Designated client product This product will be discontinued its production in the near term. And it is provided for customers currently in use only, with a time limit. It can not be available for your new project. Please select other new or existing products. For more information, please contact our sales office in your region. New Japan Radio Co.,Ltd. www.njr.com ### **DUAL OPERATIONAL AMPLIFIER** #### **■ GENERAL DESCRIPTION** The NJM4560 integrated circuit is a high-gain, wide bandwidth, dual operational amplifier capable of driving 20V peak-to-peak into 400 Ω loads. The NJM4560 combines many of the features of the NJM4558 as well as providing the capability of wider bandwidth, and higher slew rate make the NJM4560 ideal for active filters, data and telecommunications, and many instrumentation applications. The availability of the NJM4560 in the surface mounted micro-package allows the NJM4560 to be used in critical applications requiring very high packing densities. #### **■ PACKAGE OUTLINE** NJM4560D (DIP8) NJM4560M (DMP8) NJM4560E (SOP8) NJM4560L (SIP8) ### **■ FEATURES** Operating Voltage (±4V~±18V) Wide Gain Bandwidth Product (10MHz typ.) Slew Rate (4V/µs typ.) Package Outline DIP8, DMP8, SIP8, SOP8 JEDEC 150mil Bipolar Technology ### **■ PIN CONFIGURATION** NJM4560D, NJM4560M, NJM4560E NJM4560L ### **PIN FUNCTION** - 1. A OUTPUT - 2. A INPUT - 3. A +INPUT - 4. V - 5. B +INPUT - 6. B INPUT - 7. B OUTPUT - 8. V⁺ ### ■ EQUIVALENT CIRCUIT (1/2 Shown) ### ■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C) | PARAMETER | SYMBOL | RATINGS | UNIT | |-----------------------------|-------------------|--|------| | Supply Voltage | V ⁺ √√ | ± 18 | V | | Differential Input Voltage | V_{ID} | ± 30 | V | | Input Voltage | V _{IC} | ± 15 (note) | V | | Power Dissipation | P _D | (DIP8) 500
(DMP8) 300
(SOP8) 300
(SIP8) 800 | mW | | Operating Temperature Range | T _{opr} | -40~+85 | °C | | Storage Temperature Range | T _{stg} | -40~+125 | °C | (note) For supply voltage less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage. ### **■ ELECTRICAL CHARACTERISTICS** Ta=25°C,V⁺/V=±15V) | PARAMETER | SYMBOL | TEST CONDITION | MIN. | TYP. | MAX. | UNIT | |---------------------------------|-----------------|--|------|--------|------|-------| | Input Offset Voltage | V _{IO} | R _S ≤10kΩ | - | 0.5 | 6 | mV | | Input Offset Current | lio | | - | 5 | 200 | nA | | Input Bias Current | I_{B} | | - | 40 | 500 | nA | | Input Resistance | R _{IN} | | 0.3 | 5 | - | ΜΩ | | Large Signal Voltage Gain | A_V | R _L ≥2kΩ,V _O =±10V | 86 | 100 | - | dB | | Maximum Output Voltage Swing 1 | V_{OM1} | R _L ≥2kΩ | ± 12 | ± 14 | - | V | | Maximum Output Voltage Swing 2 | V_{OM2} | I _O =25mA | ± 10 | ± 11.5 | - | V | | Input Common Mode Voltage Range | V_{ICM} | | ± 12 | ± 14 | - | V | | Common Mode Rejection Ratio | CMR | R _s ≤10kΩ | 70 | 90 | - | dB | | Supply Voltage Rejection Ratio | SVR | R _S ≤10kΩ | 76.5 | 90 | - | dB | | Operating Current | Icc | | - | 4.3 | 5.7 | mA | | Slew Rate | SR | | - | 4 | - | V/µs | | Gain Bandwidth Product | GB | | - | 10 | - | MHz | | Equivalent Input Noise Voltage | V_{NI} | RIAA, R_s =2 $k\Omega$,30 kHz LPF | - | 1.2 | - | μVrms | #### **■ TYPICAL CHARACTERISTICS** ### Open Loop Voltage Gain vs. Frequency ## Maximum Output Voltage Swing vs. Frequency ### Maximum Output Voltage Swing vs. Load Resistance ### Equivalent Input Noise Voltage vs. Frequency ### **Operating Current vs. Temperature** ### Maximum Output Voltage Swing vs. Temperature #### **■ TYPICAL CHARACTERISTICS** ### Input Offset Voltage vs. Temperature ### Input Bias Current vs. Temperature ### **Maximum Output Voltage Swing** vs. Supply Voltage ### **Operating Current vs. Operating Voltage** [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.