



## Low-Cost, Quad, SPST, CMOS Analog Switches

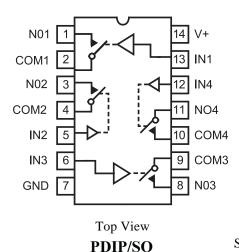
#### Features

- Low On-Resistance
- On-Resistance Matching Between Channels,  $0.2\Omega$  typ
- On-Resistance Flatness,  $\leq 2\Omega$  typ
- Low Off-Channel Leakage, <100pA @ +25°C
- TTL/CMOS Logic Compatible
- GND-to-V+ Analog Signal Dynamic Range
- Low Power Consumption ( $<12\mu W$ )
- Low Crosstalk: -86dB @ 1MHz
- Low Off-Isolation: -58dB @ 1 MHz
- Wide Bandwidth: > 100 MHz
- Small QSOP-16 Package Saves Board Area

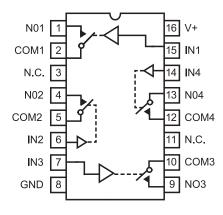
### **Applications**

- Instrumentation, ATE
- Sample-and-Holds
- Audio Switching and Routing
- **Telecommunication Systems**
- PBX, PABX
- **Battery-Powered Systems**

### **Description**


The PS4066/PS4066A are improved SPST CMOS analog switches ideal for low-distortion audio switching. These high precision, medium voltage switches were designed to operate with single-supplies from +3V to 16V. They are fully specified with +12V, +5V, and +3V supplies. The PS4066/PS4066A has four normally open (NO) switches. Each switch conducts current equally well in either direction when on. In the off state each switch blocks voltages up to the power-supply rails.

With +12V power supply, the PS4066/PS4066A guarantee <45 $\Omega$ on-resistance. On-resistance matching between channels is within  $2\Omega$  (PS4066). On-resistance flatness is less than  $4\Omega$  (PS4066A) over the specified range. The PS4066A guarantees low leakage currents (<100pA @ 25°C, <6nA @ +85°C) and fast switching speeds (t<sub>ON</sub> < 175ns). ESD sensitivity rating is >2,000V per MIL-STD 883, Method 3015.7


Both devices are available in PDIP-14, narrow-body SOIC-14, and QSOP-16 packages. Available temperature ranges are: commercial ( $^{\circ}$ C to  $^{\circ}$ C), and industrial ( $^{\circ}$ 40 $^{\circ}$ C to  $^{\circ}$ 85 $^{\circ}$ C).

For operation below 5V, the PI5A101/PI5A391/PI5A392 are also recommended.

# Functional Diagrams, Pin Configurations, and Truth Table



| Switch    |
|-----------|
| OFF<br>ON |
|           |



N.C. = No Internal Connection Switches shown for logic "0" input

Top View **QSOP** 



### **Absolute Maximum Ratings**

| Voltages Referenced to GND                          |                     |
|-----------------------------------------------------|---------------------|
| V+                                                  | 0.3V to $+17V$      |
| $V_{IN}$ , $V_{COM}$ , $V_{NC}$ , $V_{NO}$ (Note 1) | -2V to $(V+) +2V$   |
| or 30mA, whi                                        | chever occurs first |
| Current (any terminal)                              | $\dots \dots 30mA$  |
| Peak Current, COM, NO, NC                           |                     |
| (pulsed at 1ms, 10% duty cycle)                     | 100mA               |
| ESD per Method 3015.7                               | >2000V              |
|                                                     |                     |

#### **Thermal Information**

Continuous Power Dissipation ( $T_A$ = +70°C) Plastic DIP (derate 10.5mW/°C above +70°C) . . . . . 800mW SO and QSOP (derate 8.7mW/°C above +70°C) . . . . 650mW Storage Temperature . . . . . . -65°C to +150°C Lead Temperature (soldering, 10s) . . . . . . . . +300°C

#### Note

Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

# **Electrical Specifications - Single +12V Supply**

 $(V + = 12V \pm 10\%, GND = 0V, V_{INH} = 4V, V_{INL} = 0.8V)$ 

| Parameter                                 | Symbol                | Conditions                                                 |                   | Temp. (°C) | Min <sup>(1)</sup> | <b>Typ</b> <sup>(2)</sup> | Max <sup>(1)</sup> | Units |
|-------------------------------------------|-----------------------|------------------------------------------------------------|-------------------|------------|--------------------|---------------------------|--------------------|-------|
| Analog Switch                             | Analog Switch         |                                                            |                   |            |                    |                           |                    |       |
| Analog Signal<br>Range <sup>(3)</sup>     | V <sub>ANALOG</sub>   |                                                            |                   | Full       | 0                  |                           | V+                 | V     |
| On Resistance                             | R <sub>ON</sub>       | $V+ = 12V, I_{COM} = 2mA,$                                 |                   | 25         |                    | 12                        | 45                 |       |
|                                           | ON                    | $V_{NO} = 10V$                                             |                   | Full       |                    |                           | 55                 |       |
| On-Resistance Match                       | 1 10 1                | $V+ = 12V, I_{COM} = 2mA$ PS4066<br>$V_{NO} = 10V$ PS4066A |                   | 25         |                    | 0.5<br>0.5                | 4 2                | Ω     |
| Between Channels <sup>(4)</sup>           |                       | NO                                                         |                   | Full       |                    |                           | 6                  |       |
| On-Resistance                             | R <sub>FLAT(ON)</sub> | $V+ = 12V, I_{COM} = 2mA,$ $V_{NO} = 10V, 5V, 1V$          |                   | 25         |                    | 2                         | 4                  |       |
| Flatness <sup>(5)</sup>                   | rlai(ON)              |                                                            |                   | Full       |                    |                           | 6                  |       |
| NO or NC Off                              | I <sub>NO(OFF)</sub>  | $V + = 12V, V_{COM} = 0V,$                                 | PS4066<br>PS4066A | 25         | -1<br>-0.1         |                           | 1<br>0.1           |       |
| Leakage Current <sup>(6)</sup>            | I <sub>NC(OFF)</sub>  | $V_{NO} = 10V$                                             |                   | Full       | -6                 |                           | 6                  |       |
| COM Off Leakage<br>Current <sup>(6)</sup> | I <sub>COM(OFF)</sub> | $V+ = 12V, V_{COM} = 0V,$                                  | PS4066<br>PS4066A | 25         | -1<br>-0.1         |                           | 1<br>0.1           | nA    |
|                                           |                       | $V_{NO} = 10V$                                             | NO = 10V          | Full       | -6                 |                           | 6                  |       |
| COM On Leakage Current <sup>(6)</sup>     | I <sub>COM(ON)</sub>  | $V+ = 12V, V_{COM} = 10V,$                                 | PS4066<br>PS4066A | 25         | -2<br>-0.2         |                           | 2<br>0.2           |       |
|                                           |                       | $V_{NO} = 10V$                                             |                   | Full       | -12                |                           | 12                 |       |



## Electrical Specifications - Single +12V Supply (continued)

 $(V + = 12V \pm 10\%, GND = 0V, V_{INH} = 4V, V_{INL} = 0.8V)$ 

| Parameter                             | Symbol               | Conditions                                                       | Temp (°C) | Min <sup>(1)</sup> | <b>Typ</b> <sup>(2)</sup> | Max <sup>(1)</sup> | Units |  |
|---------------------------------------|----------------------|------------------------------------------------------------------|-----------|--------------------|---------------------------|--------------------|-------|--|
| Logic Input                           | Logic Input          |                                                                  |           |                    |                           |                    |       |  |
| Input Current with Input Voltage High | I <sub>INH</sub>     | IN =5V, all others = 0.8V                                        | E-II      | -0.5               | 0.005                     | 0.5                | μA    |  |
| Input Current with Input Voltage Low  | I <sub>INL</sub>     | IN = 0.8V, all others =5V                                        | Full      | -0.5               | 0.005                     | 0.5                | •     |  |
| Dynamic                               |                      |                                                                  |           |                    |                           |                    |       |  |
| Turn-On Time                          | +                    |                                                                  | 25        |                    | 45                        | 100                |       |  |
| Turn-On Time                          | t <sub>ON</sub>      | $V_{COM} = 10V$ , Figure 2                                       | Full      |                    |                           | 150                | ns    |  |
| Turn-Off Time                         | <b>t</b>             |                                                                  | 25        |                    | 17                        | 75                 | 115   |  |
| Turn-On Time                          | t <sub>OFF</sub>     |                                                                  | Full      |                    |                           | 100                |       |  |
| On-Channel<br>Bandwidth               | BW                   | Signal = 0dbm<br>Figure 4, $50\Omega$ in and out                 |           |                    | 100                       |                    | MHz   |  |
| Charge Injection <sup>(3)</sup>       | Q                    | $C_L$ =1nF, $V_{GEN}$ = 0V, $R_{GEN}$ = 0 $\Omega$ ,<br>Figure 3 |           |                    | 2                         | 10                 | рC    |  |
| Off Isolation                         | OIRR                 | $R_L = 50\Omega$ , $C_L = 5pF$ , $f = 1$ MHz, Figure 4           |           |                    | -58                       |                    | 1D    |  |
| Crosstalk <sup>(8)</sup>              | X <sub>TALK</sub>    | $R_L = 50\Omega$ , $C_L = 5pF$ , $f = 1$ MHz, Figure 5           | 25        |                    | -86                       |                    | dB    |  |
| NO Capacitance                        | C <sub>(OFF)</sub>   | f=1 MHz, Figure 6                                                |           |                    | 9                         |                    |       |  |
| COM Off<br>Capacitance                |                      | f=1 MHz, Figure 6                                                |           |                    | 9                         |                    | pF    |  |
| COM On<br>Capacitance                 | C <sub>COM(ON)</sub> | f=1MHz, Figure 7                                                 |           |                    | 22                        |                    |       |  |
| Supply                                |                      |                                                                  |           |                    |                           |                    |       |  |
| Positive Supply<br>Current            | I+                   | $V_{\rm IN}$ = 0V or V+, all channels on or off                  | Full      | -1                 | 0.001                     | 1                  | μΑ    |  |
| Total Harmonic<br>Distortion          | THD                  |                                                                  | 1.011     |                    | 0.03                      |                    | %     |  |

#### **Notes:**

- 1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4.  $\Delta R_{ON} = \Delta R_{ON} \max \Delta R_{ON} \min$
- 5. Flatness is defined as the difference between the maximum and minimum value of on-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

3

- 7. Off Isolation =  $20log_{10}$  [  $V_{COM}$  / ( $V_{NO}$  or  $V_{NO}$ ) ],  $V_{COM}$  = 0utput,  $V_{NC}$  / $V_{NO}$  = input to off switch
- 8. Between any two switches.



# Electrical Specifications - Single +5V Supply (V+ = +5V $\pm 10\%$ , GND = 0V, $V_{INH}$ = 2.4V, $V_{INL}$ = 0.8V)

| Parameter                                | Symbol                             | Conditions                                                  |                   | Temp (°C) | M in <sup>(1)</sup> | Typ <sup>(2)</sup> | Max <sup>(1)</sup> | Units |
|------------------------------------------|------------------------------------|-------------------------------------------------------------|-------------------|-----------|---------------------|--------------------|--------------------|-------|
| Analog Switch                            |                                    |                                                             |                   |           |                     |                    |                    |       |
| Analog Signal Range(3)                   | V <sub>ANALOG</sub>                |                                                             |                   | Full      | 0                   |                    | V+                 | V     |
| On-Resistance                            | D                                  | $V+ = 4.5V$ , $I_{COM} = -1$ mA,                            |                   | 25        |                     | 22                 | 75                 |       |
| On-Resistance                            | $R_{ON}$                           | $V_{NO} = 3.5V$                                             |                   | Full      |                     |                    | 100                | İ     |
| On-Resistance                            | AD                                 | $V+ = 5V, I_{COM} = -1mA,$                                  |                   | 25        |                     | 0.3                | 4                  | Ω     |
| MatchBetween Channels <sup>(4)</sup>     | $\Delta R_{ m ON}$                 | $V_{NO} = 3V$                                               |                   | Full      |                     |                    | 12                 | 22    |
| On-Resistance Flatness <sup>(3,5)</sup>  | R                                  | $V+ = 5V, I_{COM} = -1mA,$<br>$V_{NO} = 1V, 3V$             |                   | 25        |                     | 4                  | 6                  | İ     |
| Officesistance Francisco                 | R <sub>FLAT(ON)</sub>              |                                                             |                   | Full      |                     |                    | 8                  |       |
| NO Off Leakage<br>Current <sup>(9)</sup> | I <sub>NO(OFF)</sub>               | $V+ = 5.5V, V_{COM} = 0V,$ $V_{NO} = 4.5V$                  | PS4066<br>PS4066A | 25        | -1<br>-0.1          |                    | 1<br>0.1           | I     |
| Currence                                 |                                    | V <sub>NO</sub> - 4.3 V                                     |                   | Full      | -6                  |                    | 6                  |       |
| COM Off Leakage                          | I <sub>COM(OFF)</sub>              | $V + = 5.5V, V_{COM} = 0V, PS40$                            | PS4066<br>PS4066A | 25        | -1<br>-0.1          |                    | 1<br>0.1           | nA    |
| Curren <sup>(9)</sup>                    | ren <sup>(9)</sup> $V_{NO} = 4.5V$ | $v_{NO} - 4.3v$                                             |                   | Full      | -6                  |                    | 6                  |       |
| COM On Leakage<br>Current <sup>(6)</sup> | I <sub>COM(ON)</sub>               | $V + = 5.5V, V_{COM} = 5V$ $V_{NO} = 4.5V$ PS4066 PS4066A   |                   | 25        | -2<br>-0.2          |                    | 2<br>0.2           | I     |
| Currence                                 |                                    |                                                             |                   | Full      | -12                 |                    | 12                 | İ     |
| Dynamic                                  |                                    |                                                             |                   |           |                     |                    |                    |       |
| Turn-On Time                             | 4                                  |                                                             |                   | 25        |                     | 65                 | 125                |       |
| Turr-Oil Time                            | t <sub>ON</sub>                    | V = 3V                                                      |                   | Full      |                     |                    | 175                | ne    |
| Turn-Off Time                            | t                                  | $V_{NO} = 3V$                                               |                   | 25        |                     | 30                 | 75                 | ns    |
| Tuir-On Tine                             | t <sub>OFF</sub>                   |                                                             |                   | Full      |                     |                    | 125                |       |
| On-Channel Bandwidth                     | BW                                 | Signal = 0dBm, $50\Omega$ in and out Figure 4               |                   | 25        |                     | 100                |                    | MHz   |
| Charge Injection <sup>(3)</sup>          | Q                                  | $C_L = 1$ nF, $V_{GEN} = 0$ V,<br>$R_{GEN} = 0$ V, Figure 3 |                   | 25        |                     | 1                  | 10                 | рC    |
| Supply                                   |                                    |                                                             |                   |           |                     |                    |                    |       |
| Positive Supply Current                  | I+                                 | $V+ = 5.5V$ , $V_{IN} = 0V$ all channels on or              |                   | Full      | -1                  |                    | 1                  | μΑ    |

4

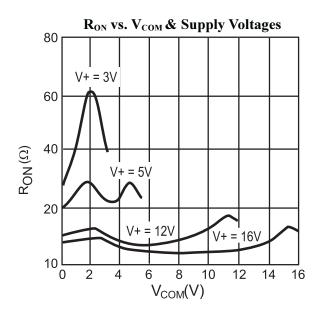


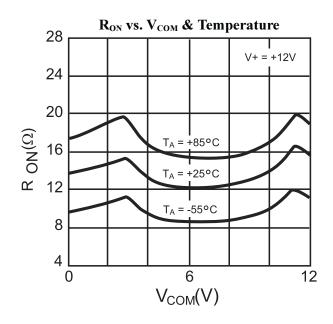
# **Electrical Specifications - Single +3V Supply**

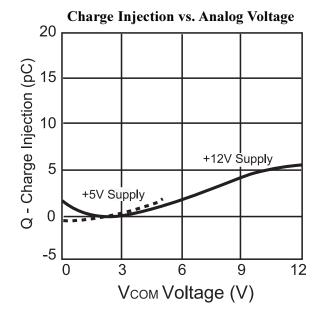
 $(V + = +2.7V \text{ to } 3.3V, \text{GND} = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$ 

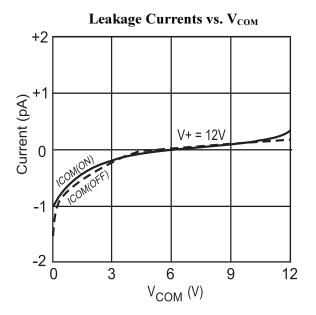
| Parameter                       | Symbol              | Conditions                                                                      | Temp°C | Min.(1) | Typ <sup>(2)</sup> | Max.(1) | Units |  |  |
|---------------------------------|---------------------|---------------------------------------------------------------------------------|--------|---------|--------------------|---------|-------|--|--|
| Analog Switch                   | Analog Switch       |                                                                                 |        |         |                    |         |       |  |  |
| Analog Signal Range(3)          | V <sub>ANALOG</sub> |                                                                                 |        | 0       |                    | V+      | V     |  |  |
| Channel On-Resistance           | R <sub>ON</sub>     | $V+ = 3V, I_{COM} = -1 \text{mA},$                                              | 25     |         |                    | 170     | Ω     |  |  |
|                                 | ON                  | $V_{NO} = 1.5V$                                                                 | Full   |         |                    | 225     |       |  |  |
| Dynamic                         | Dynamic             |                                                                                 |        |         |                    |         |       |  |  |
| Turn-On-Time(3)                 | +                   | V⊥ −2V V − 1.5V                                                                 | 25     |         | 80                 | 185     |       |  |  |
| Turr-On-Time(*)                 | $t_{ON}$            | $V+=3V, V_{NO}=1.5V$                                                            | Full   |         |                    | 230     |       |  |  |
| Town Off Time(3)                | _                   | VI -2V V - 1 5V                                                                 | 25     |         | 40                 | 150     | ns    |  |  |
| Turn-Off-Time <sup>(3)</sup>    | t <sub>(OFF)</sub>  | $V+=3V, V_{NO} = 1.5V$                                                          | Full   |         |                    | 200     |       |  |  |
| Charge Injection <sup>(3)</sup> | Q                   | $C_L = 1 \text{nF}, V_{\text{GEN}} = 0 \text{V},$ $R_{\text{GEN}} = 0 \text{V}$ | 25     |         | 2                  | 10      | рC    |  |  |
| Supply                          |                     |                                                                                 |        |         |                    |         |       |  |  |
| Positive Supply Current         | I+                  | $V+=3.3V,\ V_{IN}=0V \ or \ V+,$ all channels on or off                         | Full   | -1      | 0.001              | 1       | μΑ    |  |  |

#### **Notes:**


1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.


5

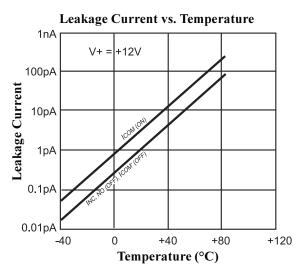

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4.  $\Delta R_{ON} = \Delta R_{ON} \max \Delta R_{ON} \min$
- 5. Flatness is defined as the difference between the maximum and minimum value of on-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation =  $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NO})], V_{COM} = 0$ utput,  $V_{NC} / V_{NO} = 1$ input to off switch
- 8. Between any two switches.

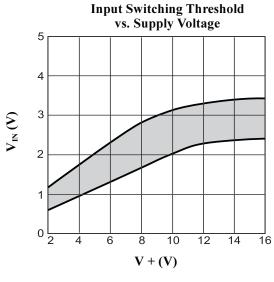


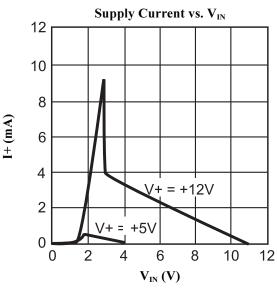

# **Typical Operating Characteristics** ( $TA = +25^{\circ}C$ , unless otherwise noted)

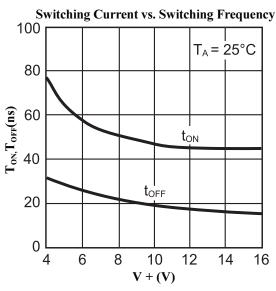


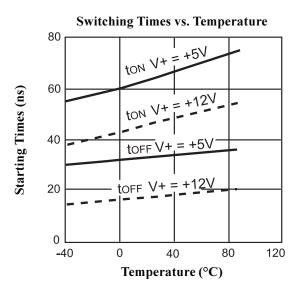


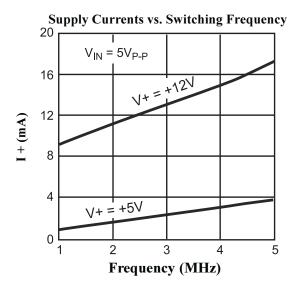




PS8184A 10/15/98





**Typical Operating Characteristics** (TA = +25°C, unless otherwise noted)
















## **Pin Description**

## **Applications Information**

#### **Overvoltage Protection**

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, and then the logic inputs. If power-supply sequencing is not possible, add a small signal diode or current limiting resistor in series with the supply pin for overvoltage protection (Figure 1). Adding a diode reduces the analog signal range, but low switch resistance and low leakage characteristics are unaffected.

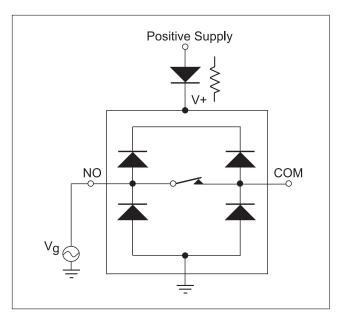



Figure 1. Overvoltage protection is accomplished using an external blocking diode or a current limiting resistor.

# **Test Circuits/Timing Diagrams**

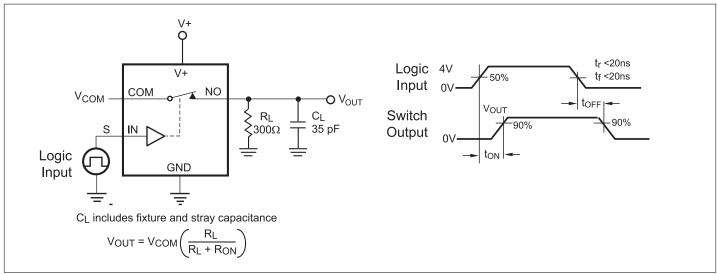



Figure 2. Switching Times

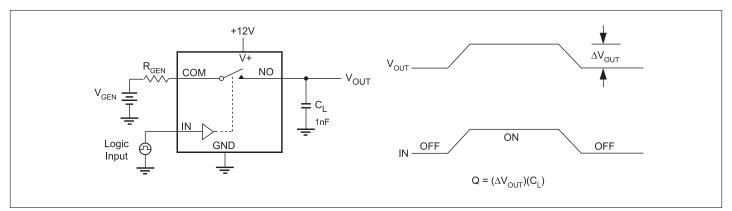



Figure 3. Charge Injection

8 PS8184A 10/15/98



# **Test Circuits/Timing Diagrams (continued)**

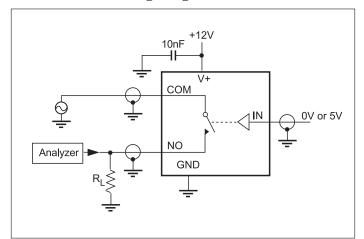



Figure 4. Off Isolation, BW

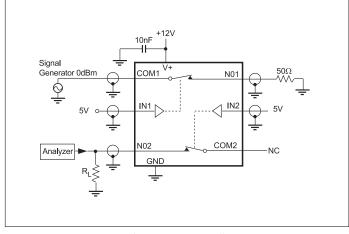



Figure 5. Crosstalk

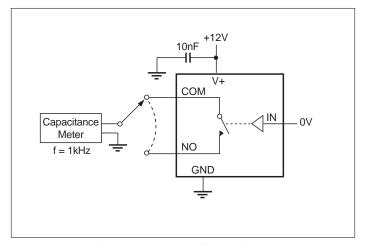



Figure 6. Channel-Off Capacitance

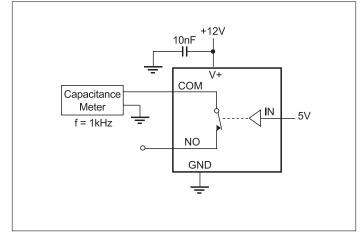



Figure 7. Channel-On Capacitance

## **Ordering Information**

| Part Number | Temperature - Range | Package        |
|-------------|---------------------|----------------|
| PS4066CPD   | 0°C to + 70°C       | 14 Plastic DIP |
| PS4066CSD   | 0°C to + 70°C       | 14 Narrow SO   |
| PS4066CEE   | 0°C to + 70°C       | 16 QSOP        |
| PS4066EPD   | -40°C to + 85°C     | 14 Plastic DIP |
| PS4066ESD   | -40°C to + 85°C     | 14 Narrow SO   |
| PS4066ACPD  | 0°C to + 70°C       | 14 Plastic DIP |
| PS4066ACSD  | 0°C to + 70°C       | 14 Narrow SO   |
| PS4066ACEE  | 0°C to + 70°C       | 16 QSOP        |
| PS4066AEPD  | -40°C to + 85°C     | 14 Plastic DIP |
| PS4066AESD  | -40°C to + 85°C     | 14 Narrow SO   |
| PS4066AEEE  | -40°C to + 85°C     | 16 QSOP        |

### **Pericom Semiconductor Corporation**

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com