

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPD-DIS/13/8193 Dated 31 Oct 2013

TO202 conversion to ECOPACK2 grade

Table 1. Change Implementation Schedule

Forecasted implementation date for change	24-Oct-2013
Forecasted availability date of samples for customer	24-Oct-2013
Forecasted date for STMicroelectronics change Qualification Plan results availability	24-Oct-2013
Estimated date of changed product first shipment	30-Jan-2014

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	TO202 devices
Type of change	Package assembly material change
Reason for change	To meet the so called "Halogen-Free" requirements of the market
Description of the change	TO202 conversion to green /halogen free molding compound.
Change Product Identification	marking, internal codification and QA number
Manufacturing Location(s)	

47/.

Tab	le 3	List	of .	Attac	hments	3

Customer Part numbers list	
Qualification Plan results	

PCN IPD-DIS/13/8193
Dated 31 Oct 2013
Name:
Title:
Company:
Date:
Signature:

47/.

DOCUMENT APPROVAL

Name	Function	
Paris, Eric	Marketing Manager	
Duclos, Franck	Product Manager	
Cazaubon, Guy	on, Guy Q.A. Manager	

A7/.

(1) IPG: Industrial & Power Group - ASD: Application Specific Device – IPAD™: Integrated Passive and Active Devices

PCN Product/Process Change Notification

Notification number: IPG-DIS/13/8193 Issue Date 21/10/2013 Issued by Aline AUGIS Product series affected by the change X04xF and Z04xF Type of change Assembly package material change

Description of the change

ST is converting its **AC Switches in TO202** package from the standard molding compound to **ECOPACK®2** grade "Halogen free" compound.

Reason for change

To meet the so called "Halogen-Free" requirements of the market, ST is converting its AC Switches housed in TO202 package to the ECOPACK®2 grade.

Former versus changed product: The changed products do not present modified electrical, dimensional or thermal parameters, leaving unchanged the current information published in the product datasheet The Moisture Sensitivity Level of the part (according to the		
IPC/JEDEC JSTD-020D standard) remains unchanged. The footprint recommended by ST remain the same. There is no change in the packing modes and the standard delivery quantities either.	Former versus changed product:	dimensional or thermal parameters, leaving unchanged the current information published in the product datasheet The Moisture Sensitivity Level of the part (according to the IPC/JEDEC JSTD-020D standard) remains unchanged. The footprint recommended by ST remain the same. There is no change in the packing modes and the standard

Disposition of former products

Deliveries of former product version will continue while the conversion is brought to completion and as long as former products inventories last.

Marking and traceability

The marking of the ECOPACK2 component will be differentiated with an additional letter G that will be printed to the right of the e3 symbol of the IPC-JEDEC J—STD 609.

Issue date 23-10-2013 1/2

STMicroelectronics IPD - ASD & IPAD™ Division¹ BU Thyristors and Triacs

(1) IPG: Industrial & Power Group - ASD: Application Specific Device – IPAD™: Integrated Passive and Active Devices

Qualification complete date	November 2013

Forecasted sample availability

Product family	Package	Commercial part Number	Availability date
AC switches	TO202	X0405MF 1AA2	From now
AC switches	TO202	Z0405ME 1AA2	From now
AC switches	TO202	Z0409MF 1AA2	From now
Other samples will be available on request			

Change implementation schedule

Sales types	Estimated production start	Estimated first shipments
X0402DE 1AA2		
X0402DF 1AA2		
X0402MF x AA2		
X0402NF 1AA2		
X0403 x F 1AA2		
X0405MF x AA2	W02/2014	W06/2014
X0405NF 1AA2		
Z0402 x F 1AA2		
Z0405 xx 1AA2		
Z0409 x F x AA2		
Z0410 x F x AA2		

Comments:

Customer's feedback

Please contact your local ST sales representative or quality contact for requests concerning this change notification.

Absence of acknowledgement of this PCN within 30 days of receipt will constitute acceptance of the change Absence of additional response within 90 days of receipt of this PCN will constitute acceptance of the change

Qualification program and results	QRP12268 Attached
-----------------------------------	-------------------

Issue date 23-10-2013 2/2

Qualification Report

Green Molding Compound qualification for AC Switch products assembled in a TO-202 package at Philippines subcontractor

General Information		Locations	
Product Lines	AC Switches	Wafer fab	ST (France)
Products Description	series X04xx & Z04xx	Assembly plant	Subcontractor (Philippines)
Product Group	IPD (Integrated Passive Device group)	Reliability Lab	ST (France)
Product division	ASD & IPAD division		
Package	TO-202		

DOCUMENT INFORMATION

Version	ersion Date Pages		Prepared by	Approved by	Comment	
Rev. 1	November 7 th	12	Gilles DUTRANNOY	Jean-Paul REBRASSE	First issue	

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

November 7th, 2012 Report ID: 12268QRP

TABLE OF CONTENTS

		LICABLE AND REFERENCE DOCUMENTS	
2	GLO:	SSARY	3
		ABILITY EVALUATION OVERVIEW	4
	3.1	Objectives	4
	3.2	CONCLUSION	
	3.3	Devices Characteristics	
	3.4	DEVICES DESCRIPTION	
	3.5	CONSTRUCTION NOTES	7
4		TS RESULTS SUMMARY	
	4.1	TEST VEHICLES	8
		TEST PLAN AND RESULTS SUMMARY	
5	ANN	EXES	
	5.1	DEVICE DETAILS	11
	5.2	TESTS DESCRIPTION	12

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
ADCS 8377126	FMEA GREEN MOLD CPD TO202 PRODUCT Philippines Subcontractor
AEC-Q101	Stress test qualification for automotive grade discrete semiconductors
JESD 22	Reliability test methods for packaged devices
JESD 47	Stress-Test-Driven Qualification of Integrated Circuits
JESD 94	Application specific qualification using knowledge based test methodology
MIL-STD-750C	Test method for semiconductor devices
Product Change	PCNxxx
Notification	
SOP 2614	Reliability requirements for product qualification
SOP 267	Product maturity levels
0061692	Reliability tests and criteria for qualifications

2 GLOSSARY

BOM	Bill Of Materials
DUT	Device Under Test
F/G	Finished Good
HTRB	High Temperature Reverse Bias
PCT	Pressure Cooker Test
P/N	Part Number
RH	Relative Humidity
SS	Sample Size
TCT Temperature Cycling Test	
ТНВ	Temperature Humidity Bias

November 7th, 2012 Report ID: 12268QRP

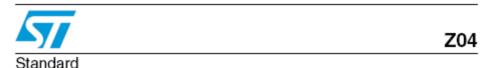
3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

This project consists in the **qualification of a Green Molding Compound** dedicated to AC Switch products assembled in a **TO-202** package at Philippines.

The products involved by this qualification are the series X04xx & Z04xx.

The reliability test results are detailed in the "Test results summary" (see § 5).

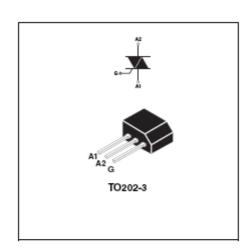

3.2 Conclusion

Qualification plan requirements have been fulfilled without exception; it shows that the devices behave correctly against environmental tests (no failure). Moreover the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the product and safe operation, which consequently expected during their lifetime.

3.3 <u>Devices Characteristics</u>

3.4 Devices description

4 A Triacs


Main features

Symbol	Value	Unit
I _{T(RMS)}	4	Α
V _{DRM} /V _{RRM}	600 to 800	V
I _{GT (Q₁)}	3 to 25	mA

Description

The Z04 series is suitable for general purpose AC switching applications. They can be found in applications such as home appliances (electrovalve, pump, door lock, small lamp control), fan speed controllers,...

Different gate current sensitivities are available, allowing optimized performances when controlled directly from microcontrollers.

Order codes

Part Number	Marking
Z04xxyF ⁽¹⁾	Z04xxyF ⁽¹⁾

1. xx = sensitivity, y = voltage

Table 1.	Absolute maximum	ratings

Symbol	Parameter			Value	Unit
I _{T(RMS)}	RMS on-state current (full sine wave)		4	Α	
	Non repetitive surge peak on-state current	F = 50 Hz	t = 20 ms	20	
^I TSM	(full cycle, T _j initial = 25° C)	F = 60 Hz	t = 16.7 ms	21	Α
ľt	I't Value for fusing	t _p = 10 ms		2.2	A's
dl/dt	Critical rate of rise of on-state current $l_G = 2 \times l_{GT}$, $t_r \le 100 \text{ ns}$	F = 120 Hz	T _j = 125° C	20	A/μs
I _{GM}	Peak gate current	t _p = 20 μs	T _j = 125° C	1.2	Α
P _{G(AV)}	Average gate power dissipation T _j = 125° C		T _j = 125° C	0.2	W
T _{stg} Tj	Storage junction temperature range Operating junction temperature range		- 40 to + 150 - 40 to + 125	۰c	

May 2006 Rev 7 1/8

www.st.com

X04 Series

SENSITIVE 4A SCRS

MAIN FEATURES:

Symbol	Value	Unit
I _{ПРИМВ)}	4	٨
Vorse/Verse	600 and 800	V
lar	50 to 200	βA

DESCRIPTION

Thanks to highly sensitive triggering levels, the XD4 SCR series is suitable for all applications where the avallable gate current is limited, such as capacitive discharge lightions, motor control in kitchen aids, overvoltage crowbar protection in low power supplies...

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter		Value	Unit		
TORNES:	RMS on-state current (180° conduction angle)		(RMS) RMS on-state current (180° conduction angle)	TI = 60°C	4	. A
			Tamb = 25°C	1.35		
IT(AV)	Average on-state current (180° conduction angle)		TI = 60°C	2.5	Α.	
	POST WARE TO COMPANY IN A CONTROL OF THE CONTROL OF	000000000000000000000000000000000000000	Tamb = 25°C	0.9	0. 000	
TSM	Non repetitive surge peak on-state	tp = 8.3 ms	TI-DESC	33	٨	
	current	tp = 10 ms	- 11 = 25°C	30		
ñ.	I't Value for fusing	tp = 10 ms	T] = 25°C	4.5	A ² s	
di/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, tr $\leq 100 \text{ns}$	F = 60 Hz	T] = 125°C	50	Αμ	
MD ¹	Peak gate current	tp = 20 µs	T] = 125°C	1.2	٨	
P _{G(AV)}	Average gate power dissipation		T] = 125°C	0.2	W	
T _{efg}	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	*0	

September 2000 - Ed; 3

3.5 Construction notes

See referenced Product Baseline for detailed information.

	Z0402MF1AA2
Wafer/Die fab. Information	
Wafer fab manufacturing location	France
Wafer Testing (EWS) information	
Electrical testing manufacturing location	France
Assembly information	
Assembly site	Philippines Subcontractor
Package description	TO-202
Molding compound	Halogen-free resin
Final testing information	
Testing location	Philippines Subcontractor

November 7th, 2012 Report ID: 12268QRP

4 TESTS RESULTS SUMMARY

4.1 Test vehicles

Z0402MF1AA2/SK

Lot #	Diffusion Lot	Trace Code	Process/ Package	AREMIS Ref	Comments
LOT 1	U129M34	PHL222	TO202	L1227009L3	Qualification lot

Z0402MF1AA2/SK

Lot #	Diffusion Lot	Trace Code	Process/ Package	AREMIS Ref	Comments
LOT 2	U129M32I	PHL222	TO202	L1227009L4	Qualification lot

Z0402MF1AA2/SK

Lot #	Diffusion Lot	Trace Code	Process/ Package	AREMIS Ref	Comments
LOT 3	U129M31F	PHL222	TO202	L1227009L5	Qualification lot

The results are detailed in the next sections.

4.2 Test plan and results summary

Z0402MF1AA2/SK (lot 1 qualification) reliability test results synthesis

Test	F/G	Std ref.	Conditions	SS	Step	Failure/SS
		JESD22 A-108	T _i = 125 ℃		168 h	0/77
HTRB		MIL-STD-750C	600 V AC peak	77	500 h	0/77
		method 1040 1000 h		1000 h	0/77	
	Z0402MF1AA2		85 ℃ 85% RH V _r = 100 V	25	168 h	0/25
ТНВ		JESD22 A-101 85% RH V _r = 100 V 1000 h			500 h	0/25
				1000 h	0/25	
РСТ		JESD22 A-101	121 ℃ 2 bars 96 h	25	96 h	0/25
тс		JESD22 A-104	-65 ℃/+150 ℃ 2 cycle/h 500 cycles	25	500 cycles	0/25

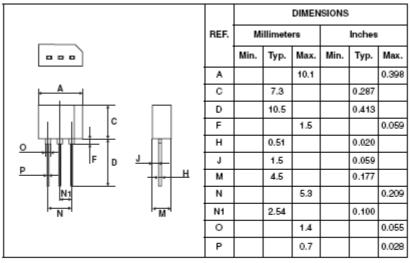
Z0402MF1AA2/SK (lot 2 qualification) reliability test results synthesis

Test	F/G	Std ref.	Conditions	SS	Step	Failure/SS
	Z0402MF1AA2	JESD22 A-108	T _j = 125 ℃ 600 V AC peak	77	168 h	0/77
HTRB		MIL-STD-750C			500 h	0/77
		method 1040 1000 h	1000 11		1000 h	0/77
		JESD22 A-101 85 ℃ 85% RH V _r = 100 V 1000 h			168 h	0/25
ТНВ			$V_r = 100 \text{ V}$	25	500 h	0/25
					1000 h	0/25
тс		JESD22 A-104	-65 ℃/+150 ℃ 2 cycles/h 500 cycles	25	500 cycles	0/25

November 7th, 2012 Report ID: 12268QRP

Z0402MF1AA2/SK (lot 3 qualification) reliability test results synthesis

Test	F/G	Std ref.	Conditions	ss	Step	Failure/SS
		JESD22 A-108	T _i = 125 ℃		168 h	0/77
HTRB		MIL-STD-750C	600 V AC peak 1000 h	77	500 h	0/77
		method 1040			1000 h	0/77
ТНВ	Z0402MF1AA2	JESD22 A-101 85 V _r =	85 ℃	25	168 h	0/25
			85% RH V _r = 100 V 1000 h		500 h	0/25
					1000 h	0/25
тс		JESD22 A-104	-65 ℃/+150 ℃ 2 cycles/h 500 cycles	25	500 cycles	0/25


5 ANNEXES

5.1 **Device details**

5.1.1 Pin connection

5.1.2 Package outline/Mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

5.2 Tests Description

Test name Description		Purpose			
	Die-oriented test				
HTRB (AC mode) High Temperature Reverse Bias	The device is stressed here in AC mode, trying to satisfy as much as possible the following conditions: - Low power dissipation. - Peak supply voltage compatible with diffusion process and internal circuitry limitations.				
	Die and Package-orient	ed test			
PCT Pressure Cooker Test	The device is unbiased under 121 ℃, and a 2 bars air atmosphere during 96 hours.	The PCT is performed to evaluate the reliability of non-hermetic packaged solid-state devices in humid environments. It employs severe conditions of temperature, humidity, and pressure which accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it. The stress usually activates the same failure mechanisms as the "85/85" Steady-State Humidity Life Test (THB).			
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature, and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.			
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:

THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2013 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

