° | 8 ° | | N | 0.25 | 0.50 | 0.010 | 0.020 | | S | 5.80 | 6.20 | 0.228 | 0.244 | # **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W = Pb-Free Package XXXXXX = Specific Device Code = Assembly Location Α = Year ww = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. ### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-8 NB | | PAGE 1 OF 2 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. # SOIC-8 NB CASE 751-07 ISSUE AK # **DATE 16 FEB 2011** | | | | DITTE TO LED 2 | |--|---|--|--| | STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER | STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 | STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 | STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE | | STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE | STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE | STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd | STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 | | STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON | STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND | STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 | STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN | 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON | STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 | | STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 | STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 22: PIN 1. I/O LINE 1 | STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN | STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 24: PIN 1. BASE | | 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 | 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND | 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT | 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE | | STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT | STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC | STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN | STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN | | STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 | STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 | | | | DOCUMENT NUMBER: | 98ASB42564B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in re | | COPY" in red. | |------------------|---|--|---------------| | DESCRIPTION: | SOIC-8 NB | | PAGE 2 OF 2 | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. SOIC-20 WB CASE 751D-05 **ISSUE H** **DATE 22 APR 2015** - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. - PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD - PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL | | MILLIMETERS | | | | |-----|-------------|-------|--|--| | DIM | MIN | MAX | | | | Α | 2.35 | 2.65 | | | | A1 | 0.10 | 0.25 | | | | b | 0.35 | 0.49 | | | | С | 0.23 | 0.32 | | | | D | 12.65 | 12.95 | | | | E | 7.40 | 7.60 | | | | е | 1.27 | BSC | | | | Н | 10.05 | 10.55 | | | | h | 0.25 | 0.75 | | | | L | 0.50 | 0.90 | | | | A | 0 ° | 7 ° | | | ### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS # **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repos
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative