MOSFET – Dual, N-Channel, POWERTRENCH® Q1: 30 V, 11.6 m Ω ; Q2: 30 V, 6.4 m Ω ## FDMC007N30D ### **General Description** This device includes two specialized N-Channel MOSFETs in a dual Power33 (3mm \times 3mm MLP) package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous MOSFET (Q2) have been designed to provide optimal power efficiency. ### **Features** Q1: N-Channel - Max $R_{DS(on)}$ = 11.6 m Ω at V_{GS} = 10 V, I_D = 10 A - Max $R_{DS(on)} = 13.3 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 9 \text{ A}$ Q1: N-Channel - Max $R_{DS(on)} = 6.4 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 16 \text{ A}$ - Max $R_{DS(on)} = 7.0 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 15 \text{ A}$ - RoHS Compliant ### **Applications** - Mobile Computing - Mobile Internet Devices - General Purpose Point of Load ### MOSFET MAXIMUM RATINGS (T_C = 25°C unless otherwise noted) | Symbol | Parameter | Q1 | Q2 | Unit | |-----------------------------------|---|--------------------------------------|--------------------------------------|------| | V_{DS} | Drain to Source Voltage | 30 | 30 | V | | V_{GS} | Gate to Source Voltage (Note 4) | ±12 | ±12 | V | | I _D | Drain Current: - Continuous, T _C = 25°C (Note 6) | 29 | 46 | Α | | | Continuous, T_C = 100°C (Note 6) Continuous, T_A = 25°C (Note 1a) Pulsed (Note 5) | 18
10
(Note 1a)
113 | 29
16
(Note 1b)
302 | | | E _{AS} | Single Pulse Avalanche
Energy (Note 3) | 24 | 54 | mJ | | P _D | Power Dissipation for Single Operation: $T_A = 25^{\circ}C$ $T_A = 25^{\circ}C$ | 1.9
(Note 1a)
0.7
(Note 1c) | 2.5
(Note 1b)
1.0
(Note 1d) | W | | T _J , T _{STG} | Operating and Storage Junction
Temperature Range | -55 to +150 | | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1 ### **Bottom** WDFN8 3x3 (Power 33) CASE 511DE **Dual N-Channel MOSFET** ### MARKING DIAGRAM &Z&2&K FDMC 7N30D &Z = Assembly Plant Code &2 = Data Code (Year & Week) &K = Lot Traceability Code FDMC7N30D = Specific Device Code ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------|----------------------|-----------------------| | FDMC007N30D | WDFN-8
(Power 33) | 3000 /
Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. ### THERMAL CHARACTERISTICS | Symbol | Parameter | Q1 | Q2 | Unit | |----------------|---|---------------|---------------|------| | $R_{ heta JC}$ | Thermal Resistance, Junction to Case | 8.2 | 6.1 | °C/W | | $R_{ heta JA}$ | Thermal Resistance, Junction to Ambient | 65 (Note 1a) | 50 (Note 1b) | | | | | 180 (Note 1c) | 125 (Note 1d) | | ### **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Symbol | Parameter | Test Condition | Туре | Min | Тур | Max | Unit | |---------------------------------------|---|--|----------|------------|--------------------|----------------------|-------| | OFF CHARA | ACTERISTICS | | <u>-</u> | <u>-</u> | - | <u>-</u> | | | BV _{DSS} | Drain to Source Breakdown
Voltage | $\begin{array}{c} I_D = 250 \; \mu A, \; V_{GS} = 0 \; V \\ I_D = 250 \; \mu A, \; V_{GS} = 0 \; V \end{array}$ | Q1
Q2 | 30
30 | | | V | | $\Delta BV_{DSS} / \Delta T_{J}$ | Breakdown Voltage Temperature
Coefficient | I_D = 250 μA, referenced to 25°C I_D = 250 μA, referenced to 25°C | Q1
Q2 | | 15
16 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 24 V, V _{GS} = 0 V | Q1
Q2 | | | 1
1 | μΑ | | I _{GSS} | Gate to Source Leakage Current,
Forward | $V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$ | Q1
Q2 | | | ±100
±100 | nA | | ON CHARA | CTERISTICS | | | | | | | | V _{GS(th)} | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_D = 250 \mu A$
$V_{GS} = V_{DS}, I_D = 250 \mu A$ | Q1
Q2 | 1.0
1.0 | 1.3
1.8 | 3.0
3.0 | V | | $ rac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage
Temperature Coefficient | I_D = 250 μA, referenced to 25°C I_D = 250 μA, referenced to 25°C | Q1
Q2 | | -4
-4 | | mV/°C | | R _{DS(on)} | Static Drain to Source On
Resistance | $V_{GS} = 10 \text{ V, } I_D = 10 \text{ A} \\ V_{GS} = 4.5 \text{ V, } I_D = 9 \text{ A} \\ V_{GS} = 10 \text{ V, } I_D = 10 \text{ A, } T_J = 125^{\circ}\text{C}$ | Q1 | | 7.7
8.9
10.8 | 11.6
13.3
16.3 | mΩ | | R _{DS(on)} | Static Drain to Source On
Resistance | V_{GS} = 10 V, I_{D} = 16 A
V_{GS} = 4.5 V, I_{D} = 15 A
V_{GS} = 10 V, I_{D} = 16 A, T_{J} = 125°C | Q2 | | 4.4
5.4
6.2 | 6.4
7.0
9.0 | mΩ | | 9FS | Forward Transconductance | V _{DD} = 5 V, I _D = 10 A
V _{DD} = 5 V, I _D = 16 A | Q1
Q2 | | 46
70 | | S | | DYNAMIC C | HARACTERISTICS | | | • | • | | • | | C _{iss} | Input Capacitance | V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz | Q1
Q2 | | 792
1685 | 1110
2360 | pF | | C _{oss} | Output Capacitance | | Q1
Q2 | | 230
467 | 325
655 | pF | | C _{rss} | Reverse Transfer Capacitance | | Q1
Q2 | | 20
36 | 30
50 | pF | | R_g | Gate Resistance | f = 1 MHz | Q1
Q2 | 0.1
0.1 | 2.0
1.2 | 4.0
2.4 | Ω | | SWITCHING | CHARACTERISTICS | | | | | | | | t _{d(on)} | Turn-On Delay Time | Q1
V _{DD} = 15 V, I _D = 10 A, | Q1
Q2 | | 7
10 | 14
20 | ns | | t _r | Rise Time | $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$ | Q1
Q2 | | 2 3 | 10
10 | ns | | t _{d(off)} | Turn-Off Delay Time | V _{DD} = 15 V, I _D = 16 A,
V _{GS} = 10 V, R _{GEN} = 6 Ω | Q1
Q2 | | 19
24 | 33
39 | ns | | t _f | Fall Time | | Q1
Q2 | | 2
3 | 10
10 | ns | ### ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued) | Symbol | Parameter | Test Condition | Туре | Min | Тур | Max | Unit | |-----------------|---------------------------------------|--|----------------------|-----|------------------------------|--------------------------|------| | SWITCHING | CHARACTERISTICS | | • | • | | | • | | $Q_{g(TOT)}$ | Total Gate Charge | $V_{GS} = 0 \text{ V to } 10 \text{ V}$ Q1
$V_{DD} = 15 \text{ V}$,
$V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_D = 10 \text{ A}$ | Q1
Q2 | | 12
24 | 17
34 | nC | | | | | Q1
Q2 | | 5.5
11 | 7.7
16 | nC | | Q_{gs} | Gate to Source Charge | Q2
V _{DD} = 15 V,
I _D = 16 A | Q1
Q2 | | 1.7
4.4 | | nC | | Q_{gd} | Gate to Drain "Miller" Charge | | Q1
Q2 | | 1.3
2.7 | | nC | | DRAIN-SOL | IRCE DIODE CHARACTERISTICS | • | | | | | | | V _{SD} | Source-Drain Diode Forward
Voltage | $ \begin{array}{c} V_{GS} = 0 \text{ V, } I_{S} = 10 \text{ A (Note 2)} \\ V_{GS} = 0 \text{ V, } I_{S} = 1.5 \text{ A (Note 2)} \\ V_{GS} = 0 \text{ V, } I_{S} = 16 \text{ A (Note 2)} \\ V_{GS} = 0 \text{ V, } I_{S} = 2 \text{ A (Note 2)} \\ \end{array} $ | Q1
Q1
Q2
Q2 | | 0.85
0.75
0.83
0.73 | 1.2
1.2
1.2
1.2 | V | | t _{rr} | Reverse Recovery Time | Q1
I _F = 10 A, di/dt = 100 A/μs | Q1
Q2 | | 17
27 | 31
42 | ns | | Q _{rr} | Reverse Recovery Charge | Q2
I _F = 16 A, di/dt = 100 A/μs | Q1
Q2 | | 5
10 | 10
20 | nC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 \times 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design. - Pulse Test: Pulse Width < 300 uS, Duty cycle < 2.0%. Q1: E_{AS} of 24 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 4 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 13 A. Q2: E_{AS} of 54 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 6 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 22 A. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied. Pulse Test: Pulse Width < 300 uS, Duty cycle < 2.0%. Pulse Test: Pulse Width < 300 uS, Duty cycle < 2.0%. - 6. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design. ### TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (T_{.I} = 25°C UNLESS OTHERWISE NOTED) Figure 1. On Region Characteristics vs. Drain Current and Gate Voltage Figure 3. Normalized On Resistance vs. Junction Temperature Figure 4. On-Resistance vs. Gate to Source Voltage Figure 5. Transfer Characteristics Figure 6. Source to Drain Diode Forward Voltage vs. Source Current ### TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (CONTINUED) (T_J = 25°C UNLESS OTHERWISE NOTED) Figure 7. Gate Charge Characteristics Figure 8. Capacitance vs. Drain to Source Voltage Figure 9. Unclamped Inductive Switching Capability Figure 10. Maximum Continuous Drain Current vs. Case Temperature Figure 11. Forward Bias Safe Operating Area Figure 12. Single Pulse Maximum Power Dissipation ### TYPICAL CHARACTERISTICS (Q1 N-CHANNEL) (CONTINUED) (T_J = 25°C UNLESS OTHERWISE NOTED) Figure 13. Junction-to-Ambient Transient Thermal Response Curve ### TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (T_{.I} = 25°C UNLESS OTHERWISE NOTED) Figure 14. On Region Characteristics Figure 15. Normalized On-Resistance vs. Drain Current and Gate Voltage Figure 16. Normalized On Resistance vs. Junction Temperature Figure 17. On-Resistance vs. Gate to Source Voltage Figure 18. Transfer Characteristics Figure 19. Source to Drain Diode Forward Voltage vs. Source Current ### TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (CONTINUED) (T_{.I} = 25°C UNLESS OTHERWISE NOTED) Figure 20. Gate Charge Characteristics Figure 21. Capacitance vs. Drain to Source Voltage Figure 22. Unclamped Inductive Switching Capability Figure 23. Maximum Continuous Drain Current vs. Case Temperature Figure 24. Forward Bias Safe Operating Area Figure 25. Single Pulse Maximum Power Dissipation ### TYPICAL CHARACTERISTICS (Q2 N-CHANNEL) (CONTINUED) (T_J = 25°C UNLESS OTHERWISE NOTED) Figure 26. Junction-to-Ambient Transient Thermal Response Curve ### WDFN8 3x3, 0.65P CASE 511DE ISSUE O **DATE 31 AUG 2016** RECOMMENDED LAND PATTERN # PIN #1 IDENT (8X) 0.37 1 4 0.57 0.47 0.41 0.06 1.04 0.94 0.94 0.94 0.10() C A B 0.05() C ### NOTES: - A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229 - B. DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994 **BOTTOM VIEW** | DOCUMENT NUMBER: | 98AON13621G | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|------------------|--|-------------|--|--| | DESCRIPTION: | WDFN8 3X3, 0.65P | | PAGE 1 OF 1 | | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales