Power Management IC

General Description

The MAX77826 is a subpower management IC for the latest 3G/4G smartphones and tablets. The MAX77826 contains a high-efficiency BUCK regulator, a BUCK BOOST regulator and 15 LDOs to power up peripherals. The MAX77826 also provides power on/off control logic and an I²C serial interface to program individual regulator output voltages and on/off control for complete flexibility.

The linear regulators support a remote cap feature and provide greater than 70dB PSRR and less than $45 \mu V_{RMS}$ noise.

The MAX77826 features I²C-compatible, 2-wire serial interface that comprises a bidirectional serial data line (SDA) and a serial clock line (SCL). The MAX77826 supports SCL clock rates up to 3.4MHz.

Applications

• GSM, GPRS, EDGE, CDMA WCDMA, and LTE Smartphones and Tablets

Ordering Information appears at end of data sheet.

Benefits and Features

- Compact Total Solution Size Allows More Peripheral Devices in Smartphones and Tablets
 - 3A High-Efficiency BUCK Regulator
 - DVS (Dynamic Voltage Scaling) Through HS I²C
 - ±1% (typ) Output Voltage DC Accuracy
 - Low Power Mode
 - 2A BUCK BOOST Regulator
 - 15 Linear Regulators with Remote Cap
 - 3 NMOS LDOs (V_{OUT} Range: 0.6V to 2.1875V with 12.5mV Step)
 - 1 x 150mA
 - 1 x 450mA
 - 1 x 600mA
 - 6 PMOSLV LDOs (V_{OUT} Range: 0.8V to 3.975V with 25mV Step)
 - 3 x 150mA
 - 3 x 300mA
 - 6 PMOSLS LDOs (V_{OUT} Range: 0.8V to 3.975V with 25mV Step)
 - 3 x 150mA
 - 3 x 300mA
 - ±1.5% Typical Output Voltage DC Accuracy
 - 70dB PSRR at 1kHz
 - Low Power Mode with 2µA (typ) for all LDOs
- Simple Management of Power-Up/Down Sequence, Output Voltage Setting, and Fault Detection
 - High-Speed (Up to 3.4MHz) I²C Serial Interface

Power Management IC

Absolute Maximum Ratings

SYS, V _{IO} , INL1, INL2, INL3,	
INL4, INL5 to GND	0.3V to +6.0V
INB to PGNDB	0.3V to +6.0V
INBB, OUTBB to PGNDBB	0.3V to +6.0V
PGNDB, PGNDBB to GND	0.3V to +0.3V
IRQB, CE, SDA, SCL to GND.	
FB_B, ENBB, ENB, ENL12,	
	0.3V to (V _{SYS} + 0.3V)
FB_BB to PGNDBB	0.3V to (V _{OUTBB} + 0.3V)
	0.3V to (V _{INB} + 0.3V)
	0.3V to (V _{INBB} + 0.3V)
LXBB2 to PGNDBB	0.3V to (V _{OUTBB} + 0.3V)

LDO1, LDO2 to GND0.3V to (V _{INL1} + 0.3V)
LDO3 to GND0.3V to (V _{INL2} + 0.3V)
LDO4, LDO5, LDO6, LDO7, LDO8,
LDO9 to GND0.3V to (V _{INL3} + 0.3V)
LDO10, LDO11 to GND0.3V to (V _{INL4} + 0.3V)
LDO12, LDO13, LDO14,
LDO15 to GND0.3V to (V _{INL5} + 0.3V)
LXB Continuous RMS Current (Note 1)3A
LXBB1/LXBB2 Continuous RMS Current (Note 1)
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Soldering Temperature (reflow)+260°C

Note 1: LX_ node has internal clamp diodes to PGND_ and INB_. Applications that give forward bias to these diodes should ensure that the total power loss does not exceed IC's package power dissipation limits.

Package Thermal Characteristics (Note 2)

WLP

Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

General Electrical Characteristics

(V_SYS = V_IN = +3.7V, V_IO = 1.8V, T_A = -40°C to +85°C, unless otherwise noted.)

VPARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Shutdown Supply Current	I _{SHDN_SYS}	CE = low		2.5	10	μA	
Standby Current	I _{Q_SYS}	CE = high and all regulators are off		35		μA	
Shutdown V _{IO} Current	I _{SHDN_VIO}	All regulators are off		0		μA	
No Load Supply Current 1	INO_LOAD1	BUCK is on in normal mode (no switching)		60		μΑ	
No Load Supply Current 2	I _{NO_LOAD2}	BUCK and BUCK BOOST are on in normal mode (no switching)	120		μA		
No Load Supply Current 3	I _{NO_LOAD3}	All regulators are on in normal mode (no switching)		400	700	μA	
V _{SYS} UNDERVOLTAGE LOCKO	UT						
V _{SYS} Undervoltage Lockout	V _{UVLO_R}	V _{SYS} rising	2.375	2.50	2.625		
Threshold	V _{UVLO_F}	V _{SYS} falling (default)		2.05		V	
REFERENCE							
REFBYP Output Voltage			0.786	0.80	0.814	V	
REFBYP Supply Rejection		$2.7V \le V_{SYS} \le 5.5V$		0.2		mV/V	

General Electrical Characteristics (continued)

(V_{SYS} = V_{IN} = +3.7V, V_{IO} = 1.8V, T_A = -40°C to +85°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
THERMAL SHUTDOWN		1		_		/		
Thermal Shutdown Threshold	T _{SHDN}	T _J rising, 15°C hyst		+165		°C		
Thermal Interrupt at +120°C	T ₁₂₀	T _J rising, 15°C hyst	eresis		+120		°C	
Thermal Interrupt at +140°C	T ₁₄₀	T _J rising, 15°C hyst	eresis		+140		°C	
LOGIC AND CONTROL INPUTS						`		
Input Low Level	VIL	ENB, ENBB, ENL12	$V_{SYS} \le 4.5V$ $T_A = +25^{\circ}C$			0.4	V	
		CE	T _A = +25°C			0.3 x V _{VIO}		
Input High Level	VIH	ENB, ENBB, ENL12	V _{SYS} ≤ 4.5V T _A = 25°C	1.2			V	
		CE	T _A = +25°C	0.7 x V _{VIO}				
Legie Innut Leekege Current		CE	T _A = +25°C	-1		+1		
Logic Input Leakage Current	ILEAK	(0V < V _{IO} < 1.8V)	T _A = +85°C		0.1		μA	
IRQB Output Low Voltage	V _{OL}	I _{SINK} = 1mA				0.4	V	
			T _A = +25°C	-1		+1		
IRQB Output High Leakage	I _{OZH}	V _{IO} = 5.5V	T _A = +85°C		0.1		μA	
INTERNAL PULLDOWN RESIST	ANCE	·						
ENB, ENBB, ENL12	R _{PD}	Pulldown resistor to	GND	400	800	1600	kΩ	

I²C Electrical Characteristics

(V_{SYS} = V_{IN} = +3.7V, V_{IO} = 1.8V, T_A = -40^{\circ}C to +85°C, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
VIO Voltage	V _{VIO}		1.7		3.6	V
SDA AND SCL I/O STAGES						
SCL, SDA Input High Voltage	V _{IH}		0.7 x V _{VIC})		V
SCL, SDA Input Low Voltage	V _{IL}				0.3 x V _{VIO}	V
SCL, SDA Input Hysteresis	V _{HYS}			0.05 x V _{VIC})	V
SCL, SDA Input Current	lj	V _{IO} = 3.7V	-10		+10	μA
SDA Output Low Voltage	V _{OL}	I _{SINK} = 20mA			0.4	V
SCL, SDA Pin Capacitance	CI			10		pF
Output Fall Time from V _{IO} to 0.3 x V _{IO}	t _{OF}				120	ns
I ² C-COMPATIBLE INTERFACE T	IMING (STAN	DARD, FAST, AND FAST MOD	E PLUS) (Note	3)		
Clock Frequency	fSCL				1000	kHz
Hold Time (REPEATED) START Condition	^t HD;STA		0.26			μs
CLK Low Period	t _{LOW}		0.5			μs
CLK High Period	t _{HIGH}		0.26			μs
Setup Time REPEATED START Condition	t _{SU;STA}		0.26			μs
DATA Hold Time	t _{HD:DAT}		0			μs
DATA Setup Time	t _{SU;DAT}		50			ns
Setup Time for STOP Condition	^t su;sto		0.26			μs
Bus-Free Time Between STOP and START	t _{BUF}		0.5			μs
Capacitive Load for Each Bus Line	CB				550	pF
Maximum Pulse Width of Spikes That Must Be Suppressed by the Input Filter				50		ns

I²C Electrical Characteristics (continued)

(V_{SYS} = V_{IN} = +3.7V, V_{IO} = 1.8V, T_A = -40^{\circ}C to +85°C, unless otherwise noted.) (Note 5)

DADAMETED	SYMBOL		C	C _B = 100p	ρF	C	_B = 400p	F	
PARAMETER	STWBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
I ² C-COMPATIBLE INTERF	ACE TIMING (H	IS MODE)							
Clock Frequency	fSCL				3.4			1.7	MHz
Set-Up Time REPEATED START Condition	t _{SU;STA}		160			160			ns
Hold Time (REPEATED) START Condition	t _{HD;STA}		160			160			ns
CLK Low Period	t _{LOW}		160			320			ns
CLK High Period	t _{HIGH}		60			120			ns
DATA Setup time	t _{SU:DAT}		10			10			ns
DATA Hold Time	thd:dat			35			75		ns
SCL Rise Time (Note 3)	^t RCL	T _A = +25°C	10		40	20		80	ns
Rise Time of SCL Signal After a REPEATED START Condition and After an Acknowledge Bit (Note 3)	t _{rCL1}	T _A = +25°C	10		80	20		160	ns
SCL Fall Time (Note 3)	^t fCL	T _A = +25°C	10		40	20		80	ns
SDA Rise Time (Note 3)	t _{rDA}	T _A = +25°C			80			160	ns
SDA Fall Time (Note 3)	t _{fDA}	T _A = +25°C			80			160	ns
Set-Up Time for STOP Condition	t _{SU;STO}		160			160			ns
Capacitive Load for Each Bus Line	CB				100			400	pF
Maximum Pulse Width of Spikes That Must Be Suppressed by the Input Filter				10			10		ns

BUCK Electrical Characteristics

 $(V_{SYS} = V_{INB} = +3.7V, V_{FB_B} = V_{OUT} = 1.25V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ typical values are at } T_A = +25^{\circ}C, \text{ unless otherwise noted.}) (Note 4)$

PARAMETER	CONDITIONS			TYP	MAX	UNITS	
Input Voltage Range	Parametric				5.5	V	
Shutdown Supply Current (Note 3)						μA	
Supply Quiescent Current (Note 3)	No switching, No load					μA	
. ,		Low power mode	0.5	8	1.0	V	
Output Voltage Range	I ² C-programmable 6.25m		0.5		1.8	V	
Output Voltage Accuracy	V_{INB} = 2.6V to 4.5V, V_{OUT} = 1.25V, no load	PWM mode, T _A = +25°C Low power mode	-1.0 -3.0		+1.0	%	
Line Regulation	V _{INB} = 2.6V to 4.5V	I		0.200		%/V	
Load Regulation (Note 3)	V _{OUT} = 1.25V			0.125		%/A	
Transient Load Response, VDROOP (Note 3)	V _{OUT} = 1.25V, IOUT chan COUT_ACTUAL = 22µF, L	ges from 0A to 1.5A in 6µs, . = 0.47µH		-50		mV	
Soft-Start Slew Rate				14		mV/µs	
	RAMP[1:0] = 00b (default)		12.5				
Output Voltage Ramp-Up Slew Rate	RAMP[1:0] = 01b	RAMP[1:0] = 01b				mV/µs	
	RAMP[1:0] = 10b			50			
	RAMP[1:0] = 11b			100]	
Maximum Quitaut Quimant	Normal mode	3000					
Maximum Output Current	Low power mode			10		mA	
Peak Current Limit			3.30	4.25	5.50	A	
Valley Current Limit				3.825		A	
Negative Current Limit				1.000		A	
N-FET Zero-Crossing Threshold	Skip mode			20		mA	
Switching Frequency			1.8	2	2.2	MHz	
Turn-On Delay Time	EN signal to LX switching	with bias ON		30		μs	
HS PMOS RDSON	V_{INB} = 3.7V, INB to LX, I _L	ς = 200mA		60		mΩ	
LS NMOS RDSON	V _{INB} = 3.7V, LX to PGNDE	3, I _{LX} = 200mA		35		mΩ	
Output Active Discharge Resistance	Output disabled, resistance	Output disabled, resistance from FB_B to PGNDB				Ω	
L X Laakara		T _A = +25°C	-1	0.1	+1		
LX Leakage	$V_{LXB} = 5.5V \text{ or } 0V$ $T_A = +85^{\circ}C$			1		μA	
POWER-OK COMPARATOR							
Output POK Trip Level	V _{OUT} POK rising threshold	Ł		90		%	
Output POK Hysteresis	V _{OUT} when V _{POK} switche	S		5		%	

BUCK BOOST Electrical Characteristics

 $(V_{INBB} = +3.7V, V_{OUTBB} = +3.5V, T_A = -40^{\circ}C$ to +85°C, typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 5)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS	
GENERAL								
Operating Input Voltage Range	Supplied from Vg	SYS		2.6		5.5	V	
	V _{INBB} = 5.5V,		T _A = +25°C		0.01			
Shutdown Supply Current	V _{OUTBB} = 0V		T _A = +85°C		1		μA	
	Enabled, no	HSKIP mod	de (no switching)		60		μA	
Input Supply Current	load	oad FPWM mode (switching)			9		mA	
Active Discharge Resistance					100		Ω	
Thermal Shutdown	T _A rising, 20°C h	ysteresis			+165		°C	
H-BRIDGE	1							
	V _{INBB} = 3.0V, V ₀	OUTBB = 3.5	V	2000				
Maximum Output Current (Note 6)	V _{INBB} = 2.6V, V ₀	OUTBB = 3.5	V	1500			mA	
Default Output Voltage	No load, BB_VO	UT[6:0] = 0x	48		3.5		V	
		0.40	PWM mode	-1.0		+1.0		
Output Voltage Accuracy	BB_VOUT[6:0] = no load	• 0x48,	HSKIP mode T _A = +25°C	-1.0		+4.0	%	
Output Voltage Range	I ² C programmab	le (12.5mV :	step)	2.6		4.1875	V	
Line Regulation	V _{INBB} = 2.6V to	5.5V			0.200		%/V	
Load Regulation (Note 3)	V _{OUTBB} = 3.5V				0.125		%/A	
Transient Load Response, V _{DROOP} (Note 3)	V _{INBB} = 3.8V, V ₍ I _{OUT} changes fro ACTUAL = 47µF	om 10mA to	V, 1A in 10µs, C _{OUT} _		-100		mV	
		BB_OV	′P_TH[1:0] = 01b		110			
Output Overvoltage Threshold	With respect to	BB_OV	′P_TH[1:0] = 10b		115		%	
ouput overvoltage Threshold	V _{OUTBB}	BB_OV (default	'P_TH[1:0] = 11b :)		120		70	
0.11.1.5	2-phase BUCK c	or BOOST m	ode	1.6	1.8	2.0		
Switching Frequency	3-phase mode				0.9		MHz	
LXBB1, LXBB2 Leakage Current	V _{LXBB1/2} = 0V o V _{OUTBB} = 5.5V,		T _A = +25°C		0.1	1	ΠA	
EXED T, EXEDZ LOakaye Ourient	$V_{\rm INBB} = 5.5V$	· 515 -	T _A = +85°C		0.2		μA	
LXBB1/2 Current Limit			1	3.5	4.5	5.5	Α	
PMOS On-Resistance	I _{LXBB} = 100mA,	per switch			65		mΩ	
NMOS On-Resistance	I _{LXBB} = 100mA,	per switch			55		mΩ	

BUCK BOOST Electrical Characteristics (continued)

 $(V_{INBB} = +3.7V, V_{OUTBB} = +3.5V, T_A = -40^{\circ}C$ to +85°C, typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 5)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum Effective Output Capacitance	0μA < I _{OUT} < 2000mA	mA 16			μF
Turn-On Delay Time	From ENBB asserting to LXBB Switching with bias on		6		
Soft-Start Time	V _{OUTBB} = 3.5V, I _{OUT} = 10mA		40		μs
POWER-OK COMPARATOR					
Output POK Trip Level	V _{OUTBB POK} rising threshold		80		%
Output POK Hysteresis	V _{OUT} when V _{POK} switches		5		%

LDO Electrical Characteristics

LDO NO.	TYPE	V _{OUT} RANGE (V)	STEP SIZE (mV)	I _{OUT} (max, mA)	DEFAULT V _{OUT} (V)	DEFAULT ON/OFF	INPUT PIN	C _{OUT} (μF)
1	NMOS	0.6–2.1875	12.5	600	1.0	Off	INL1	4.7
2	NMOS	0.6–2.1875	12.5	150	1.0	Off	INL1	1
3	NMOS	0.6–2.1875	12.5	450	1.0	Off	INL2	4.7
4	PMOSLV	0.8–3.975	25	300	1.5	Off	INL3	4.7
5	PMOSLV	0.8–3.975	25	300	1.8	Off	INL3	4.7
6	PMOSLV	0.8–3.975	25	150	1.8	Off	INL3	2.2
7	PMOSLV	0.8–3.975	25	300	1.8	Off	INL3	4.7
8	PMOSLV	0.8–3.975	25	150	1.8	Off	INL3	2.2
9	PMOSLV	0.8–3.975	25	150	1.8	Off	INL3	2.2
10	PMOSLS	0.8–3.975	25	300	2.8	Off	INL4	2.2
11	PMOSLS	0.8–3.975	25	150	2.8	Off	INL4	2.2
12	PMOSLS	0.8–3.975	25	300	3.3	Off	INL5	2.2
13	PMOSLS	0.8–3.975	25	300	3.3	Off	INL5	2.2
14	PMOSLS	0.8–3.975	25	150	3.3	Off	INL5	2.2
15	PMOSLS	0.8–3.975	25	150	3.3	Off	INL5	2.2

Note: LDO12 can also be enabled/disabled by external logic inputs, ENL12.

LDO1 (600mA NMOS)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0 \mu F, C_{OUT} = 4.7 \mu F, C_{REFBYP} = 100 nF, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}) (Note 5)$

PARAMETER	CONDIT	TIONS	MIN	TYP	MAX	UNITS	
	V _{INLx} must be lower than or e	equal to V _{SYS}	V _{OUT}		V _{SYS}		
Input Voltage Range	V _{SYS}	2.6		5.5	V		
	(Note 7)	1.5					
	Normal mode, no load		2				
Input Supply Current	Low power mode, no load		2		μA		
	Shutdown	Shutdown					
	Normal mode, no load			30			
System Supply Current	Low power mode, no load			4		μA	
	Shutdown		< 0.1				
	Minimum V _{OUT} , Lx_VOUT[6:	0] = 7'h00		0.6			
Output Voltage Programming	Maximum V _{OUT} , Lx_VOUT[6		2.1875		V		
	Least significant step size	int step size					
Output Voltage Accuracy	$V_{SYS} \ge V_{OUT} + 1.5V$ ($V_{SYSMIN} = 2.6V$),	Normal mode $I_{OUT} = 0.1 \text{mA to } I_{MAX}$	-2		+2	0/	
	$V_{INLx} = V_{OUT} + 0.3V$ to V _{SYS}	Low power mode I _{OUT} = 0.1mA to 5mA	-5		+5	%	
Maximum Output Current	Normal mode						
(Note 8)	Low power mode		5			mA	
	V _{SYS} ≥ V _{OUT} + 1.5V	Normal mode I _{OUT} = 0.1mA to I _{MAX}		0.5		0/	
Load Regulation	$(V_{SYSMIN} = 2.6V)$	Low power mode I _{OUT} = 0.1mA to 5mA	0.5			- %	
	V _{SYS} ≥ V _{OUT} + 1.5V	Normal mode		0.05			
Line Regulation	(V _{SYSMIN} = 2.6V), I _{OUT} = 0.1mA	Low power mode		0.05		%/V	
Drenout Voltogo	Normal mode, I _{OUT} = I _{MAX} ,	V _{SYS} - V _{OUT} = 2.5V		60	150		
Dropout Voltage	$V_{DO} = V_{INLx} - V_{OUT}$	V _{SYS} - V _{OUT} = 1.5V		100		mV	
Output Ourront Limit	V _{OUT} = 90% of	Normal mode		900	1800		
	utput Current Limit VOUT (TARGET)			10		mA	
Output Capacitance for Stability	DCR < 200mΩ, ESL < 20nH	(Note 9)	2.35	4.7		μF	

LDO1 (600mA NMOS) (continued)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0 \mu F, C_{OUT} = 4.7 \mu F, C_{REFBYP} = 100 nF, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}) (Note 5)$

PARAMETER	CONDIT	IONS	MIN	TYP	MAX	UNITS	
		$V_{SYS} = 2.7V,$ $V_{INLx} = 1.2V,$ $V_{OUT} = V_{OUTMIN}$		30			
Output Noise	Normal mode, f = 10Hz to 100kHz, I _{OUT} = 10% of I _{MAX}	V _{SYS} = 2.7V, V _{INLx} = 1.8V, V _{OUT} = 1.0V		60		μV _{RMS}	
		V _{SYS} = V _{INLx} = 5.5V, V _{OUT} = V _{OUTMAX}		60			
Power Supply Rejection	Normal mode, f = 1kHz, I _{OUT}	= 30mA		70		dB	
Output Load Transient	Normal mode, V _{SYS} = 3.7V, V _{INLx} = 1.8V, V _{OUT} = 1.0V,	C _{OUT} = 4.7µF		±5		- %	
	I_{OUT} = 1mA to ½ x I_{MAX} to 1mA, t _{RISE} = t _{FALL} = 1µs	C _{OUT} = 10μF		±3		70	
	Normal mode, $V_{OUT} = 1.0V$,	$V_{SYS} = V_{INLx} = 3.7V$ to 3.2V to 3.7V		5	mV		
Output Line Transient	I _{OUT} = 1mA, t _{RISE} = t _{FALL} = 5μs	V _{SYS} = 3.7V, V _{INLx} = 1.8V to 1.5V to 1.8V		5		mv	
Output Startup Ramp Rate	10% to 90%			30		mV/µs	
Turn-On Delay Time	From Lx_EN = 1 to output risi 300µs prior to LDO being ena	•		5		μs	
Output Overshoot during Startup Overshoot				50		mV	
Output Active Discharge Resistance	(Note 10)			100		Ω	
Thermal Chutdeum	T _J rising	165		- °C			
Thermal Shutdown	T _J falling		150				
POWER-OK COMPARATOR							
Output POK Trip Level	Rising edge, V_{OUT} when V_{PC}	oK switches		87.5		%	
Output POK Hysteresis	$V_{\mbox{OUT}}$ when $V_{\mbox{POK}}$ switches			5		%	

LDO2 (150mA NMOS)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0 \mu F, C_{OUT} = 1.0 \mu F, C_{REFBYP} = 100 nF, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}) (Note 5)$

PARAMETER	CON	DITIONS	MIN	TYP	MAX	UNITS
	V _{INLx} must be lower than o	r equal to V _{SYS}	V _{OUT}		V _{SYS}	
Input Voltage Range	V _{SYS}		2.6		5.5	V
	(Note 7)		1.5			
	Normal mode, no load			2		
Input Supply Current	Low power mode, no load			2		μA
	Shutdown	Shutdown		< 0.1		
	Normal mode, no load			25		
System Supply Current	Low power mode, no load			3		μA
	Shutdown			< 0.1		
	Minimum V _{OUT} , Lx_VOUT[6:0] = 7'h00			0.6		
Output Voltage Programming	Maximum V _{OUT} , Lx_VOUT[6:0] = 7'h7F			2.1875		V
	Least significant step size			0.0125		
Output Voltage Accuracy	V _{SYS} ≥ V _{OUT} + 1.5V (V _{SYSMIN} = 2.6V),	Normal mode I _{OUT} = 0.1mA to I _{MAX}	-2		+2	%
	$V_{INLx} = V_{OUT} + 0.3V$ to V_{SYS}	Low power mode I _{OUT} = 0.1mA to 5mA	-5		+5	90
Maximum Output Current	Normal mode		150			
(Note 8)	Low power mode	Low power mode				mA
	V _{SYS} ≥V _{OUT} + 1.5V	Normal mode I _{OUT} = 0.1mA to I _{MAX}		0.5		%
Load Regulation	(V _{SYSMIN} = 2.6V)	Low power mode I _{OUT} = 0.1mA to 5mA		0.5		%
	V _{SYS} ≥ V _{OUT} + 1.5V	Normal mode		0.05		
Line Regulation	(V _{SYSMIN} = 2.6V), I _{OUT} = 0.1mA	Low power mode		0.05		%/V
	Normal mode,	V _{SYS} - V _{OUT} = 2.5V		60	150	
Dropout Voltage	I _{OUT} = I _{MAX} , V _{DO} = V _{INLx} - V _{OUT}	V _{SYS} - V _{OUT} = 1.5V		100		mV
Output Current Limit	V _{OUT} = 90% of V _{OUT}	Normal mode		225	450	mA
Output Current Limit	(TARGET)	Low power mode		10		
Output Capacitance for Stability	DCR < 200mΩ, ESL < 20nł	H (Note 9)	0.5	1.0		μF

LDO2 (150mA NMOS) (continued)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0 \mu F, C_{OUT} = 1.0 \mu F, C_{REFBYP} = 100 nF, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}) (Note 5)$

PARAMETER	CONDI	TIONS	MIN	TYP	MAX	UNITS
		V _{SYS} = 2.7V, V _{INLx} = 1.2V, V _{OUT} = V _{OUTMIN}		30		
Output Noise	Normal mode, f = 10Hz to 100kHz, I _{OUT} = 10% of I _{MAX}	V _{SYS} = 2.7V, V _{INLx} = 1.8V, V _{OUT} = 1.0V		60		μV _{RMS}
		$V_{SYS} = V_{INLx} = 5.5V,$ $V_{OUT} = V_{OUTMAX}$		60		
Power Supply Rejection	Normal mode, f = 1kHz, I _{OUT}	= 30mA		70		dB
Output Load Transient	Normal mode, V _{SYS} = 3.7V, V _{INLx} = 1.8V, V _{OUT} = 1.0V,	C _{OUT} = 1.0µF		±5		%
(ΔV/V _{OUT})	I_{OUT} = 1mA to ½ x I_{MAX} to 1mA, t_{RISE} = t_{FALL} = 1µs	C _{OUT} = 10µF		±3		70
- · · · · - · · ·	Normal mode, V _{OUT} = 1.0V, I _{OUT} = 1mA, t _{RISE} = t _{FALL} = 5µs	V _{SYS} = V _{INLx} = 3.7V to 3.2V to 3.7V		5		- mV
Output Line Transient		V _{SYS} = 3.7V, V _{INLx} = 1.8V to 1.5V to 1.8V		5		mv
Output Startup Ramp Rate	10% to 90%			30		mV/µs
Turn-On Delay Time	From Lx_EN = 1 to output risi 300µs prior to LDO being ena	•		5		μs
Output Overshoot During Startup Overshoot				50		mV
Output Active Discharge Resistance	(Note 10)			100		Ω
The sum of Obsideless m	T _J rising			165		°C
Thermal Shutdown	T _J falling	T _J falling		150		
POWER-OK COMPARATOR						
Output POK Trip Level	Rising edge, V _{OUT} when V _{PC}	_{DK} switches		87.5		%
Output POK Hysteresis	$V_{\mbox{OUT}}$ when $V_{\mbox{POK}}$ switches			5		%

LDO3 (450mA NMOS)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0 \mu F, C_{OUT} = 4.7 \mu F, C_{REFBYP} = 100 nF, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}) (Note 5)$

PARAMETER	CONDIT	IONS	MIN	TYP	MAX	UNITS
	V _{INLx} must be lower than or eq	ual to V _{SYS}	V _{OUT}		V _{SYS}	
Input Voltage Range	V _{SYS}		2.6		5.5	V
	(Note 7)		1.5			
	Normal mode, no load			2		
Input Supply Current	Low power mode, no load	Low power mode, no load		2		μA
	Shutdown			< 0.1		
	Normal mode, no load		25			
System Supply Current	Low power mode, no load	Low power mode, no load		3		μA
	Shutdown	Shutdown				
	Minimum V _{OUT} , Lx_VOUT[6:0]	= 7'h00		0.6		
Output Voltage Programming	Maximum V _{OUT} , Lx_VOUT[6:0] = 7'h7F			2.1875		V
	Least significant step size			0.0125		
Output Voltage Accuracy	$V_{SYS} \ge V_{OUT} + 1.5V$ ($V_{SYSMIN} = 2.6V$),	Normal mode I _{OUT} = 0.1mA to I _{MAX}	-2		+2	%
		Low power mode I _{OUT} = 0.1mA to 5mA	-5		+5	70
Maximum Output Current	Normal mode	·	450			
(Note 8)	Low power mode		5			mA
Lood Degulation	V _{SYS} ≥V _{OUT} + 1.5V	Normal mode I _{OUT} = 0.1mA to I _{MAX}		0.5		%
Load Regulation	$(V_{SYSMIN} = 2.6V)$	Low power mode I _{OUT} = 0.1mA to 5mA		0.5		90
	V _{SYS} ≥V _{OUT} + 1.5V	Normal mode		0.05		
Line Regulation	(V _{SYSMIN} = 2.6V), I _{OUT} = 0.1mA	Low power mode		0.05		%/V
Dropout Voltage	Normal Mode, I _{OUT} = I _{MAX} ,	V _{SYS} - V _{OUT} = 2.5V		60	150	mV
Diopodi volidge	$V_{DO} = V_{INLx} - V_{OUT}$	V _{SYS} - V _{OUT} = 1.5V		100		
Output Current Limit	V _{OUT} = 90% of V _{OUT}	Normal mode		675	1350	mA
Output Current Limit	(TARGET)	Low power mode		10		mA
Output Capacitance for Stability	DCR < 200mΩ, ESL < 20nH (Note 9)		2.35	4.7		μF

LDO3 (450mA NMOS) (continued)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0 \mu F, C_{OUT} = 1.0 \mu F, C_{REFBYP} = 100 nF, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}) (Note 5)$

PARAMETER	(CONDIT	IONS	MIN	ТҮР	MAX	UNITS	
			$V_{SYS} = 2.7V,$ $V_{INLx} = 1.2V,$ $V_{OUT} = V_{OUTMIN}$		30			
Output Noise	Normal mode, f = 10Hz to 100kHz, I _{OUT} = 10% of I _{MAX}		V _{SYS} = 2.7V, V _{INLx} = 1.8V, V _{OUT} = 1.0V		60		μV _{RMS}	
			V _{SYS} = V _{INLx} = 5.5V, V _{OUT} = V _{OUTMAX}		60			
Power-Supply Rejection	Normal mode, f = 1kHz	<u>z</u> , I _{OUT} =	: 30mA		70		dB	
Output Load Transient	Normal mode, V _{SYS} = V _{INLx} = 1.8V, V _{OUT} = 1	Normal mode, $V_{SYS} = 3.7V$, VINIX = 1.8V. VOLT = 1.2V.			±5		- %	
(ΔV/V _{OUT})	$I_{OUT} = 1$ mA to $\frac{1}{2}$ x I_{MAX} to		C _{OUT} = 10µF		±3		70	
	Normal mode, V _{OUT} 3.7V = 1.2V, I _{OUT} = 1mA,		= V _{INLx} = 3.7V to 3.2V to		5			
Output Line Transient			= 3.7V, V _{INLx} = 1.8V to 1.5V /		5		- mV	
Output Startup Ramp Rate	10% to 90%				30		mV/µs	
Turn-On Delay Time	From Lx_EN = 1 to out 300µs prior to LDO bei				5		μs	
Output Overshoot during Startup Overshoot					50		mV	
Output Active Discharge Resistance	(Note 10)				100		Ω	
The survey of Ohenstelessure	T _J rising				165		- °C	
Thermal Shutdown	T _J falling				150			
POWER-OK COMPARATOR	·							
Output POK Trip Level	Rising edge, V _{OUT} whe	en V _{POk}	switches		87.5		%	
Output POK Hysteresis	V _{OUT} when V _{POK} swite	ches			5		%	

LDO4, LDO5 and LDO7 (300mA PMOSLV)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0\mu$ F, $C_{OUT} = 4.7\mu$ F, $C_{REFBYP} = 100$ nF, $T_A = -40^{\circ}$ C to +85°C, unless otherwise noted.) (Note 5)

PARAMETER	CON	NDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range	V _{INLx} must be lower than	or equal to V _{SYS}	1.7		V _{SYS}	V
	Normal mode, no load			15		
Input Supply Current	Low power mode, no load	1		1.5		μA
	Shutdown	Shutdown		< 0.1		
	Normal mode, no load	Normal mode, no load		3		
System Supply Current	Low power mode, no load	1		0.3		μA
	Shutdown			< 0.1	-	
	Minimum V _{OUT} , Lx_VOU	T[6:0] = 7'h00		0.8		
Output Voltage Programming	Maximum VOUT, Lx_VOU	JT[6:0] = 7'h7F		3.975		V
	Least significant step size	ficant step size		0.025	-	
	V _{INLx} = V _{OUT} + 0.3V to	Normal mode I _{OUT} = 0.1mA to I _{MAX}	-2		+2	0/
Output Voltage Accuracy	V _{SYS}	Low power mode I _{OUT} = 0.1mA to 5mA	-5		+5	%
Maximum Output Current	Normal mode	1	300		-	
(Note 8)	Low power mode		5		mA	
Land Damidation		Normal mode I _{OUT} = 0.1mA to I _{MAX}		0.5		0/
Load Regulation	V _{INLx} = V _{OUT} + 0.3V	Low power mode I _{OUT} = 0.1mA to 5mA		0.5		%
Line Demulation	V _{INLx} = V _{OUT} + 0.3V to	Normal mode		0.05		0/ 0/
Line Regulation	V _{SYS} , I _{OUT} = 0.1mA	Low power mode		0.05		%/V
DennesthVallage	Normal mode, V _{SYS} = 3.7V,	V _{INLx} = 3.7V		60	150	
Dropout Voltage	I _{OUT} = I _{MAX} , V _{DO} = V _{INLx} - V _{OUT}	V _{INLx} = 1.7V		100		mV
Output Current Limit	V _{OUT} = 90% of	Normal mode		600	1120	In A
Output Current Limit	V _{OUT(TARGET)}	Low power mode		40		mA
Output Capacitance for Stability	DCR < 200mΩ, ESL < 20 (Note 9)	nH	2.35	4.7		μF

LDO4, LDO5 and LDO7 (300mA PMOSLV) (continued)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0\mu$ F, $C_{OUT} = 4.7\mu$ F, $C_{REFBYP} = 100$ nF, $T_A = -40^{\circ}$ C to +85°C, unless otherwise noted.) (Note 5)

PARAMETER	CON	IDITIONS	MIN	TYP	MAX	UNIT
		$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = V_{OUTMIN}$		25		
		$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = 1.0V$		30		
Output Noise	Normal mode, f = 10Hz to 100kHz, I _{OUT} = 10% of I _{MAX}	$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = 2.0V$		40		μV _{RMS}
		$V_{SYS} = V_{INLx} = 3.7V,$ $V_{OUT} = 3.0V$		60		
		V _{SYS} = V _{INLx} = 5.5V, V _{OUT} = V _{OUTMAX}		60		
Power Supply Rejection	Normal mode, f = 1kHz, I	_{DUT} = 30mA		70		dB
Output Load Transient (ΔV/V _{OUT})	Normal mode, V _{SYS} = V _{INLx} = 3.7V, V _{OUT} = default,	C _{OUT} = 4.7µF		±5		- %
	I_{OUT} = 1mA to ½ x I_{MAX} to 1mA, t_{RISE} = t_{FALL} = 1µs	С _{ОՍТ} = 10µF		±3		
Output Line Transient	Normal mode, V _{OUT} = 1.2V,	V _{SYS} = V _{INLx} = 3.7V to 3.2V to 3.7V		5		
Output Line Transient	$I_{OUT} = 1mA,$ $t_{RISE} = t_{FALL} = 5\mu s$	V _{SYS} = 3.7V, V _{INLx} = 2.0V to 1.7V to 2.0V		5		- mV
Output Startup Ramp Rate	10% to 90%			30		mV/µs
Turn-On Delay Time	From Lx_EN = 1 to output 300µs prior to LDO being	t rising, REFBYP enabled > enabled		5		μs
Output Over-shoot during Startup Over-shoot				50		mV
Output Active Discharge Resistance	(Note 10)			100		Ω
The sum of Chutdeyur	T _J rising			+165		- °C
Thermal Shutdown				+150		
POWER-OK COMPARATOR						
Output POK Trip Level	Rising edge, V _{OUT} when	V _{POK} switches		87.5		%
Output POK Hysteresis	V _{OUT} when V _{POK} switche	es		3		%

LDO6, LDO8, and LDO9 (150mA PMOSLV)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0\mu\text{F}, C_{OUT} = 2.2\mu\text{F}, C_{REFBYP} = 100\text{nF}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}) (Note 5)$

PARAMETER	CONDIT	IONS	MIN	TYP	MAX	UNITS	
Input Voltage Range	V _{INLx} must be lower than or e	equal to V _{SYS}	1.7		V _{SYS}	V	
	Normal mode, no load			15			
Input Supply Current	Low power mode, no load			1.5		μA	
	Shutdown			< 0.1			
	Normal mode, no load			3			
System Supply Current	Low power mode, no load			0.3		μA	
	Shutdown	Shutdown		< 0.1			
	Minimum V _{OUT} , Lx_VOUT[6:	0] = 7'h00		0.8			
Output Voltage Programming	Maximum V _{OUT} , Lx_VOUT[6:0] = 7'h7F			3.975		V	
	Least significant step size			0.025			
Output Voltage Accuracy	V _{INLx} = V _{OUT} + 0.3V	Normal mode I _{OUT} = 0.1mA to I _{MAX}	-2		+2	%	
	to V _{SYS}	Low power mode I _{OUT} = 0.1mA to 5mA,	-5		+5	%	
Maximum Output Current	Normal mode		150				
(Note 8)	Low power mode		5			mA	
Lood Doculation		Normal mode I _{OUT} = 0.1mA to I _{MAX}		0.5		. %	
Load Regulation	V _{INLx} = V _{OUT} + 0.3V	Low power mode I _{OUT} = 0.1mA to 5mA		0.5		%	
	$V_{INLx} = V_{OUT} + 0.3V$ to	Normal mode		0.05		0/ 0/	
Line Regulation	V _{SYS} , I _{OUT} = 0.1mA	Low power mode		0.05		%/V	
Dropout Voltage	Normal mode, V _{SYS} = 3.7V,	V _{INLx} = 3.7V		60	150	mV	
Biopour voltage	I _{OUT} = I _{MAX} , V _{DO} = V _{INLx} - V _{OUT}	V _{INLx} = 1.7V		100			
Output Current Limit	V _{OUT} = 90% of	Normal mode		300	560	mA	
	V _{OUT(TARGET)}	Low power mode		40			
Output Capacitance for Stability	DCR < 200mΩ, ESL < 20nH (Note 9)		1.1	2.2		μF	

LDO6, LDO8, and LDO9 (150mA PMOSLV) (continued)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0\mu\text{F}, C_{OUT} = 2.2\mu\text{F}, C_{REFBYP} = 100\text{nF}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}) (Note 5)$

PARAMETER	CONDI	TIONS	MIN	TYP	MAX	UNITS
		$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = V_{OUTMIN}$		25		
		$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = 1.0V$		30		
Output Noise	Normal mode, f = 10Hz to 100kHz, I _{OUT} = 10% of I _{MAX}	$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = 2.0V$		40		μV _{RMS}
		$V_{SYS} = V_{INLx} = 3.7V,$ $V_{OUT} = 3.0V$		60		
		V _{SYS} = V _{INLx} = 5.5V, V _{OUT} = V _{OUTMAX}		60		
Power Supply Rejection	Normal mode, f = 1kHz, I _{OUT}	= 30mA		70		dB
Output Load Transient (ΔV/V _{OUT})	Normal mode, $V_{SYS} = V_{INLx} = 3.7V$,	C _{OUT} = 2.2µF		±5		- %
	V _{OUT} = default, I _{OUT} = 1mA to ½ x IMAX to 1mA, t _{RISE} = t _{FALL} = 1µs	C _{OUT} = 10µF		±3		70
Output Line Transient	Normal mode, V _{OUT} = 1.2V,	$V_{SYS} = V_{INLx} = 3.7V$ to 3.2V to 3.7V		5		- mV
	I _{OUT} = 1mA, t _{RISE} = t _{FALL} = 5μs	V _{SYS} = 3.7V, V _{INLx} = 2.0V to 1.7V to 2.0V		5		
Output Startup Ramp Rate	10% to 90%			30		mV/μs
Turn-On Delay Time	From Lx_EN = 1 to output ris 300µs prior to LDO being ena	•		5		μs
Output Overshoot During Startup Overshoot				50		mV
Output Active Discharge Resistance	(Note 10)			100		Ω
Thermal Shutdown	T _J rising			+165		- °C
	T _J falling	T _J falling		+150		
POWER-OK COMPARATOR						
Output POK Trip Level	Rising edge, V _{OUT} when V _{PC}	_{DK} switches		87.5		%
Output POK Hysteresis	$V_{\mbox{OUT}}$ when $V_{\mbox{POK}}$ switches			3		%

LDO11, LDO14 and LDO15 (150mA PMOSLS)

 $(V_{SYS} = +3.7V, C_{SYS} = 1.0 \mu F, C_{OUT} = 2.2 \mu F, C_{REFBYP} = 100 nF, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}) (Note 5)$

PARAMETER	CON	DITIONS	MIN	TYP	MAX	UNITS
Innut Veltage Denge	V _{INLx}		2.6		5.5	V
Input Voltage Range	V _{SYS}		2.6		5.5	v
	Normal mode, no load	Normal mode, no load		15		
Input Supply Current	Low power mode, no load			4		μA
	Shutdown			< 0.1		
	Normal mode, no load			3.25		
System Supply Current	Low power mode, no load	Low power mode, no load		0.85		μA
	Shutdown	Shutdown		< 0.1		
	Minimum V _{OUT} , Lx_VOUT	[[6:0] = 7'h00		0.8		
Output Voltage Programming	Maximum V _{OUT} , Lx_VOUT[6:0] = 7'h7F			3.975		V
	Least significant step size	Least significant step size		0.025		
Output Voltage Accuracy	V _{INLx} = V _{OUT} + 0.3V to	Normal mode I _{OUT} = 0.1mA to I _{MAX}	-2		+2	%
	V _{SYS}	Low power mode I _{OUT} = 0.1mA to 5mA	-5		+5	70
Maximum Output Current	Normal mode		150			
(Note 8)	Low power mode		5			mA
Land Damidation		Normal mode I _{OUT} = 0.1mA to I _{MAX}		0.5		%
Load Regulation	$V_{INLx} = V_{OUT} + 0.3V$	Low power mode I _{OUT} = 0.1mA to 5mA		0.5	·	70
Line Regulation	V _{INLx} = V _{OUT} + 0.3V to	Normal mode		0.05		%/V
	V _{SYS} , I _O UT = 0.1mA	Low power mode		0.05		70/ V
Dropout Voltage		Iormal mode, $V_{SYS} = V_{INLx} = 3.7V$, $DUT = I_{MAX}, V_{DO} = V_{INLx} - V_{OUT}$ 100 200		200	mV	
	V _{OUT} = 90% of	Normal mode		300	560	m۸
Output Current Limit	VOUT(TARGET)	Low power mode		40		mA
Output Capacitance for Stability	DCR < 200mΩ, ESL < 20r	nH (Note 9)	0.6	2.2		μF

LDO11, LDO14 and LDO15 (150mA PMOSLS) (continued)

 $(V_{SYS} = V_{INLx} = +3.7V, C_{SYS} = 1.0 \mu F, C_{OUT} = 2.2 \mu F, C_{REFBYP} = 100 nF, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}) (Note 5)$

PARAMETER	CON	DITIONS	MIN	ТҮР	MAX	UNITS
		$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = V_{OUTMIN}$		25		
		$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = 1.0V$		30		
Output Noise	Normal mode, f = 10Hz to 100kHz, I _{OUT} = 10% of I _{MAX}	$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = 2.0V$		40		µV _{RMS}
		$V_{SYS} = V_{INLx} = 3.7V,$ $V_{OUT} = 3.0V$		60		
		$V_{SYS} = V_{INLx} = 5.5V,$ $V_{OUT} = V_{OUTMAX}$		60		
Power Supply Rejection	Normal mode, f = 1kHz, I	rmal mode, f = 1kHz, I _{OUT} = 30mA				dB
Output Load Transient (ΔV/V _{OUT})	Normal mode, V _{SYS} = V _{INLx} = 3.7V, V _{OUT} = default, I _{OUT} =	C _{OUT} = 2.2µF		±5		%
	$t_{OUT} = t_{erault}, t_{OUT} =$ 1mA to ½ x IMAX to 1mA $t_{RISE} = t_{FALL} = 1 \mu s$, C _{OUT} = 10μF		±3		70
Output Line Transient	Normal mode, V _{INLx} = 3. V _{OUT} = default, I _{OUT} = 1			5		mV
Output Startup Ramp Rate	10% to 90%			30		mV/µs
Turn-On Delay Time	From Lx_EN = 1 to outpu 300µs prior to LDO being	t rising, REFBYP enabled > enabled		5		μs
Output Overshoot During Startup Overshoot				50		mV
Output Active Discharge Resistance	(Note 10)			100		Ω
Thermal Shutdown	T _J rising			165		°C
	Thermal Shutdown			150		C
POWER-OK COMPARATOR						
Output POK Trip Level	Rising edge, V _{OUT} when	V _{POK} switches		87.5		%
Output POK Hysteresis	V _{OUT} when V _{POK} switch	es		3		%

LDO10, LDO12 and LDO13 (300mA PMOSLS)

 $(V_{SYS} = +3.7V, C_{SYS} = 1.0\mu F, C_{OUT} = 2.2\mu F, C_{REFBYP} = 100nF, T_A = -40^{\circ}C$ to +85°C, unless otherwise noted.) (Note 5)

PARAMETER	CON	DITIONS	MIN	TYP	MAX	UNITS
	V _{INLx}		2.6		5.5	v
Input Voltage Range	V _{SYS}		2.6		5.5	
	Normal mode, no load	Normal mode, no load		15		
Input Supply Current	Low power mode, no load			4		μΑ
	Shutdown			< 0.1		1
	Normal mode, no load			3.25	-	
System Supply Current	Low power mode, no load	Low power mode, no load		0.85		μΑ
	Shutdown			< 0.1		1
	Minimum V _{OUT} , Lx_VOUT	[6:0] = 7'h00		0.8		
Output Voltage Programming	Maximum V _{OUT} , Lx_VOUT[6:0] = 7'h7F			3.975		V
	Least significant step size			0.025		
Output Voltage Accuracy	V _{INLx} = V _{OUT} + 0.3V to	Normal mode I _{OUT} = 0.1mA to I _{MAX}	-2		+2	2 %
	V _{SYS}	Low power mode I _{OUT} = 0.1mA to 5mA	-5		+5	%
Maximum Output Current	Normal mode		300			
(Note 8)	Low power mode		5			mA
Lood Degulation		Normal mode I _{OUT} = 0.1mA to I _{MAX}		0.5		%
Load Regulation	V _{INLx} = V _{OUT} + 0.3V	Low power mode I _{OUT} = 0.1mA to 5mA		0.5		70
Line Degulation	$V_{INLx} = V_{OUT} + 0.3V$ to	Normal mode		0.05		%/V
Line Regulation	V _{SYS} , I _{OUT} = 0.1mA	Low power mode		0.05		90/V
Dropout Voltage	Normal mode, $V_{SYS} = V_{IN}$ $I_{OUT} = I_{MAX}$, $V_{DO} = V_{INLx}$			100 200		mV
Output Ourront Limit	V _{OUT} = 90% of	Normal mode		600	1120	
	VOUT(TARGET)	Low power mode		40		mA
Output Capacitance for Stability	DCR < 200mΩ, ESL < 20n	H (Note 9)	0.6	2.2		μF

LDO10, LDO12 and LDO13 (300mA PMOSLS) (continued)

 $(V_{SYS} = +3.7V, C_{SYS} = 1.0\mu F, C_{OUT} = 2.2\mu F, C_{REFBYP} = 100nF, T_A = -40^{\circ}C$ to +85°C, unless otherwise noted.) (Note 5)

PARAMETER	CONI	DITIONS	MIN	TYP	MAX	UNITS	
		$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = V_{OUTMIN}$		25			
		$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = 1.0V$		30			
Output Noise	Normal mode, f = 10Hz to 100kHz, I _{OUT} = 10% of I _{MAX}	$V_{SYS} = V_{INLx} = 2.7V,$ $V_{OUT} = 2.0V$		40		µV _{RMS}	
		$V_{SYS} = V_{INLx} = 3.7V,$ $V_{OUT} = 3.0V$		60			
		$V_{SYS} = V_{INLx} = 5.5V,$ $V_{OUT} = V_{OUTMAX}$		60			
Power Supply Rejection	Normal mode, f = 1kHz, I _{OI}	T = 30mA		70			
Output Load Transient (ΔV/V _{OUT})	Normal mode, V _{SYS} = V _{INLx} = 3.7V,	C _{OUT} = 2.2µF		±5		%	
	V _{OUT} = default, I _{OUT} = 1mA to ½ x I _{MAX} to 1mA, t _{RISE} = t _{FALL} = 1μs	С _{ОUT} = 10µF		±3		70	
Output Line Transient	Normal mode, V _{INLx} = 3.7\ default, I _{OUT} = 1mA, t _{RISE}			5		mV	
Output Startup Ramp Rate	10% to 90%			30		mV/µs	
Turn-On Delay Time	From Lx_EN = 1 (or ENL12 REFBYP enabled > 300µs			5		μs	
Output Overshoot During Startup Overshoot				50		mV	
Output Active Discharge Resistance	(Note 10)			100		Ω	
Thermal Shutdown	T _J rising			+165		°C	
	T _J falling	T _J falling		+150			
POWER-OK COMPARATOR							
Output POK Trip Level	Rising edge, V _{OUT} when V	POK switches		87.5		%	
Output POK Hysteresis	V _{OUT} when V _{POK} switches			3		%	

Note 3: Guaranteed by design. Not production tested.

Note 4: 100% production tested at $T_A = +25^{\circ}C$, limits over the operating range are guaranteed by design.

Note 5: Limits are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed through correlation using statistical quality control methods.

Note 6: The maximum output current spec is not directly tested. Instead, it is guaranteed by LX NMOS current limit test.

Note 7: For NMOS LDOs, V_{SYS} must be at least 1.5V above V_{OUT} ($V_{SYS} \ge V_{OUT} + 1.5V$).

Note 8: The maximum output current is guaranteed by the output voltage accuracy tests.

Note 9: For stability, guaranteed by design and not production tested.

Note 10: There is an n-channel MOSFET in series with the output active discharge resistance. This NMOS requires V_{SYS} > 1.2V to be enhanced.

Pin Configurations

Pin Description

PIN	NAME	FUNCTION	
C4	CE	Active-High Chip Enable Input. When CE = high (standby), the I ² C interface is enabled and regulators are ready to be turned on. When CE = low (shutdown), all regulators are turned off and all Type-O registers are reset to their POR default values.	
D5	ENB	Active-High BUCK External Enable Input. An $800k\Omega$ internal pull-down resistance to the GND. If this pin is not used, leave it floating.	
E6	ENBB	Active-High BUCK BOOST External Enable Input. An $800k\Omega$ internal pulldown resistance to the GND. If this pin is not used, leave it unconnected.	
E4	ENL12	Active-High LDO12 External Enable Input. An $800k\Omega$ internal pulldown resistance to the GND. If this pin is not used, leave it unconnected.	
B3	FB_B	BUCK Output Voltage Feedback	
E5	FB_BB	BUCK BOOST Output Voltage Feedback	
E7	GND	Ground	
A1, A2	INB	BUCK Input. Bypass to PGNDB with a 10µF capacitor.	
F7, G7	INBB	BUCK BOOST Input	

Pin Description (continued)

PIN NAME		FUNCTION		
B4	INL1	Input for LDO1 and 2. Bypass to GND with a 4.7µF capacitor.		
B5	INL2	Input for LDO3. Bypass to GND with a 1µF capacitor.		
C7	INL3	Input for LDO4, 5, 6, 7, 8, and 9. Bypass to GND with a 4.7µF capacitor.		
F2	INL4	Input for LDO10 and 11. Bypass to GND with a 4.7µF capacitor.		
F1	INL5	Input for LDO12, 13, 14, and 15. Bypass to GND with a 4.7µF capacitor.		
E3	IRQB	Interrupt Output. A 100k Ω external pullup resistor to V _{IO} is required.		
B1, B2	LXB	BUCK Switching Node		
F6, G6	LXBB1	BUCK BOOST Switching Node 1		
F4, G4	LXBB2	BUCK BOOST Switching Node 2		
A4	LDO1	LDO1 (600mA NMOS) Output. Bypass to GND with a 4.7µF capacitor.		
C6	LDO2	LDO2 (150mA NMOS) Output. Bypass to GND with a 1µF capacitor.		
A5	LDO3	LDO3 (450mA NMOS) Output. Bypass to GND with a 4.7µF capacitor.		
D7	LDO4	LDO4 (300mA PMOSLV) Output. Bypass to GND with a 4.7µF capacitor.		
B7	LDO5	LDO5 (300mA PMOSLV) Output. Bypass to GND with a 4.7µF capacitor.		
A7	LDO6	LDO6 (150mA PMOSLV) Output. Bypass to GND with a 2.2µF capacitor.		
A6	LDO7	LDO7 (300mA PMOSLV) Output. Bypass to GND with a 4.7µF capacitor.		
B6	LDO8	LDO8 (150mA PMOSLV) Output. Bypass to GND with a 2.2µF capacitor.		
D6	LDO9	LDO9 (150mA PMOSLV) Output. Bypass to GND with a 2.2µF capacitor.		
G1	LDO10	LDO10 (300mA PMOSLS) Output. Bypass to GND with a 2.2µF capacitor.		
G2	LDO11	LDO11 (150mA PMOSLS) Output. Bypass to GND with a 2.2µF capacitor.		
D1	LDO12	LDO12 (300mA PMOSLS) Output. Bypass to GND with a 2.2µF capacitor.		
E1	LDO13	LDO13 (300mA PMOSLS) Output. Bypass to GND with a 2.2µF capacitor.		
E2	LDO14	LDO14 (150mA PMOSLS) Output. Bypass to GND with a 2.2µF capacitor.		
D2	LDO15	LDO15 (150mA PMOSLS) Output. Bypass to GND with a 2.2µF capacitor.		
F3, G3	OUTBB	BUCK BOOST Output		
C1, C2	PGNDB	BUCK Power GND		
F5, G5	PGNDBB	BUCK BOOST Power GND		
C5	REFBYP	LDO Reference Bypass Node. Connect a 0.1µF Cap to GND.		
D4	SCL	I ² C Clock Input. High Impedance in Off State. A 1.5kΩ~2.2kΩ of pullup resistor to VIO is required.		
D3	SDA	I^2C Data I/O. High Impedance in Off State. A $1.5k\Omega-2.2k\Omega$ of pullup resistor to V_{IO} is required.		
A3	SYS System (Battery) Voltage Input. Bypass to GND with a 1µF capacitor.			
C3	V _{IO}	IO Supply Voltage Input. Bypass to GND with a 0.1µF capacitor.		

Block Diagram

Detailed Description

Top System Management

System Faults

The MAX77826 monitors the system for the following faults: global thermal, local thermal shutdown, and under-voltage lockout.

Global Thermal Fault

The MAX77826 has a centralized thermal protection circuit which monitors temperature on the die. If the die temperature exceeds +165°C (T_{SHDN}), a thermal shutdown event initiates, and the MAX77826 enters its global shutdown state.

In addition to the +165°C threshold, there are two additional comparators that trip at +120°C and +140°C. Interrupts are generated in the event the die temperature reaches +120°C or +140°C.

There is a 15°C thermal hysteresis. After the thermal shutdown, if the die temperature reduces by 15°C, the thermal shutdown bus deasserts.

Local Thermal Shutdown

If any of the BUCK BOOST or LDOs reach the thermal shutdown threshold, the MAX77826 shuts down the corresponding block locally. If the temperature goes below a threshold, that block goes back to normal operation.

Undervoltage Lockout

When V_{SYS} falls below V_{UVLO_F} (typ 2.05V), the MAX77826 enters its undervoltage lockout (UVLO) mode. UVLO forces the MAX77826 to a dormant state until the source voltage is high enough to allow the MAX77826 to be securely functional. I²C does not function and the Type-O register contents are reset to their default values in UVLO mode. UVLO rising threshold is set to 2.5V by an OTP option.

Chip Enable (CE)

A logic-high on CE pin puts the MAX77826 into standby mode (enabled). In standby mode, all user registers are accessible through I^2C so that the host processor can

overwrite the default output voltages of regulators and each regulator can be enabled by either I²C or the GPIO input if applicable.

When the CE pin goes high, the MAX77826 turns on the top-level bias circuitry, and it takes typically 85µs to settle. As soon as the top-level bias is ready, BUCK BOOST is ready to be turned on. However, BUCK and LDOs require additional 85µs (typ) for REFBYP to settle. Total, it takes 170µs (85µs + 85µs) for REFBYP to settle from CE = high. In the worst-case scenario, it can take up to 230µs. Once REFBYP is ready, all the regulators are allowed to be tuned on through I²C or the ENx pins. In case the regulars are enabled before the bias circuitry is ready, the regulators require longer time to startup.

When CE pin is pulled low, the MAX77826 goes into shutdown mode (disabled) and turns off all the regulators regardless of ENx pins. This event also resets all Type-O registers to their POR default values.

Immediate Shutdown Events

The following events initiate immediate shutdown: thermal protection (T_J > +165°C), V_{SYS} < V_{SYS} UVLO falling threshold (V_{UVLO_F}), V_{IO} < V_{IO} OK threshold (V_{TH} VIO OK)

The events in this category are associated with potentially hazardous system states. Powering down the host processor and resetting all Type-O registers help mitigate any issues that can occur due to these potentially hazardous conditions. Note that the MAX77826 cannot be enabled until the junction temperature drops below +150°C in case thermal protection caused the immediate shutdown.

Operating Mode (OPMD)

Each regulator (BUCK, BUCK BOOST, and LDO) has independent register bits to control its operating mode. These bits determines on/off operation during initial startup, output enable control, and sleep mode operation based on the enable control logic of each regulator. The POR default values of output enable bits (x_EN) are 0 (output off).

Enable Control Logic1

BUCK, BUCK BOOST, and LDO12 have independent $I^{2}C$ enable bits and dedicated GPIO enable pins (ENB, ENBB, and ENL12). As shown in <u>Table 1</u>, regulators can be turned on/off by ENx or $I^{2}C$ control bits.

Enable Control Logic 2

LDO1–LDO11 and LDO13–LDO15 have independent I^2C enable bits. As shown in <u>Table 2</u>, regulators can be turned on/off by the I²C control bits.

Reset Conditions

System Reset

When V_{SYS} voltage drops below its POR threshold (\approx 1.55V), all Type-S1 registers are reset to their POR default values.

Off Reset

Off reset occurs by any power-off events. This condition resets all Type-O registers to their POR default values.

CE	ENx	B_EN BB_EN L12_EN	B_LPM L12_LPM	OPERATING MODE
Low	х	х	х	Device off
High	Low	0	х	Output off
High	High	х	1	Output on (low power mode*)
High	High	х	0	Output on
High	х	1	1	Output on (low power mode*)
High	х	1	0	Output on

Table 1. Enable ControlLogic 1 Truth Table

*The BUCK BOOST regulator does not have a low power mode.

Table 2. Enable ControlLogic 2 Truth Table

CE	Lx_EN	Lx_LPM	OPERATING MODE
Low	х	х	Device off
High	0	х	Output off
High	1	1	Output on (low power mode)
High	1	0	Output on

Interrupt and Mask

IRQB pin is used to indicate to the host processor that the status on the MAX77826 has changed. IRQB signal is asserted whenever one or more interrupts are triggered. The host processor reads the interrupt source register (ADDR 0x00) and the interrupt registers as indicated by the interrupt source register in order to see the cause of interrupt event.

Each interrupt register can be read at a time. IRQB pin goes high (cleared) as soon as the read sequence finishes. If an interrupt is captured during the read sequence, IRQB pin is held low. Note that the interrupt source register is cleared when the corresponding interrupt registers are read by the host processor.

Each interrupt can be masked (disabled) by setting the corresponding interrupt mask register bit. In case an interrupt mask bit is set (masked), the corresponding interrupt bit is not supposed to be set even when the interrupt condition is met. As a result, the IRQB pin stays high for this event. If the mask bit is cleared for an active interrupt, the corresponding interrupt bit is set to pull the IRQB pin low.

Figure 1. Enable Control Logic 1

Figure 2. Enable Control Logic 2

BUCK Regulator

The MAX77826 includes a 3A current-mode BUCK regulator. In normal operation, BUCK consumes only $22\mu A$ quiescent current. In low power mode, the quiescent current is decreased to $8\mu A$ with reduced load capability.

The summary of features is:

- 3A of maximum output current rating
- 2.6V to 5.5V input voltage range
- Output voltage range from 0.50V to 1.80V in 6.25mV steps
- ±1% (typ) output voltage DC accuracy
- 2MHz (typ) switching frequency
- Automatic SKIP/PWM or forced PWM modes
- > 90% peak efficiency
- Programmable slew rate for increasing output voltage settings

Operating Mode Control

The operating mode bit resides in the top level that controls the enable/disable state of BUCK through the B_EN register and also controls the operating mode (low power or normal mode) through the B_LPM register.

SKIP/Forced PWM Operation

In normal operating mode, BUCK automatically transitions from SKIP mode to fixed frequency operation as load current increases. For operating modes where lowest output ripple is required, forced PWM switching behavior can be enabled by writing 1 to B_FPWM bit.

Low Power Mode Operation

In low power mode, the quiescent current is reduced from 22μ A to 8μ A. The output current is limited to 10mA. It is not recommended to adjust the output voltage in low power mode. The regulator does not automatically enter/ exit low power mode. The host processor needs to control low power mode operation in times of known low power states through the I²C serial interface.

Startup and Soft-Start

When starting up BUCK regulator, the bias circuitry must be enabled and provided with adequate time to settle. The bias circuitry is guaranteed to settle within 250µs, at which time, the BUCK regulators' power-up sequences can commence. Note that attempting to implement a powerup sequence before BIASOK signal is generated results in all enabled regulators starting up at the same time. The BUCK regulator supports starting into a prebiased output. For example, if the output capacitor has an initial voltage of 0.4V when the regulator is enabled, the regulator gradually increases the capacitor voltage to the required target voltage such as 1.0V. This is unlike other regulators without the start into prebias feature in which they can force the output capacitor voltage to 0V before the soft-start ramp begins.

The BUCK regulator has a soft-start rate of 14mV/ μ s. The controlled soft-start rate and BUCK regulator current limit (I_{LIMP}) limit the input inrush current to the output capacitor (I_{INRUSH}). I_{INRUSH} = min (I_{LIMP} and C_{OUT} x dv/dt). Note that the input current of BUCK regulator is lower than the inrush current to the output capacitor by the ratio of output to input voltage.

Output Voltage Setting

The output voltage is programmable from 0.50V to 1.80V in 6.25mV steps to allow fine adjustment to the processor supply voltage under light load conditions to minimize power loss within the processor. The default output voltage is set by an OTP option at the factory. The default output voltage can be overwritten by changing the contents in B_VOUT[7:0] register prior to enabling the regulator. The output voltage can also be adjusted during normal operation.

Changing Output Voltage While Operating

In a typical smartphone or tablet application, there are several power domains in which the operating frequency of the processor increases or decreases (DVFS). When the operating frequency needs to be changed, it is expected that BUCK regulator responds to a command to change the output voltages to new target values quickly. The high peak current limit, coupled with low inductance and small output capacitance, allows the BUCK regulator to respond to a positive step change in output voltage and settle to the new target value quickly. The BUCK regulator provides programmable ramp-up slew rates to accommodate different requirements.

For a negative step change in output voltage, the settling time is not critical. In forced PWM mode (either B_FPWM bit or B_FSRAD bit is enabled), the negative inductor current through NMOS discharges energy from the output capacitor to help the output voltage decrease to the new target value faster. In skip mode, negative inductor current is not allowed so that the output voltage settling time is dependent on the load current and the output capacitance.

Output Voltage Slew Rate Control

The BUCK regulator supports programmable slew rate control feature when increasing and decreasing the output voltage. The ramp-up slew rate can be set to $12.5 \text{mV/}\mu\text{s}$, $25 \text{mV/}\mu\text{s}$, $50 \text{mV/}\mu\text{s}$ or $100 \text{mV/}\mu\text{s}$ independently through the B_RAMP[1:0] bits, while the ramp-down slew rate is fixed to $6.25 \text{mV/}\mu\text{s}$.

Output Active Discharge Resistance

BUCK provides an internal 100Ω resistor for output active discharge function. If the active discharge function is enabled (B_AD = 1), the internal resistor discharges the energy stored in the output capacitor to GND whenever the regulator is disabled.

Either the regulator remains enabled or the active discharge function is disabled ($B_AD = 0$), the internal resistor is disconnected from the output. If the active discharge function is disabled, the output voltage decays at a rate that is determined by the output capacitance and the load current when the regulator is turned off.

Inductor Selection

BUCK is optimized for a 0.47µH inductor. The lower the inductor DCR, the higher BUCK efficiency is. Users need to trade off inductor size with DCR value and choose a suitable inductor for BUCK.

Input Capacitor Selection

The input capacitor, C_{IN} , reduces the current peaks drawn from the battery or input power source and reduces switching noise in the IC. The impedance of C_{IN} at the switching frequency should be kept very low. Ceramic capacitors with X5R or X7R dielectrics are highly rec-

Table 3. Suggested Inductors for BUCK

ommended due to their small size, low ESR, and small temperature coefficients. For most applications, a $10\mu F$ capacitor is sufficient.

Output Capacitor Selection

The output capacitor, C_{OUT} , is required to keep the output voltage ripple small and to ensure regulation loop stability. C_{OUT} must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. Due to the unique feedback network, the output capacitance can be very low. The recommended minimum output capacitance for BUCK is 22µF.

BUCK BOOST Regulator

The MAX77826 BUCK BOOST regulator utilizes a fourswitch H-bridge configuration to realize BUCK, BUCK BOOST, and BOOST operating modes. In this way, this topology maintains output voltage regulation when the input voltage is greater than, equal to, or less than the output voltage. The MAX77826 BUCK BOOST is ideal in Li-ion battery powered applications, providing 2.6V to 4.1875V output voltage and up to 2A output current across the input voltage range. High switching frequency and a unique control algorithm allow the smallest solution size, low output noise, and highest efficiency across a wide input voltage and output current range.

The MAX77826 BUCK BOOST regulator typically generates a 3.50V output voltage. The input current limit is set to 3.5A (typ) to guarantee delivery of 2A at 3.50V from 3.0V input. Internal soft-start limits the inrush current at startup.

MANUFACTURER	SERIES	NOMINAL INDUCTANCE (µH)	DC RESISTANCE (typ, mΩ)	CURRENT RATING (A) -30% (∆L/L)	CURRENT RATING (A) ∆T = +40°C RISE	DIMENSIONS L x W x H (mm)
Semco	CIGT201610G MR47MNE	0.47	35	4.0	2.9	2.0 x 1.6 x 1.0
Toko	DFE201610-H -R47N	0.47	37	3.5	3.5	2.0 x 1.6 x 1.0

Figure 3. BUCK BOOST Block Diagram

H-Bridge Controller

The H-bridge architecture operates at 3MHz fixed frequency with a pulse width modulated (PWM), current mode control scheme. This topology is in a cascade of a BOOST regulator and a BUCK regulator using a single inductor and output capacitor. BUCK, BUCK BOOST, and BOOST stages are 100% synchronous for highest efficiency in portable applications.

There are three phases implemented with the H-bridge switch topology, as shown in Figure 4:

 Φ 1 switch period (Phase 1: P1 = on, N2 = on) stores energy in the inductor, ramping up the inductor current at a rate proportional to the input voltage divided by inductance; V_{INBB/L}.

 Φ 2 switch period (Phase 2: P1 = on, N3 = on) ramps the inductor current up or down, depending on the differential voltage across the inductor, divided by inductance; \pm (V_{INBB} - V_{OUTBB})/L.

 Φ 3 switch period (Phase 3: N1 = on, N3 = on) ramps down the inductor current at a rate proportional to the output voltage divided by inductance, -V_{OUTBB}/L.

Figure 4. BUCK BOOST Switching Intervals

2-Phase BUCK topology is utilized when $V_{INBB} > V_{OUTBB}$. A switching cycle is completed in one clock periods. Switch period $\Phi 2$ is followed by switch period $\Phi 3$, resulting in an inductor current waveform similar to Figure 5.

3-Phase BUCK topology is utilized when V_{INBB} > V_{OUTBB} and 2-Phase BUCK cannot support V_O. Switch period is: $\Phi 1 \rightarrow \Phi 2 \rightarrow \Phi 3$. Switch period $\Phi 1$ is fixed. This results in an inductor current waveform similar to Figure 6.

2-Phase BOOST topology is utilized when V_{INBB} < V_{OUTBB}. A switching cycle is completed in one clock periods. Switch period Φ 1 is followed by switch period Φ 2, resulting in an inductor current waveform similar to Figure 7.

3-Phase BOOST topology is utilized when V_{INBB} < V_{OUTBB} and 2-Phase BOOST cannot support V_O. Switch period is: $\Phi 1 \rightarrow \Phi 2 \rightarrow \Phi 3$. Switch period $\Phi 3$ is fixed. This results in an inductor current waveform similar to Figure 8.

Inductor Selection

BUCK BOOST is optimized for a 1μ H inductor. The lower the inductor DCR, the higher BUCK BOOST efficiency is.

Users need to trade off inductor size with DCR value and choose a suitable inductor for BUCK BOOST.

The input capacitor, C_{IN} , reduces the current peaks drawn from the battery or input power source and reduces switching noise in the IC. The impedance of C_{IN} at the switching frequency should be kept very low. Ceramic capacitors with X5R or X7R dielectrics are highly recommended due to their small size, low ESR, and small temperature coefficients. For most applications, a 10µF capacitor is sufficient.

Output Capacitor Selection

The output capacitor, C_{OUT} , is required to keep the output voltage ripple small and to ensure regulation loop stability. C_{OUT} must have low impedance at the switching frequency. Ceramic capacitors with X5R or X7R dielectric are highly recommended due to their small size, low ESR, and small temperature coefficients. Due to the unique feedback network, the output capacitance can be very low. The recommended minimum output capacitance for BUCK BOOST is 47μ F.

Figure 5. 2-Phase BUCK Switching Current Waveforms

Figure 6. 3-Phase BUCK Switching Current Waveforms When $V_{INBB} > V_{OUTBB}$

Figure 7. 2-Phase BOOST Mode Switching Current Waveform

Figure 8. BOOST Mode Switching Current Waveforms When $V_{INBB} < V_{OUTBB}$

Table 4. Suggested Inductors for BUCK BOOST

MANUFACTURER	SERIES	NOMINAL INDUCTANCE (µH)	DC RESISTANCE (typ, mΩ)	CURRENT RATING (A) -30% (∆L/L)	CURRENT RATING (A) ∆T = +40°C RISE	DIMENSIONS L x W x H (mm)
ТDК	TFM201610GHM -1R0MTAA	1.0	50	3.8	3.0	2.0 x 1.6 x 1.0

Linear Regulators

The MAX77826 provides 15 low dropout linear regulators including 3 NMOS LDOs, 6 PMOSLV LDOs, and 6 PMOSLS LDOs. Each of these regulators draws $27\mu A/18\mu A$ (NMOS/PMOS) of quiescent current in normal operating mode and < $5\mu A$ in low power mode. PMOSLV LDOs allow input voltages as low as 1.7V for optimized system efficiency.

All regulators can be operated in low power mode that supports up to 5mA of maximum load current.

The summary of features is:

- 3 NMOS LDOs (V_{OUT} range: 0.6V to 2.1875V with 12.5mV step)
 - 1 x 150mA
 - 1 x 450mA
 - 1 x 600mA
- 6 PMOSLV LDOs (V_{OUT} range: 0.8V to 3.975V with 25mV step)
 - 3 x 150mA
 - 3 x 300mA
- 6 PMOSLS LDOs (V_{OUT} range: 0.8V to 3.975V with 25mV step)
 - 3 x 150mA
 - 3 x 300mA
 - ±1.5% typical Output Voltage DC Accuracy
 - 70dB PSRR at 1kHz

LDO Reference

The MAX77826 has a single LDOREF bias rail. LDOREF is enabled or disabled along with the central bias block (SBIA) so that LDOREF is ready whenever any LDO turns on. It has a very low quiescent current of 2µA typical.

Operating Mode Control

The operation mode bits for each LDO reside in the top level that controls the enable/disable state for each LDO through the Lx_EN signal and also controls the operation modes (low power or normal mode) for each LDO through the Lx_LPM signal.

Low Power Mode

In low power mode, the quiescent current of each LDO is reduced from $27\mu A/18\mu A$ (NMOS/PMOS) to less than $5\mu A$. The output current of each LDO is limited to 5mA if operating in low power mode. Each LDO can be individually enabled to operate in low power mode.

Soft-Start and Dynamic Voltage Change

When a regulator is enabled, the output voltage ramps to the final voltage at the slew rate of $30\text{mV}/\mu\text{s}$. The $30\text{mV}/\mu\text{s}$ ramp rate results in around 30mA inrush current with a $1.0\mu\text{F}$ output capacitor under no load condition. For a 1.8V LDO ramping from 0V, the output voltage regulation is achieved within $60\mu\text{s}$. The soft-start ramp rate is also the rate of change at the output when switching dynamically between two output voltages without disabling. The soft-start circuitry of LDOs supports starting into a prebiased output.

Output Active Discharge

Each LDO provides an internal 100Ω resistor for output active discharge function. If the active discharge function is enabled (Lx_AD = 1), the internal resistor discharges the energy stored in the output capacitor to GND whenever the regulator is disabled.

Either the regulator remains enabled or the active discharge function is disabled ($Lx_AD = 0$), the internal resistor is disconnected from the output. If the active discharge function is disabled, the output voltage decays at a rate that is determined by the output capacitance and the load current when the regulator is turned off.

Thermal Considerations

In most applications, the MAX77826 does not dissipate much heat because of its high efficiency. However, in applications where the MAX77826 runs with heavy loads at high ambient temperature, the junction temperature can exceed the maximum operating temperature. In case the junction temperature reaches approximately +165°C, the thermal overload protection triggers. The maximum power dissipation of the MAX77826 depends on the thermal resistance of the IC package and PCB. The power dissipated in the device is:

$$P_D = P_{OUT} x (1/\eta - 1)$$

where η is the efficiency of the regulator and P_{OUT} is the output power delivered to the load.

The maximum allowed power dissipation is:

$\mathsf{P}_{\mathsf{MAX}} = (\mathsf{T}_{\mathsf{JMAX}} - \mathsf{T}_{\mathsf{A}})/\theta_{\mathsf{JA}}$

 T_{JMAX} - T_A is the temperature difference between the maximum rated junction temperature and the ambient temperature, θ_{JA} is the thermal resistance between the junction and the ambient.

Serial Interface

The I²C-compatible, 2-wire serial interface is used for regulator on/off control, setting output voltages, and other functions. See the Register Map for details.

The I²C serial bus consists of a bidirectional serial-data line (SDA) and a serial clock (SCL). I²C is an open-drain bus. SDA and SCL require pullup resistors (500 Ω or greater). Optional 24 Ω resistors in series with SDA and SCL help to protect the device inputs from high voltage spikes on the bus lines. Series resistors also minimize crosstalk and undershoot on bus lines.

System Configuration

I²C bus is a multimaster bus. The maximum number of devices that can attach to the bus is only limited by bus capacitance.

The figure above shows an example of a typical I²C system. A device on I²C bus that sends data to the bus in called a transmitter. A device that receives data from the bus is called a receiver. The device that initiates a data transfer and generates SCL clock signals to control the data transfer is a master. Any device that is addressed by the master is considered a slave. When the MAX77826 I²C-compatible interface is operating in normal mode, it is a slave on I²C bus, and it can be both a transmitter and a receiver.

Bit Transfer

One data bit transfers for each SCL clock cycle. The data on SDA must remain stable during the high portion of SCL clock pulse. Changes in SDA while SCL is high are control signals (START and STOP conditions).

START and STOP Conditions

When the I²C serial interface is inactive, SDA and SCL idle high. A master device initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA, while SCL is high.

A START condition from the master signals the beginning of a transmission to the MAX77826. The master terminates transmission by issuing a NOT ACKNOWLEDGE followed by a STOP condition.

A STOP condition frees the bus. To issue a series of commands to the slave, the master can issue REPEATED START (Sr) commands instead of a STOP command to maintain control of the bus. In general, a REPEATED START command is functionally equivalent to a regular START command.

When a STOP condition or incorrect address is detected, the MAX77826 internally disconnects SCL from the I²C serial interface until the next START condition, minimizing digital noise and feedthrough.

Figure 9. Functional Logic Diagram for Communications Controller

Figure 10. I²C Bit Transfer

Figure 11. START and STOP Conditions

Acknowledge

Both the I²C bus master and MAX77826 (slave) generate acknowledge bits when receiving data. The acknowledge bit is the last bit of each 9-bit data packet. To generate an ACKNOWLEDGE (A), the receiving device must pull SDA low before the rising edge of the acknowledge-related clock pulse (ninth pulse) and keep it low during the high period of the clock pulse. To generate a NOT-ACKNOWLEDGE (nA), the receiving device allows SDA to be pulled high before the rising edge of the acknowledge-related clock pulse and leaves it high during the high period of the clock pulse.

Monitoring the acknowledge bits allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master should reattempt communication at a later time.

Slave Address

The I²C slave address of the MAX77826 is shown in Table 5.

In general, the clock signal generation for the I²C bus is the responsibility of the master device. The I²C specification allows slow slave devices to alter the clock signal by holding down the clock line. The process in which a slave device holds down the clock line is typically called clock stretching. The MAX77826 does not use any form of clock stretching to hold down the clock line.

General Call Address

The MAX77826 does not implement I²C specification general call address. If the MAX77826 sees the general call address (0000000b), it does not issue an ACKNOWLEDGE (A).

Table 5. Power Management SlaveAddress

SLAVE	SLAVE	SLAVE
ADDRESS	ADDRESS	ADDRESS
(7 bit)	(Write)	(Read)
110 0000	0xC0 (1100 0000)	

Communication Speed

The MAX77826 provides an I²C 3.0-compatible (3.4MHz) serial interface.

- I²C revision 3-compatible serial communications channel
 - 0Hz to 100kHz (standard mode)
 - 0Hz to 400kHz (fast mode)
 - 0Hz to 1MHz (fast mode plus)
 - OHz to 3.4MHz (high-speed mode)
 - Does not utilize I²C clock stretching

Operating in standard mode, fast mode and fast mode plus do not require any special protocols. The main consideration when changing the bus speed through this range is the combination of the bus capacitance and pullup resistors. Higher time constants created by the bus capacitance and pullup resistance (C x R) slow the bus operation. Therefore, when increasing bus speeds the pullup resistance must be decreased to maintain a reasonable time constant. Refer to the Pullup Resistor Sizing section of I²C revision 3.0 specification for detailed guidance on the pullup resistor selection. In general for bus capacitances of 200pF, a 100kHz bus needs 5.6kΩ pullup resistors, a 400kHz bus needs about a 1.5kΩ pullup resistors, and a 1MHz bus needs 680Ω pullup resistors. Note that the pullup resistor dissipates power when the opendrain bus is low. The lower the value of the pullup resistor, the higher the power dissipation is (V2/R).

Operating in high-speed mode requires some special considerations. For the full list of considerations, refer to the I^2C 3.0 specification. The major considerations with respect to the MAX77826 are:

- The I²C bus master uses current source pullups to shorten the signal rise times.
- The I²C slave must use a different set of input filters on its SDA and SCL lines to accommodate for the higher bus speed.
- The communication protocols need to utilize the highspeed master code.

Figure 12. Slave Address Byte Example for Power Block

Power Management IC

At power-up and after each STOP condition, the MAX77826 inputs filters are set for standard mode, fast mode, or fast mode plus (i.e., 0Hz to 1MHz). To switch the input filters for high-speed mode, use the high-speed master code protocols that are described in <u>Communication Protocols</u> section.

Communication Protocols

The MAX77826 supports both writing and reading from its registers. Table **TBD** shows the I²C communication protocols for each functional block. The power block uses the same communications protocols.

Writing to a Single Register

Figure 13 shows the protocol for the I²C master device to write one byte of data to the MAX77826. This protocol is the same as the SMBus specification's write byte protocol. The write byte protocol is as follows:

- 1) The master sends a START command (S).
- 2) The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4) The master sends an 8-bit register pointer.

- 5) The slave acknowledges the register pointer.
- 6) The master sends a data byte.
- 7) The slave updates with the new data
- The slave acknowledges or does not acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register and the data becomes active.
- 9) The master sends a STOP condition (P) or a RE-PEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Writing to Sequential Registers

Figure 14 shows the protocol for writing to a sequential registers. This protocol is similar to the write byte protocol, except the master continues to write after it receives the first byte of data. When the master is done writing, it issues a STOP or REPEATED START. The writing to sequential registers protocol is as follows:

- 1) The master sends a START command (S).
- 2) The master sends the 7-bit slave address followed by a write bit ($R/\overline{W} = 0$).

Figure 13. Writing to a Single Register with Write Byte Protocol

Power Management IC

- The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA LOW.
- 4) The master sends an 8-bit register pointer.
- 5) The slave acknowledges the register pointer.
- 6) The master sends a data byte.
- 7) The slave acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register, and the data becomes active.
- 8) Steps 6 and 7 are repeated as many times as the master requires.
- During the last acknowledge related clock pulse, the master can issue an ACKNOWLEDGE (A) or a NOT ACKNOWLEDGE (nA).
- 10) The master sends a STOP condition (P) or a RE-PEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Figure 14. Writing to Sequential Registers X to N
Power Management IC

Writing Multiple Bytes using Register-Data Pairs

Figure 15 shows the protocol for I²C master device to write multiple bytes to the MAX77826 using register-data pairs. This protocol allows I²C master device to address the slave only once and then send data to multiple registers in a random order. Registers can be written continuously until the master issues a STOP condition. The multiple byte register-data pair protocol is as follows:

- 1) The master sends a START command.
- 2) The master sends the 7-bit slave address followed by a write bit.
- The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.

- 4) The master sends an 8-bit register pointer.
- 5) The slave acknowledges the register pointer.
- 6) The master sends a data byte.
- 7) The slave acknowledges the data byte. The next rising edge on SDA loads the data byte into its target register and the data becomes active.
- 8) Steps 4 to 7 are repeated as many times as the master requires.
- 9) The master sends a STOP condition. During the rising edge of the stop related SDA edge, the data byte that was previously written is loaded into the target register and becomes active.

Figure 15. Writing to Multiple Registers with Multiple Byte Register-Data Pairs Protocol

Power Management IC

Reading from a Single Register

The I²C master device reads one byte of data to the MAX77826. This protocol is the same as SMBus specification's read byte protocol. The read byte protocol is as follows:

- 1) The master sends a START command (S).
- 2) The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 4) The master sends an 8-bit register pointer.
- 5) The slave acknowledges the register pointer.
- 6) The master sends a REPEATED START command (Sr).
- 7) The master sends the 7-bit slave address followed by a read bit ($R/\overline{W} = 1$).
- The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 9) The addressed slave places 8 bit of data on the bus from the location specified by the register pointer.
- 10) The master issues a NOT ACKNOWLEDGE (nA).
- 11) The master sends a STOP condition (P) or a RE-PEATED START condition (Sr). Issuing a P ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Note that every time MAX77826 receives a STOP, its register pointer is set to 0x00. If reading register 0x00 after a STOP has been issued, steps 1 to 6 in the above algorithm can be skipped.

Reading from Sequential Registers

Figure 16 shows the protocol for reading from sequential registers. This protocol is similar to the read byte protocol except the master issues an ACKNOWLEDGE (A) to signal the slave that it wants more data. When the master has all the data it requires, it issues a NOT ACKNOWLEDGE (nA) and a STOP (P) to end the transmission. The continuous read from sequential registers protocol is as follows:

- 1) The master sends a START command (S).
- 2) The master sends the 7-bit slave address followed by a write bit $(R/\overline{W} = 0)$.
- The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA LOW.

- 4) The master sends an 8-bit register pointer.
- 5) The slave acknowledges the register pointer.
- 6) The master sends a REPEATED START command (Sr).
- 7) The master sends the 7-bit slave address followed by a read bit ($R/\overline{W} = 1$).
- The addressed slave asserts an ACKNOWLEDGE (A) by pulling SDA low.
- 9) The addressed slave places 8 bit of data on the bus from the location specified by the register pointer.
- 10) The master issues an ACKNOWLEDGE (A) signaling the slave that it wishes to receive more data.
- 11) Steps 9 to 10 are repeated as many times as the master requires. Following the last byte of data, the master must issue a NOT ACKNOWLEDGE (nA) to signal that it wishes to stop receiving data.
- 12) The master sends a STOP condition (P) or a RE-PEATED START condition (Sr). Issuing a STOP (P) ensures that the bus input filters are set for 1MHz or slower operation. Issuing a REPEATED START (Sr) leaves the bus input filters in their current state.

Note that every time the MAX77826 receives a STOP its register pointer is set to 0x00. If reading register 0x00 after a STOP has been issued, steps 1 to 6 in the above algorithm can be skipped.

Engaging HS-Mode for Operation up to 3.4MHz

Figure 17 shows the protocol for engaging HS mode operation. HS mode operation allows for a bus operating speed up to 3.4MHz. The engaging HS mode protocol is as follows:

- Begin the protocol while operating at a bus speed of 1MHz or lower.
- 2) The master sends a START command (S).
- The master sends the 8-bit master code of 00001xxxb where xxxb are don't care bits.
- 4) The addressed slave issues a NOT ACKNOWL-EDGE (nA).
- 5) The master may now increase its bus speed up to 3.4MHz and issue any read/write operation.
- 6) The master may continue to issue high-speed read/ write operations until a STOP (P) is issued. Issuing a STOP (P) ensures that the bus input filters are set for 1MHz or slower operation. After a STOP has been issued, steps 1 to 6 in the above algorithm may be skipped.

Figure 16. Reading Continuously from Sequential Registers with X to N

Figure 17. Engaging HS Mode

PMIC Registers

Register Reset Conditions

Type-S1: Registers are reset when V_{SYS} < POR (≈1.55V)

Type-O: Registers are reset when $V_{SYS} < V_{UVLO}$ OR $V_{IO} < V_{TH_VIO_OK}$ OR CE = LOW

Power Management IC

<mark>egist</mark> C Sla	Register Map I ² C Slave Address (W/R): 0xC0/0xC1	is (W/R):	0×C0	/0xC1								
ADDR	NAME	RESET TYPE	R/W	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	RESET VALUE
0×00	INT_SRC	Type-O	Ľ	RSVD	RSVD	RSVD	RSVD	RSVD	BB_INT	REG_ INT	TOPSYS _INT	00×0
0x01	SYS_INT	Type-S1	R/C	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	TJCT_ 120C	TJCT_ 140C	00×0
0x02	REG	Type-S1	R/C	LD08_ POKn	LDO7_ POKn	LDO6_ POKn	LDO5_ POKn	LD04_ POKn	LD03_ POKn	LDO2_ POKn	LDO1_ POKn	00×0
0x03	REG_ INT2	Type-S1	R/C	B_POKn	LDO15_ POKn	LDO14_ POKn	LDO13_ POKn	LDO12_ POKn	LDO11_ POKn	LDO10_ POKn	LD09_ POKn	00×0
0x04		Type-S1	R/C	RSVD	RSVD	RSVD	RSVD	RSVD	BB_POKn	BB_ OVP	BB_OCP	00×0
0×05	INT_ SRC_M	Type-O	R/W	RSVD	RSVD	RSVD	RSVD	RSVD	BB INT_M	REG_ INT_M	TOPSYS INT_M	0×07
0×06	TOPSYS INT_M	Type-O	R/W	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	TJCT_ 120C_M	TJCT_ 140C_M	0x03
0×07	REG_ INT1_M	Type-O	R/W	LDO8_ POKn_M	LDO7_ POKn_M	LDO6_ POKn_M	LDO5_ POKn_M	LD04_ POKn_M	LDO3_ POKn_M	LDO2_ POKn_M	LDO1_ POKn_M	0xFF
0×08	REG_ INT2_M	Type-O	R/W	BM POKnM	LDO15_ POKn_M	LDO14_ POKn_M	LDO13_ POKn_M	LDO12_ POKn_M	LDO11_ POKn_M	LDO10_ POKn_M	LD09_ POKn_M	0xFF
0×09	BB INT_M	Type-O	R/W	RSVD	RSVD	RSVD	RSVD	RSVD	BB POKnM	BB OVP_M	BB_ OCP_M	0×07
0×0A	TOPSYS_ STAT	Type-O	Ы	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	TJCT_ 120C	TJCT_ 140C	
0x0B	REG_ STAT1	Type-O	Ľ	LDO8_ POKn	LDO7_ POKn	LDO6_ POKn	LDO5_ POKn	LDO4_ POKn	LDO3_ POKn	LDO2_ POKn	LDO1_ POKn	
0×0C	REG_ STAT2	Type-O	Ľ	B_POKn	LDO15_ POKn	LDO14_ POKn	LDO13_ POKn	LDO12_ POKn	LDO11_ POKn	LDO10_ POKn	LD09_ POKn	
0x0D	BB_ STAT	Type-O	Ľ	RSVD	RSVD	RSVD	RSVD	RSVD	BB_ POKn	BB_ OVP	BB_ OCP	
0x0E- 0x0F	RSVD											
0x10	LD0_ OPMD1	Type-O	R/W	L4_EN	L4_LPM	L3_EN	L3_LPM	L2_EN	L2_LPM	L1_EN	L1_ LPM	0×00

<mark>Regist</mark> I²C Slav	Register Map (continued) I ² C Slave Address (W/R): 0x6	ss (W/R):	led) 0xC0/) C0/0xC1 (continued)	ıtinued)							
ADDR	NAME	RESET TYPE	R/W	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO	RESET VALUE
0x11	LDO_ OPMD2	Type-O	R/W	L8_EN	L8_LPM	L7_EN	L7_LPM	L6_EN	L6_LPM	L5_EN	L5_ LPM	00X0
0x12	LDO_ OPMD3	Type-O	R/W	L12_EN	L12_ LPM	L11_EN	L11_LPM	L10_EN	L10_LPM	L9_EN	L9_ L9_	00×00
0x13	LDO_ OPMD4	Type-O	R/W	RSVD	RSVD	L15_EN	L15_LPM	L14_EN	L14_LPM	L13_ EN_	L13_ LPM	00×00
0x14	B_BB_ OPMD	Type-O	R/W	RSVD	RSVD	RSVD	RSVD	BB_EN	RSVD	B	в_ LPM	00X0
0x15- 0x1F	RSVD											
0x20	LD01_ CFG	Type-O	R/W	L1_AD				L1_VOUT[6:0]				0XA0
0x21	LD02_ CFG	Type-O	R/W	L2_AD			Ц Ц	L2_VOUT[6:0]				0XA0
0x22	LD03_ CFG	Type-O	R/W	L3_AD				L3_VOUT[6:0]				0XA0
0x23	LDO4_ CFG	Type-O	R/W	L4_AD			7]	L4_VOUT[6:0]				0x9C
0x24	LDO5_ CFG	Type-O	R/W	L5_AD			Γf	L5_VOUT[6:0]	_			0xA8
0x25	LDO6_ CFG	Type-O	R/W	L6_AD			L(L6_VOUT[6:0]				0xA8
0x26	LDO7_ CFG	Type-O	R/W	L7_AD			L7	L7_VOUT[6:0]	_			0xA8
0x27	LDO8_ CFG	Type-O	R/W	L8_AD			L{	L8_VOUT[6:0]	_			0xA8
0x28	LDO9_ CFG	Type-O	R/W	L9_AD			Γč	L9_VOUT[6:0]	_			0xA8
0x29	LDO10_ CFG	Type-O	R/W	L10_AD			L1	L10_VOUT[6:0]	[0			0×D0
0x2A	LD011 CFG	Type-O	R/W	L11_AD			L1	L11_VOUT[6:0]	[0			0×D0

Power Management IC

Register Map (continued) I²C Slave Address (W/R): 0xC0/0xC1 (continued)

RESET VALUE	0xE4	0xE4	0xE4	0xE4		60×0	0x78	0x3C	0x48		0x04	0x01		
BIT0						B FSRADE		RSVD				UVL0_F[1:0]		
BIT1						RSVD		BB_ FPWM			B_FREQ[2:0]	ΠΛΓΟ		
BIT2				_			B_FPWM		BB_ HSKIP				RSVD	
BIT3	L12_VOUT[6:0]	L13_VOUT[6:0]	L14_VOUT[6:0]	L15_VOUT[6:0]		B_AD	[0:2]	BB_AD	BB_VOUT[6:0]		RSVD	RSVD		
BIT4		L L	L1	L1		RSVD	B_VOUT[7:0]	BB_OVP_TH[1:0]			B_SS	RSVD		
BIT5						RSVD		BB_OVP			RSVD	RSVD		
 BIT6						IP[1:0]		RSVD			RSVD	RSVD		
BIT7	L12_AD	L13_AD	L14_AD	L15_AD		B_RAMP[1:0]		RSVD	RSVD		RSVD	RSVD		
R/W	R/W	R/W	R/W	R/W		R/W	R/W	R/W	R/W		R/W	R/W		
 RESET TYPE	Type-O	Type-O	Type-O	Type-O		Type-O	Type-O	Type-O	Type-O		Type-O	Type-O		
NAME	LDO12 CFG	LD013_ CFG	LD014_ CFG	LD015_ CFG	RSVD	BUCK CFG	BUCK_ VOUT	BB_CFG		RSVD	BUCK_ SS_FREQ	UVLO_ FALL	RSVD	
ADDR	0x2B	0x2C	0x2D	0x2E	0x2F	0×30	0x31	0x32	0x33	0x34- 0x3F	0x40	0x41	0x42- 0xFF	

MAX77826

Power Management IC

INT_SRC

Interrupt Source Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x00
0x00	R			RESET VALUE. 0X00
BIT	NAME	POR		DESCRIPTION
7:3	RSVD	0000 0		
2	BB_INT	0	1: Interrupt event	t on BUCK BOOST is detected.
1	REG_INT	0	1: Interrupt event	t on BUCK or LDOs is detected.
0	TOPSYS_INT	0	1: Interrupt event	t on TOPSYS is detected.

TOPSYS_INT

TOPSYS Interrupt Register

ADDRESS	MODE		TYPE: S1	RESET VALUE: 0x00
0x01	R/C		TIPE. SI	RESET VALUE. 0X00
BIT	NAME	POR		DESCRIPTION
7:2	RSVD	0000 00		
1	TJCT_120C	0	1: Junction temp	erature (TJCT) is higher than +120°C.
0	TJCT_140C	0	1: Junction temp	erature (TJCT) is higher than +140°C.

REG_INT1

Regulators Interrupt Register1

ADDRESS	MODE		TYPE: S1	RESET VALUE: 0x00		
0x02	R/C			RESET VALUE. 0X00		
BIT	NAME	POR		DESCRIPTION		
7	LDO8_POKn	0	1: LDO8 POKn i	s triggered.		
6	LDO7_POKn	0	1: LDO7 POKn i	s triggered.		
5	LDO6_POKn	0	1: LDO6 POKn i	s triggered.		
4	LDO5_POKn	0	1: LDO5 POKn i	s triggered.		
3	LDO4_POKn	0	1: LDO4 POKn is triggered.			
2	LDO3_POKn	0	1: LDO3 POKn i	s triggered.		
1	LDO2_POKn	0	1: LDO2 POKn i	s triggered.		
0	LDO1_POKn	0	1: LDO1 POKn i	s triggered.		

REG_INT2

Regulators Interrupt Register2

ADDRESS	MODE		TYPE: S1	RESET VALUE: 0x00		
0x03	R/C			RESET VALUE. 0X00		
BIT	NAME	POR		DESCRIPTION		
7	B_POKn	0	1: BUCK POKn i	s triggered.		
6	LDO15_POKn	0	1: LDO15 POKn	is triggered.		
5	LDO14_POKn	0	1: LDO14 POKn	is triggered.		
4	LDO13_POKn	0	1: LDO13 POKn	is triggered.		
3	LDO12_POKn	0	1: LDO12 POKn is triggered.			
2	LDO11_POKn	0	1: LDO11 POKn	is triggered.		
1	LDO10_POKn	0	1: LDO10 POKn	is triggered.		
0	LDO9_POKn	0	1: LDO9 POKn is	s triggered.		

BB_INT

BUCK BOOST Interrupt Register

ADDRESS	MODE		TYPE: S1	RESET VALUE: 0x00
0x04	R/C		ITPE. ST	RESET VALUE. 0X00
BIT	NAME	POR		DESCRIPTION
7:3	RSVD	0000 0		
2	BB_POKn	0	1: BUCK BOOST	POKn is triggered.
1	BB_OVP	0	1: BUCK BOOST	OVP is triggered.
0	BB_OCP	0	1: BUCK BOOST	OCP is triggered.

INT_SRC_M

Interrupt Source Mask Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x07
0x05	R/W			RESET VALUE. 0X07
BIT	NAME	POR		DESCRIPTION
7:3	RSVD	0000 0		
2	BB_INT_M	1		BOOST interrupt events. OOST interrupt events.
1	REG_INT_M	1	0: Enable REG in 1: Mask REG int	•
0	TOPSYS_INT_M	1		YS interrupt events. S interrupt events.

TOPSYS_INT_M TOPSYS Interrupt Mask Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x03
0x05	R/W		TIPE. O	RESET VALUE. 0X03
BIT	NAME	POR		DESCRIPTION
7:2	RSVD	0000 00		
1	TJCT_120C_M	1	0: Enable TJCT_ 1: Mask TJCT_1	
0	TJCT_140C_M	1	0: Enable TJCT_ 1: Mask TJCT_1	

REG_INT1_M

Regulators Interrupt Mask Register 1

ADDRESS	MODE		TYPE: O	RESET VALUE: 0xFF		
0x07	R/W		TIPE: O	RESET VALUE. UXFF		
BIT	NAME	POR		DESCRIPTION		
7	LDO8_POKn_M	1	0: Enable LDO8 1: Mask LDO8 P	•		
6	LDO7_POKn_M	1	0: Enable LDO7 1: Mask LDO7 P			
5	LDO6_POKn_M	1	0: Enable LDO6 1: Mask LDO6 P			
4	LDO5_POKn_M	1	0: Enable LDO5 1: Mask LDO5 P	•		
3	LDO4_POKn_M	1	0: Enable LDO4 POKn interrupt. 1: Mask LDO4 POKn interrupt.			
2	LDO3_POKn_M	1	0: Enable LDO3 1: Mask LDO3 P			
1	LDO2_POKn_M	1	0: Enable LDO2 1: Mask LDO2 P			
0	LDO1_POKn_M	1	0: Enable LDO1 1: Mask LDO1 P			

REG_INT2_M Regulators Interrupt Mask Register 2

ADDRESS	MODE		TYPE: O	RESET VALUE: 0xFF		
0x08	R/W		ITPE. U	RESET VALUE. UXFF		
BIT	NAME	POR		DESCRIPTION		
7	B_POKn_M	1	0: Enable BUCK 1: Mask BUCK P	•		
6	LDO15_POKn_M	1	0: Enable LDO15 1: Mask LDO15	5 POKn interrupt. POKn interrupt.		
5	LDO14_POKn_M	1	0: Enable LDO14 1: Mask LDO14	4 POKn interrupt. POKn interrupt.		
4	LDO13_POKn_M	1	0: Enable LDO13 1: Mask LDO13	3 POKn interrupt. POKn interrupt.		
3	LDO12_POKn_M	1	0: Enable LDO12 POKn interrupt. 1: Mask LDO12 POKn interrupt.			
2	LDO11_POKn_M	1	0: Enable LDO11 1: Mask LDO11 I	•		
1	LDO10_POKn_M	1	0: Enable LDO10 1: Mask LDO10) POKn interrupt. POKn interrupt.		
0	LDO9_POKn_M	1	0: Enable LDO9 1: Mask LDO9 P			

BB_INT_M BUCK BOOST Interrupt Mask Register

ADDRESS	MODE		TYPE: O			
0x09	R/W			RESET VALUE: 0x07		
BIT	NAME	POR		DESCRIPTION		
7:3	RSVD	0000 0				
2	BB_POKn_M	1	0: Enable BUCK BOOST POKn interrupt. 1: Mask BUCK BOOST POKn interrupt.			
1	BB_OVP_M	1	0: Enable BUCK BOOST OVP interrupt. 1: Mask BUCK BOOST OVP interrupt.			
0	BB_OCP_M	1	0: Enable BUCK BOOST OCP interrupt. 1: Mask BUCK BOOST OCP interrupt.			

TOPSYS_STAT

TOPSYS Status Register

ADDRESS	MODE		TYPE: O	RESET VALUE: N/A		
0x0A	R		TIFE. O	RESET VALUE. N/A		
BIT	NAME	POR	DESCRIPTION			
7:2	RSVD					
1	TJCT_120C	_		erature (TJCT) ≤ +120°C erature (TJCT) > +120°C		
0	TJCT_140C	_	0: Junction temperature (TJCT) ≤ +140°C 1: Junction temperature (TJCT) > +140°C			

REG_STAT1

Regulators Status Register 1

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x00	
0x0B	R			RESET VALUE. 0X00	
BIT	NAME	POR		DESCRIPTION	
7	LDO8_POKn	0	LDO8 POKn stat	us	
6	LDO7_POKn	0	LDO7 POKn stat	us	
5	LDO6_POKn	0	LDO6 POKn stat	us	
4	LDO5_POKn	0	LDO5 POKn stat	us	
3	LDO4_POKn	0	LDO4 POKn stat	us	
2	LDO3_POKn	0	LDO3 POKn stat	us	
1	LDO2_POKn	0	LDO2 POKn status		
0	LDO1_POKn	0	LDO1 POKn stat	us	

REG_STAT2

Regulators Status Register 2

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x00	
0x0C	R			RESET VALUE. 0X00	
BIT	NAME	POR		DESCRIPTION	
7	B_POKn	0	BUCK POKn sta	tus	
6	LDO15_POKn	0	LDO15 POKn sta	atus	
5	LDO14_POKn	0	LDO14 POKn sta	atus	
4	LDO13_POKn	0	LDO13 POKn sta	atus	
3	LDO12_POKn	0	LDO12 POKn sta	atus	
2	LDO11_POKn	0	LDO11 POKn status		
1	LDO10_POKn	0	LDO10 POKn status		
0	LDO9_POKn	0	LDO9 POKn stat	us	

BB_STAT

BUCK BOOST Status Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x00	
0x0D	R			RESET VALUE. 0X00	
BIT	NAME	POR	DESCRIPTION		
7:3	RSVD	0000 0			
2	BB_POKn	0	BUCK BOOST POKn status		
1	BB_OVP	0	BUCK BOOST OVP status		
0	BB_OCP	0	BUCK BOOST OCP status		

Note: 0x0E-0x0F: RSVD.

LDO_OPMD1

LDO Operating Mode Register 1

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x00	
0x10	R/W		TIPE. O	RESET VALUE. 0X00	
BIT	NAME	POR		DESCRIPTION	
7	L4_EN	0	0: Output off 1: Output on		
6	L4_LPM	0	0: Normal mode 1: Low power mode		
5	L3_EN	0	0: Output off 1: Output on		
4	L3_LPM	0	0: Normal mode 1: Low power mo	de	
3	L2_EN	0	0: Output off 1: Output on		
2	L2_LPM	0	0: Normal mode 1: Low power mode		
1	L1_EN	0	0: Output off 1: Output on		
0	L1_LPM	0	0: Normal mode 1: Low power mo	de	

LDO_OPMD2 LDO Operating Mode Register 2

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x00	
0x11	R/W			RESET VALUE: 0X00	
BIT	NAME	POR		DESCRIPTION	
7	L8_EN	0	0: Output off 1: Output on		
6	L8_LPM	0	0: Normal mode 1: Low power mo	ode	
5	L7_EN	0	0: Output off 1: Output on		
4	L7_LPM	0	0: Normal mode 1: Low power mo	ode	
3	L6_EN	0	0: Output off 1: Output on		
2	L6_LPM	0	0: Normal mode 1: Low power mode		
1	L5_EN	0	0: Output off 1: Output on		
0	L5_LPM	0	0: Normal Mode 1: Low Power Mo	ode	

LDO_OPMD3

LDO Operating Mode Register 3

ADDRESS	MODE					
0x12	R/W		ADDRESS	RESET VALUE: 0x00		
BIT	NAME	POR		DESCRIPTION		
7	L12_EN	0	0: Output off 1: Output on			
6	L12_LPM	0	0: Normal mode 1: Low power mo	de		
5	L11_EN	0	0: Output off 1: Output on			
4	L11_LPM	0	0: Normal mode 1: Low power mo	de		
3	L10_EN	0	0: Output off 1: Output on			
2	L10_LPM	0	0: Normal mode 1: Low power mode			
1	L9_EN	0	0: Output off 1: Output on			
0	L9_LPM	0	0: Normal mode 1: Low power mode			

LDO_OPMD4 LDO Operating Mode Register 4

ADDRESS	MODE R/W		TYPE: O	RESET VALUE: 0x00	
0x13				RESET VALUE. 0000	
BIT	NAME	POR		DESCRIPTION	
7:6	RSVD				
5	L15_EN	0	0b: Output off 1b: Output on		
4	L15_LPM	0	0b: Normal mode 1b: Low power mode		
3	L14_EN	0	0b: Output off 1b: Output on		
2	L14_LPM	0	0b: Normal mode 1b: Low power m		
1	L13_EN	0	0b: Output off 1b: Output on		
0	L13_LPM	0	0b: Normal mode 1b: Low power mode		

B_BB_OPMD

BUCK and BUCK BOOST Operating Mode Register

ADDRESS	MODE		TYPE: O	RESET VALUE: 0x00		
0x14	R/W		TIFE. O	RESET VALUE. 0000		
BIT	NAME	POR		DESCRIPTION		
7:4	RSVD	0000				
3	BB_EN	0	0: BUCK BOOST output off 1: BUCK BOOST output on			
2	RSVD	0				
1	B_EN	0	0: BUCK output 1: BUCK output			
0	B_LPM	0	0: Normal mode 1: Low power mode			

Note: 0x14–0x1F: RSVD.

LDO1_CFG

LDO1 Configuration Register

ADDRESS	MODE			_		
0x20	R/W		TYPE: O	R	ESET VALUE: 0xA	D
BIT	NAME	POR		DESCR	RIPTION	
7	L1_AD	1	Output Active Dis 0: Disable 1: Enable	scharge		
			NMOS LDO Outp	ut Voltage		
			0x00 = 0.6000V	0x20 = 1.0000V	0x40 = 1.4000V	0x60 = 1.8000V
			0x01 = 0.6125V	0x21 = 1.0125V	0x41 = 1.4125V	0x61 = 1.8125V
			0x02 = 0.6250V	0x22 = 1.0250V	0x42 = 1.4250V	0x62 = 1.8250V
			0x03 = 0.6375V	0x23 = 1.0375V	0x43 = 1.4375V	0x63 = 1.8375V
			0x04 = 0.6500V	0x24 = 1.0500V	0x44 = 1.4500V	0x64 = 1.8500V
			0x05 = 0.6625V	0x25 = 1.0625V	0x45 = 1.4625V	0x65 = 1.8625V
			0x06 = 0.6750V	0x26 = 1.0750V	0x46 = 1.4750V	0x66 = 1.8750V
			0x07 = 0.6875V	0x27 = 1.0875V	0x47 = 1.4875V	0x67 = 1.8875V
			0x08 = 0.7000V	0x28 = 1.1000V	0x48 = 1.5000V	0x68 = 1.9000V
			0x09 = 0.7125V	0x29 = 1.1125V	0x49 = 1.5125V	0x69 = 1.9125V
			0x0A = 0.7250V	0x2A = 1.1250V	0x4A = 1.5250V	0x6A = 1.9250V
			0x0B = 0.7375V	0x2B = 1.1375V	0x4B = 1.5375V	0x6B = 1.9375V
			0x0C = 0.7500V	0x2C = 1.1500V	0x4C = 1.5500V	0x6C = 1.9500V
			0x0D = 0.7625V	0x2D = 1.1625V	0x4D = 1.5625V	0x6D = 1.9625V
			0x0E = 0.7750V	0x2E = 1.1750V	0x4E = 1.5750V	0x6E = 1.9750V
6:0	L1_VOUT[6:0]	010 0000	0x0F = 0.7875V	0x2F = 1.1875V	0x4F = 1.5875V	0x6F = 1.9875V
			0x10 = 0.8000V	0x30 = 1.2000V	0x50 = 1.6000V	0x70 = 2.0000V
			0x11 = 0.8125V	0x31 = 1.2125V	0x51 = 1.6125V	0x71 = 2.0125V
			0x12 = 0.8250V	0x32 = 1.2250V	0x52 = 1.6250V	0x72 = 2.0250V
			0x13 = 0.8375V	0x33 = 1.2375V	0x53 = 1.6375V	0x73 = 2.0375V
			0x14 = 0.8500V	0x34 = 1.2500V	0x54 = 1.6500V	0x74 = 2.0500V
			0x15 = 0.8625V	0x35 = 1.2625V	0x55 = 1.6625V	0x75 = 2.0625V
			0x16 = 0.8750V	0x36 = 1.2750V	0x56 = 1.6750V	0x76 = 2.0750V
			0x17 = 0.8875V	0x37 = 1.2875V	0x57 = 1.6875V	0x77 = 2.0875V
			0x18 = 0.9000V	0x38 = 1.3000V	0x58 = 1.7000V	0x78 = 2.1000V
			0x19 = 0.9125V	0x39 = 1.3125V	0x59 = 1.7125V	0x79 = 2.1125V
			0x1A = 0.9250V	0x3A = 1.3250V	0x5A = 1.7250V	0x7A = 2.1250V
			0x1B = 0.9375V	0x3B = 1.3375V	0x5B = 1.7375V	0x7B = 2.1375V
			0x1C = 0.9500V	0x3C = 1.3500V	0x5C = 1.7500V	0x7C = 2.1500V
			0x1D = 0.9625V	0x3D = 1.3625V	0x5D = 1.7625V	0x7D = 2.1625V
			0x1E = 0.9750V	0x3E = 1.3750V	0x5E = 1.7750V	0x7E = 2.1750V
			0x1F = 0.9875V	0x3F = 1.3875V	0x5F = 1.7875V	0x7F = 2.1875V

LDO2_CFG

LDO2 Configuration Register

ADDRESS	MODE			_				
0x21	R/W		TYPE: O	R	ESET VALUE: 0xA	D		
BIT	NAME	POR		DESCR	RIPTION			
7	L2_AD	1	Output Active Dis 0: Disable 1: Enable	scharge				
			NMOS LDO Outp	NMOS LDO Output Voltage				
			0x00 = 0.6000V	0x20 = 1.0000V	0x40 = 1.4000V	0x60 = 1.8000V		
			0x01 = 0.6125V	0x21 = 1.0125V	0x41 = 1.4125V	0x61 = 1.8125V		
			0x02 = 0.6250V	0x22 = 1.0250V	0x42 = 1.4250V	0x62 = 1.8250V		
			0x03 = 0.6375V	0x23 = 1.0375V	0x43 = 1.4375V	0x63 = 1.8375V		
			0x04 = 0.6500V	0x24 = 1.0500V	0x44 = 1.4500V	0x64 = 1.8500V		
			0x05 = 0.6625V	0x25 = 1.0625V	0x45 = 1.4625V	0x65 = 1.8625V		
			0x06 = 0.6750V	0x26 = 1.0750V	0x46 = 1.4750V	0x66 = 1.8750V		
			0x07 = 0.6875V	0x27 = 1.0875V	0x47 = 1.4875V	0x67 = 1.8875V		
			0x08 = 0.7000V	0x28 = 1.1000V	0x48 = 1.5000V	0x68 = 1.9000V		
			0x09 = 0.7125V	0x29 = 1.1125V	0x49 = 1.5125V	0x69 = 1.9125V		
			0x0A = 0.7250V	0x2A = 1.1250V	0x4A = 1.5250V	0x6A = 1.9250V		
			0x0B = 0.7375V	0x2B = 1.1375V	0x4B = 1.5375V	0x6B = 1.9375V		
			0x0C = 0.7500V	0x2C = 1.1500V	0x4C = 1.5500V	0x6C = 1.9500V		
			0x0D = 0.7625V	0x2D = 1.1625V	0x4D = 1.5625V	0x6D = 1.9625V		
			0x0E = 0.7750V	0x2E = 1.1750V	0x4E = 1.5750V	0x6E = 1.9750V		
6:0	L2_VOUT[6:0]	010 0000	0x0F = 0.7875V	0x2F = 1.1875V	0x4F = 1.5875V	0x6F = 1.9875V		
			0x10 = 0.8000V	0x30 = 1.2000V	0x50 = 1.6000V	0x70 = 2.0000V		
			0x11 = 0.8125V	0x31 = 1.2125V	0x51 = 1.6125V	0x71 = 2.0125V		
			0x12 = 0.8250V	0x32 = 1.2250V	0x52 = 1.6250V	0x72 = 2.0250V		
			0x13 = 0.8375V	0x33 = 1.2375V	0x53 = 1.6375V	0x73 = 2.0375V		
			0x14 = 0.8500V	0x34 = 1.2500V	0x54 = 1.6500V	0x74 = 2.0500V		
			0x15 = 0.8625V	0x35 = 1.2625V	0x55 = 1.6625V	0x75 = 2.0625V		
			0x16 = 0.8750V	0x36 = 1.2750V	0x56 = 1.6750V	0x76 = 2.0750V		
			0x17 = 0.8875V	0x37 = 1.2875V	0x57 = 1.6875V	0x77 = 2.0875V		
			0x18 = 0.9000V	0x38 = 1.3000V	0x58 = 1.7000V	0x78 = 2.1000V		
			0x19 = 0.9125V	0x39 = 1.3125V	0x59 = 1.7125V	0x79 = 2.1125V		
			0x1A = 0.9250V	0x3A = 1.3250V	0x5A = 1.7250V	0x7A = 2.1250V		
			0x1B = 0.9375V	0x3B = 1.3375V	0x5B = 1.7375V	0x7B = 2.1375V		
			0x1C = 0.9500V	0x3C = 1.3500V	0x5C = 1.7500V	0x7C = 2.1500V		
			0x1D = 0.9625V	0x3D = 1.3625V	0x5D = 1.7625V	0x7D = 2.1625V		
			0x1E = 0.9750V	0x3E = 1.3750V	0x5E = 1.7750V	0x7E = 2.1750V		
			0x1F = 0.9875V	0x3F = 1.3875V	0x5F = 1.7875V	0x7F = 2.1875V		

LDO3_CFG

LDO3 Configuration Register

ADDRESS	MODE			_		
0x22	R/W		TYPE: O	R	ESET VALUE: 0xA	D
BIT	NAME	POR		DESCR	RIPTION	
7	L3_AD	1	Output Active Dis 0: Disable 1: Enable	scharge		
			NMOS LDO Outp	ut Voltage Table		
			0x00 = 0.6000V	0x20 = 1.0000V	0x40 = 1.4000V	0x60 = 1.8000V
			0x01 = 0.6125V	0x21 = 1.0125V	0x41 = 1.4125V	0x61 = 1.8125V
			0x02 = 0.6250V	0x22 = 1.0250V	0x42 = 1.4250V	0x62 = 1.8250V
			0x03 = 0.6375V	0x23 = 1.0375V	0x43 = 1.4375V	0x63 = 1.8375V
			0x04 = 0.6500V	0x24 = 1.0500V	0x44 = 1.4500V	0x64 = 1.8500V
			0x05 = 0.6625V	0x25 = 1.0625V	0x45 = 1.4625V	0x65 = 1.8625V
			0x06 = 0.6750V	0x26 = 1.0750V	0x46 = 1.4750V	0x66 = 1.8750V
			0x07 = 0.6875V	0x27 = 1.0875V	0x47 = 1.4875V	0x67 = 1.8875V
			0x08 = 0.7000V	0x28 = 1.1000V	0x48 = 1.5000V	0x68 = 1.9000V
			0x09 = 0.7125V	0x29 = 1.1125V	0x49 = 1.5125V	0x69 = 1.9125V
			0x0A = 0.7250V	0x2A = 1.1250V	0x4A = 1.5250V	0x6A = 1.9250V
			0x0B = 0.7375V	0x2B = 1.1375V	0x4B = 1.5375V	0x6B = 1.9375V
			0x0C = 0.7500V	0x2C = 1.1500V	0x4C = 1.5500V	0x6C = 1.9500V
			0x0D = 0.7625V	0x2D = 1.1625V	0x4D = 1.5625V	0x6D = 1.9625V
			0x0E = 0.7750V	0x2E = 1.1750V	0x4E = 1.5750V	0x6E = 1.9750V
6:0	L3_VOUT[6:0]	010 0000	0x0F = 0.7875V	0x2F = 1.1875V	0x4F = 1.5875V	0x6F = 1.9875V
			0x10 = 0.8000V	0x30 = 1.2000V	0x50 = 1.6000V	0x70 = 2.0000V
			0x11 = 0.8125V	0x31 = 1.2125V	0x51 = 1.6125V	0x71 = 2.0125V
			0x12 = 0.8250V	0x32 = 1.2250V	0x52 = 1.6250V	0x72 = 2.0250V
			0x13 = 0.8375V	0x33 = 1.2375V	0x53 = 1.6375V	0x73 = 2.0375V
			0x14 = 0.8500V	0x34 = 1.2500V	0x54 = 1.6500V	0x74 = 2.0500V
			0x15 = 0.8625V	0x35 = 1.2625V	0x55 = 1.6625V	0x75 = 2.0625V
			0x16 = 0.8750V	0x36 = 1.2750V	0x56 = 1.6750V	0x76 = 2.0750V
			0x17 = 0.8875V	0x37 = 1.2875V	0x57 = 1.6875V	0x77 = 2.0875V
			0x18 = 0.9000V	0x38 = 1.3000V	0x58 = 1.7000V	0x78 = 2.1000V
			0x19 = 0.9125V	0x39 = 1.3125V	0x59 = 1.7125V	0x79 = 2.1125V
			0x1A = 0.9250V	0x3A = 1.3250V	0x5A = 1.7250V	0x7A = 2.1250V
			0x1B = 0.9375V	0x3B = 1.3375V	0x5B = 1.7375V	0x7B = 2.1375V
			0x1C = 0.9500V	0x3C = 1.3500V	0x5C = 1.7500V	0x7C = 2.1500V
			0x1D = 0.9625V	0x3D = 1.3625V	0x5D = 1.7625V	0x7D = 2.1625V
			0x1E = 0.9750V	0x3E = 1.3750V	0x5E = 1.7750V	0x7E = 2.1750V
			0x1F = 0.9875V	0x3F = 1.3875V	0x5F = 1.7875V	0x7F = 2.1875V

LDO4_CFG

LDO4 Configuration Register

ADDRESS	MODE		TYPE: O	_			
0x23	R/W	R/W		R	ESET VALUE: 0x90	3	
BIT	NAME	POR	DESCRIPTION				
7	L4_AD	1	Output Active Dis 0: Disable 1: Enable	scharge			
			PMOSLV LDO Ou	tput Voltage Table			
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V	
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V	
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V	
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V	
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V	
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V	
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V	
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V	
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V	
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V	
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V	
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V	
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V	
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V	
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V	
6:0	L4_VOUT[6:0]	001 1100	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V	
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V	
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V	
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V	
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V	
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V	
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V	
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V	
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V	
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V	
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V	
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V	
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V	
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V	
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V	
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V	
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V	

LDO5_CFG

LDO5 Configuration Register

ADDRESS	MODE			_			
0x24	R/W		TYPE: O	R	ESET VALUE: 0xA8	8	
BIT	NAME	POR	1	DESCR			
7	L5_AD	1	Output Active Dis 0: Disable 1: Enable	scharge			
			PMOSLV LDO Output Voltage Table				
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V	
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V	
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V	
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V	
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V	
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V	
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V	
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V	
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V	
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V	
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V	
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V	
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V	
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V	
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V	
6:0	L5_VOUT[6:0]	010 1000	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V	
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V	
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V	
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V	
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V	
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V	
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V	
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V	
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V	
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V	
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V	
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V	
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V	
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V	
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V	
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V	
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V	

LDO6_CFG

LDO6 Configuration Register

ADDRESS	MODE			_		
0x25	R/W		TYPE: O	R	ESET VALUE: 0xA8	3
BIT	NAME	POR		DESCR		
7	L6_AD	1	Output Active Dis 0: Disable 1: Enable	scharge		
			PMOSLV LDO Ou	tput Voltage		
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V
6:0	L6_VOUT[6:0]	010 1000	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V

LDO7_CFG

LDO7 Configuration Register

ADDRESS	MODE			_		
0x26	R/W		TYPE: O	R	ESET VALUE: 0xA	8
BIT	NAME	POR		DESCR	IPTION	
7	L7_AD	1	Output Active Dis 0: Disable 1: Enable	scharge		
			PMOSLV LDO Ou	tput Voltage		
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V
6:0	L7_VOUT[6:0]	010 1000	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V

LDO8_CFG

LDO8 Configuration Register

ADDRESS	MODE			_		-	
0x27	R/W		TYPE: O	R	ESET VALUE: 0xA	8	
BIT	NAME	POR	DESCRIPTION				
7	L8_AD	1	Output Active Dis 0: Disable 1: Enable	scharge			
			PMOSLV LDO Ou	tput Voltage			
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V	
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V	
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V	
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V	
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V	
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V	
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V	
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V	
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V	
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V	
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V	
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V	
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V	
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V	
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V	
6:0	L8_VOUT[6:0]	010 1000	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V	
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V	
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V	
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V	
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V	
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V	
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V	
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V	
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V	
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V	
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V	
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V	
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V	
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V	
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V	
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V	
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V	

LDO9_CFG

LDO9 Configuration Register

ADDRESS	MODE			_		
0x28	R/W		TYPE: O	R	ESET VALUE: 0xA	8
BIT	NAME	POR	<u> </u>	DESCR		
7	L9_AD	1	Output Active Dis 0: Disable 1: Enable	scharge		
			PMOSLV LDO Ou	tput Voltage		
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V
6:0	L9_VOUT[6:0]	010 1000	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V

LDO10_CFG LDO10 Configuration Register

ADDRESS	MODE		T)(75 0	_			
0x29	R/W		TYPE: O	R	ESET VALUE: 0xD	D	
BIT	NAME	POR	DESCRIPTION				
7	L10_AD	1	Output Active Dis 0: Disable 1: Enable	scharge			
			PMOSLS LDO Ou	tput Voltage			
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V	
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V	
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V	
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V	
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V	
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V	
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V	
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V	
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V	
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V	
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V	
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V	
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V	
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V	
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V	
6:0	L10_VOUT[6:0]	101 0000	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V	
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V	
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V	
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V	
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V	
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V	
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V	
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V	
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V	
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V	
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V	
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V	
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V	
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V	
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V	
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V	
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V	

LDO11_CFG LDO11 Configuration Register

ADDRESS	MODE			_		_	
0x29	R/W		TYPE: O	R	ESET VALUE: 0xD0)	
BIT	NAME	POR		DESCR			
7	L10_AD	1	Output Active Dis 0: Disable 1: Enable	scharge			
			PMOSLS LDO Output Voltage				
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V	
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V	
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V	
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V	
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V	
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V	
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V	
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V	
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V	
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V	
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V	
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V	
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V	
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V	
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V	
6:0	L10_VOUT[6:0]	101 0000	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V	
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V	
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V	
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V	
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V	
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V	
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V	
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V	
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V	
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V	
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V	
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V	
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V	
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V	
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V	
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V	
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V	

LDO12_CFG

LDO12 Configuration Register

ADDRESS	MODE			_		_
0x2B	R/W		TYPE: O	R	ESET VALUE: 0xE4	1
BIT	NAME	POR		DESCR		
7	L12_AD	1	Output Active Dis 0: Disable 1: Enable	scharge		
			PMOSLS LDO Ou	tput Voltage		
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V
6:0	L12_VOUT[6:0]	110 0100	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V

LDO13_CFG

LDO13 Configuration Register

ADDRESS	MODE			_		-	
0x2C	R/W		TYPE: O	R	ESET VALUE: 0xE4	4	
BIT	NAME	POR		DESCR	IPTION		
7	L13_AD	1	Output Active Dis 0: Disable 1: Enable	scharge			
			PMOSLS LDO Output Voltage				
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V	
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V	
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V	
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V	
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V	
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V	
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V	
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V	
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V	
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V	
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V	
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V	
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V	
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V	
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V	
6:0	L13_VOUT[6:0]	110 0100	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V	
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V	
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V	
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V	
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V	
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V	
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V	
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V	
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V	
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V	
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V	
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V	
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V	
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V	
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V	
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V	
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V	

LDO14_CFG

LDO14 Configuration Register

ADDRESS	MODE			_		_	
0x2D	R/W		TYPE: O	R	ESET VALUE: 0xE4	4	
BIT	NAME	POR	<u> </u>	DESCR	IPTION		
7	L14_AD	1	Output Active Dis 0: Disable 1: Enable	scharge			
			PMOSLS LDO Output Voltage				
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V	
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V	
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V	
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V	
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V	
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V	
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V	
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V	
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V	
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V	
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V	
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V	
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V	
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V	
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V	
6:0	L14_VOUT[6:0]	110 0100	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V	
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V	
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V	
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V	
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V	
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V	
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V	
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V	
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V	
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V	
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V	
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V	
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V	
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V	
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V	
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V	
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V	

LDO15_CFG LDO15 Configuration Register

ADDRESS	MODE						
0x2E	R/W		TYPE: O	R	ESET VALUE: 0xE4	1	
BIT	NAME	POR		DESCRIPTION			
7	L15_AD	1	Output Active Discharge 0: Disable 1: Enable				
			PMOSLS LDO Ou	tput Voltage			
			0x00 = 0.800V	0x20 = 1.600V	0x40 = 2.400V	0x60 = 3.200V	
			0x01 = 0.825V	0x21 = 1.625V	0x41 = 2.425V	0x61 = 3.225V	
			0x02 = 0.850V	0x22 = 1.650V	0x42 = 2.450V	0x62 = 3.250V	
			0x03 = 0.875V	0x23 = 1.675V	0x43 = 2.475V	0x63 = 3.275V	
			0x04 = 0.900V	0x24 = 1.700V	0x44 = 2.500V	0x64 = 3.300V	
			0x05 = 0.925V	0x25 = 1.725V	0x45 = 2.525V	0x65 = 3.325V	
			0x06 = 0.950V	0x26 = 1.750V	0x46 = 2.550V	0x66 = 3.350V	
			0x07 = 0.975V	0x27 = 1.775V	0x47 = 2.575V	0x67 = 3.375V	
			0x08 = 1.000V	0x28 = 1.800V	0x48 = 2.600V	0x68 = 3.400V	
			0x09 = 1.025V	0x29 = 1.825V	0x49 = 2.625V	0x69 = 3.425V	
			0x0A = 1.050V	0x2A = 1.850V	0x4A = 2.650V	0x6A = 3.450V	
			0x0B = 1.075V	0x2B = 1.875V	0x4B = 2.675V	0x6B = 3.475V	
			0x0C = 1.100V	0x2C = 1.900V	0x4C = 2.700V	0x6C = 3.500V	
			0x0D = 1.125V	0x2D = 1.925V	0x4D = 2.725V	0x6D = 3.525V	
			0x0E = 1.150V	0x2E = 1.950V	0x4E = 2.750V	0x6E = 3.550V	
6:0	L15_VOUT[6:0]	110 0100	0x0F = 1.175V	0x2F = 1.975V	0x4F = 2.775V	0x6F = 3.575V	
			0x10 = 1.200V	0x30 = 2.000V	0x50 = 2.800V	0x70 = 3.600V	
			0x11 = 1.225V	0x31 = 2.025V	0x51 = 2.825V	0x71 = 3.625V	
			0x12 = 1.250V	0x32 = 2.050V	0x52 = 2.850V	0x72 = 3.650V	
			0x13 = 1.275V	0x33 = 2.075V	0x53 = 2.875V	0x73 = 3.675V	
			0x14 = 1.300V	0x34 = 2.100V	0x54 = 2.900V	0x74 = 3.700V	
			0x15 = 1.325V	0x35 = 2.125V	0x55 = 2.925V	0x75 = 3.725V	
			0x16 = 1.350V	0x36 = 2.150V	0x56 = 2.950V	0x76 = 3.750V	
			0x17 = 1.375V	0x37 = 2.175V	0x57 = 2.975V	0x77 = 3.775V	
			0x18 = 1.400V	0x38 = 2.200V	0x58 = 3.000V	0x78 = 3.800V	
			0x19 = 1.425V	0x39 = 2.225V	0x59 = 3.025V	0x79 = 3.825V	
			0x1A = 1.450V	0x3A = 2.250V	0x5A = 3.050V	0x7A = 3.850V	
			0x1B = 1.475V	0x3B = 2.275V	0x5B = 3.075V	0x7B = 3.875V	
			0x1C = 1.500V	0x3C = 2.300V	0x5C = 3.100V	0x7C = 3.900V	
			0x1D = 1.525V	0x3D = 2.325V	0x5D = 3.125V	0x7D = 3.925V	
			0x1E = 1.550V	0x3E = 2.350V	0x5E = 3.150V	0x7E = 3.950V	
			0x1F = 1.575V	0x3F = 2.375V	0x5F = 3.175V	0x7F = 3.975V	

Note: 0x2F: RSVD.

BUCK_CFG BUCK Configuration Register

ADDRESS	MODE		TYPE: O		
0x30	R/W	R/W		RESET VALUE: 0x09	
BIT	NAME	POR		DESCRIPTION	
7:6	B_RAMP[1:0]	00	Rising Ramp Rat 00b: 12.5mV/µs 01b: 25mV/µs 10b: 50mV/µs 11b: 100mV/µs	01b: 25mV/µs 10b: 50mV/µs	
5:4	RSVD	00			
3	B_AD	1	Output Active Dis 0: Disable 1: Enable	scharge	
2	B_FPWM	0	Forced PWM 0: Turn off Forced (Automatic SKIP r 1: Turn on Forced	node operation under light load)	
1	RSVD	0			
0	B_FSRAD	1	Falling Slew Rate Active Discharge 0: Disable Active Discharge BUCK is allowed to operate in SKIP mode during the time the output voltage decreases (only if B3_FPWM = 0). In SKIP mode, BUCK cannot sink current from the output capacitor and the output voltage falling slew rate is a function of the external load. If the load is heavy, the output voltage falling slew rate is limited to 6.25mV/μs. If the load is light, the output voltage falling slew rate is a function of the output capacitance and the load. Note that the internal feedback string always imposes a 2μA load on the output. 1: Enable Active Discharge		
			decreases. In forc capacitor to ensur To ensure a smoo	forced PWM mode during the time the output voltage ed PWM mode, BUCK can sink current from the output e that the output voltage falls at the rate of 6.25mV/µs. th output voltage ramp-down, forced PMW mode remains after the output voltage decreases to its target voltage.	

BUCK_VOUT

BUCK Output Voltage Setting Register

ADDRESS	MODE R/W		TYPE: O	RESET VALUE: 0x78	
0x31			TIPE. O	RESET VALUE: 0X78	
BIT	NAME	POR	DESCRIPTION		
7:0	B_VOUT[7:0]	0111 1000	BUCK Output Voltage (see table immediately below)		

BUCK Output Voltage

0x00 =	0x20 =	0x40 =	0x60 =	0x80 =	0xA0 =	0xC0 =	0xE0 =
0.50000V	0.70000V	0.90000V	1.10000V	1.30000V	1.50000V	1.70000V	1.80000V
0x01 =	0x21 =	0x41 =	0x61 =	0x81 =	0xA1 =	0xC1 =	0xE1 =
0.50625V	0.70625V	0.90625V	1.10625V	1.30625V	1.50625V	1.70625V	1.80000V
0x02 =	0x22 =	0x42 =	0x62 =	0x82 =	0xA2 =	0xC2 =	0xE2 =
0.51250V	0.71250V	0.91250V	1.11250V	1.31250V	1.51250V	1.71250V	1.80000V
0x03 =	0x23 =	0x43 =	0x63 =	0x83 =	0xA3 =	0xC3 =	0xE3 =
0.51875V	0.71875V	0.91875V	1.11875V	1.31875V	1.51875V	1.71875V	1.80000V
0x04 =	0x24 =	0x44 =	0x64 =	0x84 =	0xA4 =	0xC4 =	0xE4 =
0.52500V	0.72500V	0.92500V	1.12500V	1.32500V	1.52500V	1.72500V	1.80000V
0x05 =	0x25 =	0x45 =	0x65 =	0x85 =	0xA5 =	0xC5 =	0xE5 =
0.53125V	0.73125V	0.93125V	1.13125V	1.33125V	1.53125V	1.73125V	1.80000V
0x06 =	0x26 =	0x46 =	0x66 =	0x86 =	0xA6 =	0xC6 =	0xE6 =
0.53750V	0.73750V	0.93750V	1.13750V	1.33750V	1.53750V	1.73750V	1.80000V
0x07 =	0x27 =	0x47 =	0x67 =	0x87 =	0xA7 =	0xC7 =	0xE7 =
0.54375V	0.74375V	0.94375V	1.14375V	1.34375V	1.54375V	1.74375V	1.80000V
0x08 =	0x28 =	0x48 =	0x68 =	0x88 =	0xA8 =	0xC8 =	0xE8 =
0.55000V	0.75000V	0.95000V	1.15000V	1.35000V	1.55000V	1.75000V	1.80000V
0x09 =	0x29 =	0x49 =	0x69 =	0x89 =	0xA9 =	0xC9 =	0xE9 =
0.55625V	0.75625V	0.95625V	1.15625V	1.35625V	1.55625V	1.75625V	1.80000V
0x0A =	0x2A =	0x4A =	0x6A =	0x8A =	0xAA =	0xCA =	0xEA =
0.56250V	0.76250V	0.96250V	1.16250V	1.36250V	1.56250V	1.76250V	1.80000V
0x0B =	0x2B =	0x4B =	0x6B =	0x8B =	0xAB =	0xCB =	0xEB =
0.56875V	0.76875V	0.96875V	1.16875V	1.36875V	1.56875V	1.76875V	1.80000V
0x0C =	0x2C =	0x4C =	0x6C =	0x8C =	0xAC =	0xCC =	0xEC =
0.57500V	0.77500V	0.97500V	1.17500V	1.37500V	1.57500V	1.77500V	1.80000V
0x0D =	0x2D =	0x4D =	0x6D =	0x8D =	0xAD =	0xCD =	0xED =
0.58125V	0.78125V	0.98125V	1.18125V	1.38125V	1.58125V	1.78125V	1.80000V
0x0E =	0x2E =	0x4E =	0x6E =	0x8E =	0xAE =	0xCE =	0xEE =
0.58750V	0.78750V	0.98750V	1.18750V	1.38750V	1.58750V	1.78750V	1.80000V
0x0F =	0x2F =	0x4F =	0x6F =	0x8F =	0xAF =	0xCF =	0xEF =
0.59375V	0.79375V	0.99375V	1.19375V	1.39375V	1.59375V	1.79375V	1.80000V

Power Management IC

0x10 =	0x30 =	0x50 =	0x70 =	0x90 =	0xB0 =	0xD0 =	0xF0 =
0.60000V	0.80000V	1.00000V	1.20000V	1.40000V	1.60000V	1.80000V	1.80000V
0x11 =	0x31 =	0x51 =	0x71 =	0x91 =	0xB1 =	0xD1 =	0xF1 =
0.60625V	0.80625V	1.00625V	1.20625V	1.40625V	1.60625V	1.80000V	1.80000V
0x12 =	0x32 =	0x52 =	0x72 =	0x92 =	0xB2 =	0xD2 =	0xF2 =
0.61250V	0.81250V	1.01250V	1.21250V	1.41250V	1.61250V	1.80000V	1.80000V
0x13 =	0x33 =	0x53 =	0x73 =	0x93 =	0xB3 =	0xD3 =	0xF3 =
0.61875V	0.81875V	1.01875V	1.21875V	1.41875V	1.61875V	1.80000V	1.80000V
0x14 =	0x34 =	0x54 =	0x74 =	0x94 =	0xB4 =	0xD4 =	0xF4 =
0.62500V	0.82500V	1.02500V	1.22500V	1.42500V	1.62500V	1.80000V	1.80000V
0x15 =	0x35 =	0x55 =	0x75 =	0x95 =	0xB5 =	0xD5 =	0xF5 =
0.63125V	0.83125V	1.03125V	1.23125V	1.43125V	1.63125V	1.80000V	1.80000V
0x16 =	0x36 =	0x56 =	0x76 =	0x96 =	0xB6 =	0xD6 =	0xF6 =
0.63750V	0.83750V	1.03750V	1.23750V	1.43750V	1.63750V	1.80000V	1.80000V
0x17 =	0x37 =	0x57 =	0x77 =	0x97 =	0xB7 =	0xD7 =	0xF7 =
0.64375V	0.84375V	1.04375V	1.24375V	1.44375V	1.64375V	1.80000V	1.80000V
0x18 =	0x38 =	0x58 =	0x78 =	0x98 =	0xB8 =	0xD8 =	0xF8 =
0.65000V	0.85000V	1.05000V	1.25000V	1.45000V	1.65000V	1.80000V	1.80000V
0x19 =	0x39 =	0x59 =	0x79 =	0x99 =	0xB9 =	0xD9 =	0xF9 =
0.65625V	0.85625V	1.05625V	1.25625V	1.45625V	1.65625V	1.80000V	1.80000V
0x1A =	0x3A =	0x5A =	0x7A =	0x9A =	0xBA =	0xDA =	0xFA =
0.66250V	0.86250V	1.06250V	1.26250V	1.46250V	1.66250V	1.80000V	1.80000V
0x1B =	0x3B =	0x5B =	0x7B =	0x9B =	0xBB =	0xDB =	0xFB =
0.66875V	0.86875V	1.06875V	1.26875V	1.46875V	1.66875V	1.80000V	1.80000V
0x1C =	0x3C =	0x5C =	0x7C =	0x9C =	0xBC =	0xDC =	0xFC =
0.67500V	0.87500V	1.07500V	1.27500V	1.47500V	1.67500V	1.80000V	1.80000V
0x1D =	0x3D =	0x5D =	0x7D =	0x9D =	0xBD =	0xDD =	0xFD =
0.68125V	0.88125V	1.08125V	1.28125V	1.48125V	1.68125V	1.80000V	1.80000V
0x1E =	0x3E =	0x5E =	0x7E =	0x9E =	0xBE =	0xDE =	0xFE =
0.68750V	0.88750V	1.08750V	1.28750V	1.48750V	1.68750V	1.80000V	1.80000V
0x1F =	0x3F =	0x5F =	0x7F =	0x9F =	0xBF =	0xDF =	0xFF =
0.69375V	0.89375V	1.09375V	1.29375V	1.49375V	1.69375V	1.80000V	1.80000V

BUCK Output Voltage (continued)

BB_CFG BUCK BOOST Configuration Register

ADDRESS	MODE		TYPE: O		
0x32	R/W			RESET VALUE: 0x3C	
BIT	NAME	POR		DESCRIPTION	
7:6	RSVD	00		DESCRIPTION	
5:4	BB_OVP_TH[1:0]	11	Output OVP Threshold 00b: No OVP 01b: 110% of V _{OUT} 10b: 115% of V _{OUT} 11b: 120% of V _{OUT}		
3	BB_AD	1	Output Active Discharge 0: Disable 1kΩ active discharge. 1: Enable 1kΩ active discharge.		
2	BB_HSKIP	1	High-Skip Mode Enable 0: Disable high-skip mode. 1: Enable high-skip mode. HSKIP function is active only when BB_FPWM = 0 and BB_HSKIP = 1.		
1	BB_FPWM	0	Forced PWM Enable 0: HSKIP mode HSKIP function is active when BB_FPWM = 0 and BB_HSKIP = 0. 1: Forced PWM		
0	RSVD	0			

BB_VOUT BUCK BOOST Output Voltage Setting Register

ADDRESS	MODE	MODE					
0x33	R/W		TYPE: O RESET VALUE: 0x48				
BIT	NAME	POR	DESCRIPTION				
7	RSVD	0	Write 0.				
			BUCK BOOST O	utput Voltage			
			0x00 = 2.6000V	0x20 = 3.0000V	0x40 = 3.4000V	0x60 = 3.8000V	
			0x01 = 2.6125V	0x21 = 3.0125V	0x41 = 3.4125V	0x61 = 3.8125V	
			0x02 = 2.6250V	0x22 = 3.0250V	0x42 = 3.4250V	0x62 = 3.8250V	
			0x03 = 2.6375V	0x23 = 3.0375V	0x43 = 3.4375V	0x63 = 3.8375V	
			0x04 = 2.6500V	0x24 = 3.0500V	0x44 = 3.4500V	0x64 = 3.8500V	
			0x05 = 2.6625V	0x25 = 3.0625V	0x45 = 3.4625V	0x65 = 3.8625V	
			0x06 = 2.6750V	0x26 = 3.0750V	0x46 = 3.4750V	0x66 = 3.8750V	
			0x07 = 2.6875V	0x27 = 3.0875V	0x47 = 3.4875V	0x67 = 3.8875V	
			0x08 = 2.7000V	0x28 = 3.1000V	0x48 = 3.5000V	0x68 = 3.9000V	
			0x09 = 2.7125V	0x29 = 3.1125V	0x49 = 3.5125V	0x69 = 3.9125V	
			0x0A = 2.7250V	0x2A = 3.1250V	0x4A = 3.5250V	0x6A = 3.9250V	
			0x0B = 2.7375V	0x2B = 3.1375V	0x4B = 3.5375V	0x6B = 3.9375V	
			0x0C = 2.7500V	0x2C = 3.1500V	0x4C = 3.5500V	0x6C = 3.9500V	
			0x0D = 2.7625V	0x2D = 3.1625V	0x4D = 3.5625V	0x6D = 3.9625V	
			0x0E = 2.7750V	0x2E = 3.1750V	0x4E = 3.5750V	0x6E = 3.9750V	
6:0	BB_VOUT[6:0]	100 0000	0x0F = 2.7875V	0x2F = 3.1875V	0x4F = 3.5875V	0x6F = 3.9875V	
			0x10 = 2.8000V	0x30 = 3.2000V	0x50 = 3.6000V	0x70 = 4.0000V	
			0x11 = 2.8125V	0x31 = 3.2125V	0x51 = 3.6125V	0x71 = 4.0125V	
			0x12 = 2.8250V	0x32 = 3.2250V	0x52 = 3.6250V	0x72 = 4.0250V	
			0x13 = 2.8375V	0x33 = 3.2375V	0x53 = 3.6375V	0x73 = 4.0375V	
			0x14 = 2.8500V	0x34 = 3.2500V	0x54 = 3.6500V	0x74 = 4.0500V	
			0x15 = 2.8625V	0x35 = 3.2625V	0x55 = 3.6625V	0x75 = 4.0625V	
			0x16 = 2.8750V	0x36 = 3.2750V	0x56 = 3.6750V	0x76 = 4.0750V	
			0x17 = 2.8875V	0x37 = 3.2875V	0x57 = 3.6875V	0x77 = 4.0875V	
			0x18 = 2.9000V	0x38 = 3.3000V	0x58 = 3.7000V	0x78 = 4.1000V	
			0x19 = 2.9125V	0x39 = 3.3125V	0x59 = 3.7125V	0x79 = 4.1125V	
			0x1A = 2.9250V	0x3A = 3.3250V	0x5A = 3.7250V	0x7A = 4.1250V	
			0x1B = 2.9375V	0x3B = 3.3375V	0x5B = 3.7375V	0x7B = 4.1375V	
			0x1C = 2.9500V	0x3C = 3.3500V	0x5C = 3.7500V	0x7C = 4.1500V	
			0x1D = 2.9625V	0x3D = 3.3625V	0x5D = 3.7625V	0x7D = 4.1625V	
			0x1E = 2.9750V	0x3E = 3.3750V	0x5E = 3.7750V	0x7E = 4.1750V	
			0x1F = 2.9875V	0x3F = 3.3875V	0x5F = 3.7875V	0x7F = 4.1875V	

Note: 0x34–0x3F: RSVD.

BUCK_SS_FREQ

BUCK Soft-Start and Switching Frequency Configuration Register

ADDRESS	MODE R/W		TYPE: O	RESET VALUE: 0x04
0x40			TTPE: U	RESET VALUE: 0X04
BIT	NAME	POR		DESCRIPTION
7:5	RSVD	000	Write 0.	
4	B_SS	0	BUCK Soft-Star 0: 14mV/µs 1: 25mV/µs	t Slew Rate
3	RSVD	0	Write 0.	
2:0	B_FREQ[2:0]	100	Multiphase Curr 000b: 3.6MHz 001b: 3.2MHz 010b: 2.8MHz 011b: 2.4MHz 100b: 2.0MHz 101b: 1.6MHz 110b: 1.2MHz 111b: 0.8MHz	rent Mode BUCK Switching Frequency

UVLO_FALL

VSYS UVLO Falling Threshold Program Register

ADDRESS	MODE R/W		TYPE: O	RESET VALUE: 0x01
0x41			TIFE. O	RESET VALUE. 0X01
BIT	NAME	POR	DESCRIPTION	
7:2	RSVD	0000 00	Write 0000 00.	
1:0	UVLO_F[1:0]	01	VSYS UVLO Fall 00b: Not used 01b: 2.05V 10b: 2.25V 11b: 2.45V	ling Threshold

Note: 0x42–0xFF: RSVD.

Typical Application Circuit

Power Management IC

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX77826EWJ+	-40°C to +85°C	49 Bumps (7 x 7) 0.4mm Pitch

+Denotes a lead(Pb)-free/RoHS-compliant package.

Chip Information

PROCESS: S18B

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
49 WLP	W493E3+1	<u>21-0728</u>	Refer to Application Note 1891

Power Management IC

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/15	Initial release	—
1	7/15	Corrected typos and updated notes in <i>Electrical Characteristics</i> table.	4, 7

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.