
Introduction
The main purpose of this document is to provide a developer with some reference programming guidelines about how to
develop a Bluetooth low energy (BLE) application using the BlueNRG-1, BlueNRG-2 BLE stack v2.x family APIs and related
event callbacks.

The document describes the BlueNRG-1, BlueNRG-2 Bluetooth low energy stack library framework, API interfaces and event
callbacks allowing the access to the Bluetooth low energy functions provided by the BlueNRG-1, BlueNRG-2 system-on-chip.

This programming manual also provides some fundamental concepts about the Bluetooth low energy (BLE) technology in order
to associate the BlueNRG-1, BlueNRG-2 BLE stack APIs, parameters, and related event callbacks with the BLE protocol stack
features. The user must have a basic knowledge about the BLE technology and its main features.

For more information about the BlueNRG-1, BlueNRG-2 devices and the Bluetooth low energy specifications, refer to
Section 5 References at the end of this document.

The BlueNRG-1 and BlueNRG-2 are very low power Bluetooth low energy (BLE) single-mode system-on-chips, compliant with
Bluetooth low energy specifications and supporting master or slave role; the BlueNRG-2 also supports the extended packet
length feature.

The manual is structured as follows:
• Fundamentals of the Bluetooth low energy (BLE) technology
• BlueNRG-1, BlueNRG-2 BLE stack v2.x library APIs and the event callback overview
• How to design an application using the BlueNRG-1, BlueNRG-2 stack v2.x library APIs and event callbacks

Note: The document content is valid for both BlueNRG-1 and BlueNRG-2 devices. Any reference to the BlueNRG-1
device is also valid for the BlueNRG-2 device. Any specific difference is highlighted whenever it is needed.

BlueNRG-1, BlueNRG-2 BLE stack v2.x programming guidelines

PM0257

Programming manual

PM0257 - Rev 4 - January 2019
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com

1 Bluetooth low energy technology

The Bluetooth low energy (BLE) wireless technology has been developed by the Bluetooth special interest group
(SIG) in order to achieve a very low power standard operating with a coin cell battery for several years.
Classic Bluetooth technology was developed as a wireless standard allowing cables to be replaced connecting
portable and/or fixed electronic devices, but it cannot achieve an extreme level of battery life because of its fast
hopping, connection-oriented behavior, and relatively complex connection procedures.
The Bluetooth low energy devices consume a fraction of the power of standard Bluetooth products only and
enable devices with coin cell batteries to be wireless connected to standard Bluetooth enabled devices.

Figure 1. Bluetooth low energy technology enabled coin cell battery devices

Bluetooth low energy technology is used on a broad range of sensor applications transmitting small amounts of
data.
• Automotive
• Sport and fitness
• Healthcare
• Entertainment
• Home automation
• Security and proximity

1.1 BLE stack architecture
Bluetooth low energy technology has been formally adopted by the Bluetooth core specification version 4.0 (on
Section 5 References). This version of the Bluetooth standard supports two systems of wireless technology:
• Basic rate
• Bluetooth low energy

The Bluetooth low energy technology operates in the unlicensed industrial, scientific and medical (ISM) band at
2.4 to 2.485 GHz, which is available and unlicensed in most countries. It uses a spread spectrum, frequency
hopping, full-duplex signal. Key features of Bluetooth low energy technology are:
• Robustness
• Performance
• Reliability
• Interoperability
• Low data rate

PM0257
Bluetooth low energy technology

PM0257 - Rev 4 page 2/77

• Low-power

In particular, Bluetooth low energy technology has been created for the purpose of transmitting very small packets
of data at a time, while consuming significantly less power than basic rate/enhanced data rate/high speed
(BR/EDR/HS) devices.
The Bluetooth low energy technology is designed to address two alternative implementations:
• Smart device
• Smart ready device

Smart devices support the BLE standard only. It is used for applications in which low power consumption and coin
cell batteries are the key point (as sensors).
Smart ready devices support both BR/EDR/HS and BLE standards (typically a mobile or a laptop device).
The Bluetooth low energy stack consists of two components:
• Controller
• Host

The Controller includes the physical layer and the link layer.
Host includes the logical link control and adaptation protocol (L2CAP), the security manager (SM), the attribute
protocol (ATT), generic attribute profile (GATT) and the generic access profile (GAP). The interface between the
two components is called host controller interface (HCI).
In addition, Bluetooth specification v4.1, v4.2 and 5.0 have been released with new supported features.
For more information about these new features, refer to the related specification document.

Figure 2. Bluetooth low energy stack architecture

GAMSEC201411251124

PM0257
BLE stack architecture

PM0257 - Rev 4 page 3/77

1.2 Physical layer
The physical layer is a 1 Mbps adaptive frequency-hopping Gaussian frequency shift keying (GFSK) radio. It
operates in the license free 2.4 GHz ISM band at 2400-2483.5 MHz. Many other standards use this band: IEEE
802.11, IEEE 802.15.
BLE system uses 40 RF channels (0-39), with 2 MHz spacing. These RF channels have frequencies centered at:240 + k * 2MHz, wℎere k = 0.39 (1)

There are two channels types:
1. Advertising channels that use three fixed RF channels (37, 38 and 39) for:

a. Advertising channel packets
b. Packets used for discoverability/connectability
c. Used for broadcasting/scanning

2. Data physical channel uses the other 37 RF channels for bidirectional communication between the
connected devices.

Table 1. BLE RF channel types and frequencies

Channel index RF center frequency Channel type

37 2402 MHz Advertising channel

0 2404 MHz Data channel

1 2406 MHz Data channel

…. …. Data channel

10 2424 MHz Data channel

38 2426 MHz Advertising channel

11 2428 MHz Data channel

12 2430 MHz Data channel

…. …. Data channel

36 2478 MHz Data channel

39 2480 MHz Advertising channel

BLE is an adaptive frequency hopping (AFH) technology that can only use a subset of all the available
frequencies in order to avoid all frequencies used by other no-adaptive technologies. This allows moving from a
bad channel to a known good channel by using a specific frequency hopping algorithm, which determines next
good channel to be used.

PM0257
Physical layer

PM0257 - Rev 4 page 4/77

1.3 Link Layer (LL)
The link layer (LL) defines how two devices can use a radio to transmitt information between each other.
The link layer defines a state machine with five states:

Figure 3. Link Layer state machine

GAMSEC201411251131

Connection

InitiatingStandbyAdvertising

Scanning

• Standby: the device does not transmit or receive packets
• Advertising: the device broadcasts advertisements in advertising channels (it is called an advertiser device)
• Scanning: the device looks for advertiser devices (it is called a scanner device)
• Initiating: the device initiates connection to the advertiser device
• Connection: the initiator device is in master role: it communicates with the device in the slave role and it

defines timings of transmissions
• Advertiser device is in slave role: it communicates with a single device in master role

PM0257
Link Layer (LL)

PM0257 - Rev 4 page 5/77

1.3.1 BLE packets
A packet is a labeled data that is transmitted by one device and received by one or more other devices.
The BLE data packet structure is described below.

Figure 4. Packet structure
Pr

ea
m

bl
e

H
ea

de
r

Le
ng

th

Data

CRC

 8 32 8 8 0 to 296 (37 bytes) 24 Bits

Access Address

The Bluetooth low energy BLE specification v4.2 defines the LE data packet length extension feature which
extends the link layer PDU of LE from 27 to 251 bytes of data payload.

Figure 5. Packet structure with LE data packet length extension feature

Pr
ea

m
bl

e

H
ea

de
r

Le
ng

th

Data

CRC

 8 32 8 8 0 to (8 * 255) 24 Bits

Access Address

The length field has a range of 0 to 255 bytes. When encryption is used, the message integrity code (MIC) at the
end of the packet is 4 bytes, so this leads to 251 bytes as actual maximum available payload size.
• Preamble: RF synchronization sequence
• Access address: 32 bits, advertising or data access addresses (it is used to identify the communication

packets on physical layer channel)
• Header: its content depends on the packet type (advertising or data packet)
• Advertiser packet header:

Table 2. Advertising data header content

Advertising packet type Reserved Tx address type Rx address type

(4 bits) (2 bits) (1 bit) (1 bit)

• The advertising packet type is defined as follows:

Table 3. Advertising packet types

Packet type Description Notes

ADV_IND
Connectable
undirected
advertising

Used by an advertiser when it wants another device to connect to it. Device can
be scanned by a scanning device, or go into a connection as a slave device on
connection request reception.

PM0257
Link Layer (LL)

PM0257 - Rev 4 page 6/77

Packet type Description Notes

ADV_DIRECT_IND
Connectable
directed
advertising

Used by an advertiser when it wants a particular device to connect to it. The
ADV_DIRECT_IND packet contains only advertiser’s address and initiator
address.

ADV_NONCONN_IND
Non-connectable
undirected
advertising

Used by an advertiser when it wants to provide some information to all the
devices, but it does not want other devices to ask it for more information or to
connect to it.

Device simply sends advertising packets on related channels, but it does not
want to be connectable or scanned by any other device.

ADV_SCAN_IND
Scannable
undirected
advertising

Used by an advertiser which wants to allow a scanner to require more
information from it. The device cannot connect, but it is discoverable for
advertising data and scan response data.

SCAN_REQ Scan request Used by a device in scanning state to request addition information to the
advertiser.

SCAN_RSP Scan response Used by an advertiser device to provide additional information to a scan device.

CONNECT_REQ Connection
request Sent by an initiating device to a device in connectable/discoverable mode.

The advertising event type determines the allowable responses:

Table 4. Advertising event type and allowable responses

Advertising event type
Allowable response

SCAN_REQ CONNECT_REQ

ADV_IND YES YES

ADV_DIRECT_IND NO YES

ADV_NONCONN_IND NO NO

ADV_SCAN_IND YES NO

• Data packet header:

Table 5. Data packet header content

Link layer identifier Next sequence number Sequence number More data Reserved

(2 bits) (1 bit) (1 bit) (1 bit) (3 bits)

The next sequence number (NESN) bit is used for performing packet acknowledgments. It informs the receiver
device about next sequence number that the transmitting device expects it to send. Packet is retransmitted until
the NESN is different from the sequence number (SN) value in the sent packet.
More data bits are used to signal to a device that the transmitting device has more data ready to be sent during
the current connection event.
For a detailed description of advertising and data header contents and types refer to the Bluetooth specification
[Vol 2], in Section 5 References.
• Length: number of bytes on data field

PM0257
Link Layer (LL)

PM0257 - Rev 4 page 7/77

Table 6. Packet length field and valid values

Length field bits

Advertising packet 6 bits, with valid values from 0 to 37 bytes

Data packet
5 bits, with valid values from 0 to 31 bytes

8 bits, with valid values from 0 to 255 bytes, with LE data packet length extension

• Data or payload: it is the actual transmitted data (advertising data, scan response data, connection
establishment data, or application data sent during the connection)

• CRC (24 bits): it is used to protect data against bit errors. It is calculated over the header, length and data
fields

1.3.2 Advertising state
Advertising states allow link layer to transmit advertising packets and also to respond with scan responses to scan
requests coming from those devices which are actively scanning.
An advertiser device can be moved to a standby state by stopping the advertising.
Each time a device advertises, it sends the same packet on each of the three advertising channels. This three
packets sequence is called "advertising event". The time between two advertising events is referred to as the
advertising interval, which can go from 20 milliseconds to every 10.28 seconds.
An example of advertising packet lists the Service UUID that the device implements (general discoverable flag, tx
power = 4dbm, service data = temperature service and 16 bits service UUIDs).

Figure 6. Advertising packet with AD type flags

Preamble Advertising
Access
Address

Advertising
Header

Payload
Length

Advertising
Address

Flags-LE
General
Discoverable
Flag

TX Power
Level = 4 dBm

Service Data
“Temperature”

o= 20..5 C

16 bit service
UUIDs =
“Temperature
service”

CRC

GAMSEC201411251139

The flag AD type byte contains the following flag bits:
• Limited discoverable mode (bit 0)
• General discoverable mode (bit 1)
• BR/EDR not supported (bit 2, it is 1 on BLE)
• Simultaneous LE and BR/EDR to the same device capable (controller) (bit 3)
• Simultaneous LE and BR/EDR to the same device capable (host) (bit 4)

The flag AD type is included in the advertising data if any of the bits are non-zero (it is not included in scan
response).
The following advertising parameters can be set before enabling advertising:
• Advertising interval
• Advertising address type
• Advertising device address
• Advertising channel map: which of the three advertising channels should be used
• Advertising filter policy:

– Process scan/connection requests from the devices in the white list
– Process all scan/connection requests (default advertiser filter policy)
– Process connection requests from all the devices but only scan requests in the white list

PM0257
Link Layer (LL)

PM0257 - Rev 4 page 8/77

– Process scan requests from all the devices but only connection requests in the white list

A white list is a list of stored device addresses used by the device controller to filter devices. The white list content
cannot be modified while it is being used. If the device is in advertising state and uses a white list to filter the
devices (scan requests or connection requests), it has to disable advertising mode to change its white list.

1.3.3 Scanning state
There are two types of scanning:
• Passive scanning: it allows the advertisement data to be received from an advertiser device
• Active scanning: when an advertisement packet is received, device can send back a scan request packet, in

order to get a scan response from the advertiser. This allows the scanner device to get additional information
from the advertiser device.

The following scan parameters can be set:
• Scanning type (passive or active)
• Scan interval: how often the controller should scan
• Scan window: for each scanning interval, it defines how long the device has been scanning
• Scan filter policy: it can accept all the advertising packets (default policy) or only those on the white list.

Once the scan parameters are set, the device scanning can be enabled. The controller of the scanner devices
sends to upper layers any received advertising packets within an advertising report event. This event includes the
advertiser address, advertiser data, and the received signal strength indication (RSSI) of this advertising packet.
The RSSI can be used with the transmit power level information included within the advertising packets to
determine the path-loss of the signal and identify how far the device is:
Path loss = Tx power – RSSI

1.3.4 Connection state
When data to be transmitted are more complex than those allowed by advertising data or a bidirectional reliable
communication between two devices is needed, the connection is established.
When an initiator device receives an advertising packet from an advertising device to which it wants to connect, it
can send a connect request packet to the advertiser device. This packet includes all the required information
needed to establish and handle the connection between the two devices:
• Access address used in the connection in order to identify communications on a physical link
• CRC initialization value
• Transmit window size (timing window for the first data packet)
• Transmit window offset (transmit window start)
• Connection interval (time between two connection events)
• Slave latency (number of times slave can ignore connection events before it is forced to listen)
• Supervision timeout (max. time between two correctly received packets before link is considered lost)
• Channel map: 37 bits (1= good; 0 = bad)
• Frequency-hop value (random number between 5 and 16)
• Sleep clock accuracy range (used to determine the uncertainty window of the slave device at connection

event)

For a detailed description of the connection request packet refer to Bluetooth specifications [Vol 6].
The allowed timing ranges are summarized in Table 7. Connection request timing intervals :

PM0257
Link Layer (LL)

PM0257 - Rev 4 page 9/77

Table 7. Connection request timing intervals

Parameter Min. Max. Note

Transmit window size 1.25 milliseconds 10 milliseconds

Transmit window offset 0 Connection interval Multiples of 1.25 milliseconds

Connection interval 7.5 milliseconds 4 seconds Multiples of 1.25 milliseconds

Supervision timeout 100 milliseconds 32 seconds Multiples of 10 milliseconds

The transmit window starts after the end of the connection request packet plus the transmit window offset plus a
mandatory delay of 1.25 ms. When the transmit window starts, the slave device enters in receiver mode and waits
for a packet from the master device. If no packet is received within this time, the slave leaves receiver mode, and
it tries one connection interval again later. When a connection is established, a master has to transmit a packet to
the slave on every connection event to allow slave to send packets to the master. Optionally, a slave device can
skip a given number of connection events (slave latency).
A connection event is the time between the start of the last connection event and the beginning of the next
connection event.
A BLE slave device can only be connected to one BLE master device, but a BLE master device can be connected
to several BLE slave devices. On the Bluetooth SIG, there is no limit on the number of slaves a master can
connect to (this is limited by the specific used BLE technology or stack).

1.4 Host controller interface (HCI)
The host controller interface (HCI) layer provides a mean of communication between the host and controller either
through software API or by a hardware interface such as: SPI, UART or USB. It comes from standard Bluetooth
specifications, with new additional commands for low energy-specific functions.

1.5 Logical link control and adaptation layer protocol (L2CAP)
The logical link control and adaptation layer protocol (L2CAP), supports higher level protocol multiplexing, packet
segmentation and reassembly operations, and the conveying of quality of service information.

1.6 Attribute protocol (ATT)
The attribute protocol (ATT) allows a device to expose some data, known as attributes, to another device. The
device exposing attributes is referred to as the server and the peer device using them is called the Client.
An attribute is a data with the following components:
• Attribute handle: it is a 16-bit value, which identifies an attribute on a server, allowing the client to reference

the attribute in read or write requests
• Attribute type: it is defined by a universally unique identifier (UUID), which determines what the value means.

Standard 16-bit attribute UUIDs are defined by Bluetooth SIG
• Attribute value: a (0 ~ 512) octets in length
• Attribute permissions: they are defined by each upper layer that uses the attribute. They specify the security

level required for read and/or write access, as well as notification and/or indication. The permissions are not
discoverable using the attribute protocol. There are different permission types:
– Access permissions: they determine which types of requests can be performed on an attribute

(readable, writable, readable and writable)
– Authentication permissions: they determine if attributes require authentication or not. If an

authentication error is raised, client can try to authenticate it by using the security manager and send
back the request

– Authorization permissions (no authorization, authorization): this is a property of a server which can
authorize a client to access or not to a set of attributes (client cannot resolve an authorization error)

Table 8. Attribute example

Attribute handle Attribute type Attribute value Attribute permissions

0x0008 “Temperature UUID” “Temperature Value” “Read only, no authorization, no authentication”

PM0257
Host controller interface (HCI)

PM0257 - Rev 4 page 10/77

• “Temperature UUID” is defined by “Temperature characteristic” specification and it is a signed 16-bit integer.

A collection of attributes is called a database that is always contained in an attribute server.
Attribute protocol defines a set of method protocol to discover, read and write attributes on a peer device. It
implements the peer-to-peer client-server protocol between an attribute server and an attribute client as follows:
• Server role

– Contains all attributes (attribute database)
– Receives requests, executes, responds commands
– Indicates, notifies an attribute value when data change

• Client role
– Talks with server
– Sends requests, waits for response (it can access (read), update (write) the data)
– Confirms indications

Attributes exposed by a server can be discovered, read, and written by the client, and they can be indicated and
notified by the server as described in Table 9. Attribute protocol messages:

Table 9. Attribute protocol messages

Protocol data unit

(PDU message)
Sent by Description

Request Client Client asks server (it always causes a response)

Response Server Server sends response to a request from a client

Command Client Client commands something to server (no response)

Notification Server Server notifies client of new value (no confirmation)

Indication Server Server indicates to client new value (it always causes a confirmation)

Confirmation Client Confirmation to an indication

1.7 Security manager (SM)
The Bluetooth low energy link layer supports encryption and authentication by using the counter mode with the
CBC-MAC (cipher block chaining-message authentication code) algorithm and a 128-bit AES block cipher (AES-
CCM). When encryption and authentication are used in a connection, a 4-byte message integrity check (MIC) is
appended to the payload of the data channel PDU.
Encryption is applied to both the PDU payload and MIC fields.
When two devices want to encrypt the communication during the connection, the security manager uses the
pairing procedure. This procedure allows two devices to be authenticated by exchanging their identity information
in order to create the security keys that can be used as basis for a trusted relationship or a (single) secure
connection. There are some methods used to perform the pairing procedure. Some of these methods provide
protections against
• Man-in-the-middle (MITM) attacks: a device is able to monitor and modify or add new messages to the

communication channel between two devices. A typical scenario is when a device is able to connect to each
device and act as the other devices by communicating with each of them

• Passive eavesdropping attacks: listening through a sniffing device to the communication of other devices

The pairing on Bluetooth low energy specifications v4.0 or v4.1, also called LE legacy pairing, supports the
following methods based on the IO capability of the devices: Just Works, Passkey Entry and Out of band (OOB).
On Bluetooth low energy specification v4.2, the LE secure connection pairing model has been defined. The new
security model main features are:
1. Key exchange process uses the elliptical curve Diffie-Hellman (ECDH) algorithm: this allows keys to be

exchanged over an unsecured channel and to protect against passive eavesdropping attacks (secretly
listening through a sniffing device to the communication of other devices)

2. A new method called “numeric comparison” has been added to the 3 methods already available with LE
legacy pairing

The paring procedures are selected depending on the device IO capabilities.

PM0257
Security manager (SM)

PM0257 - Rev 4 page 11/77

There are three input capabilities.
There are three input capabilities:
• No input
• Ability to select yes/no
• Ability to input a number by using the keyboard

There are two output capabilities:
• No output
• Numeric output: ability to display a six-digit number

The following table shows the possible IO capability combinations

Table 10. Combination of input/output capabilities on a BLE device

No output Display

No input No input, no output Display only

Yes/No No input, no output Display yes/no

Keyboard Keyboard only Keyboard display

LE legacy pairing
LE legacy pairing algorithm uses and generates 2 keys:
• Temporary key (TK): a 128-bit temporary key which is used to generate short-term key (STK)
• Short-term key (STK): a 128-bit temporary key used to encrypt a connection following pairing

Pairing procedure is a three-phase process.
Phase 1: pairing feature exchange
The two connected devices communicate their input/output capabilities by using the pairing request message.
This message also contains a bit stating if out-of-band data are available and the authentication requirements.
The information exchanged in phase 1 is used to select which pairing method is used for the STK generation in
phase 2.
Phase 2: short-term key (STK) generation
The pairing devices first define a temporary key (TK), by using one of the following key generation methods
1. The out-of-band (OOB) method, which uses out of band communication (e.g. NFC) for TK agreement. It

provides authentication (MITM protection). This method is selected only if the out-of-band bit is set on both
devices, otherwise the IO capabilities of the devices must be used to determine which other method could
be used (Passkey Entry or Just Works)

2. Passkey entry method: user passes six numeric digits as the TK between the devices. It provides
authentication (MITM protection)

3. Just works: this method does not provide authentication and protection against man-in-the-middle (MITM)
attacks

The selection between Passkey and Just Works method is done based on the IO capability as defined on the
following table.

Table 11. Methods used to calculate the temporary key (TK)

Display only Display yes/no Keyboard only No input, no output Keyboard display

Display Only Just Works Just Works Passkey Entry Just Works Passkey Entry

Display Yes/No Just Works Just Works Passkey Entry Just Works Passkey Entry

Keyboard Only Passkey Entry Passkey Entry Passkey Entry Just Works Passkey Entry

No Input No Output Just Works Just Works Just Works Just Works Just Works

Keyboard Display Passkey Entry Passkey Entry Passkey Entry Just Works Passkey Entry

PM0257
Security manager (SM)

PM0257 - Rev 4 page 12/77

Phase 3: transport specific key distribution methods used to calculate the temporary key (TK)
Once the phase 2 is completed, up to three 128-bit keys can be distributed by messages encrypted with the STK
key:
1. Long-term key (LTK): it is used to generate the 128-bit key used for Link Layer encryption and authentication
2. Connection signature resolving key (CSRK): a 128-bit key used for the data signing and verification

performed at the ATT layer
3. Identity resolving key (IRK): a 128-bit key used to generate and resolve random addresses
LE secure connections
LE secure connection pairing methods use and generate one key:
• Long-term key (LTK): a 128-bit key used to encrypt the connection following pairing and subsequent

connections

Pairing procedure is a three-phase process:
Phase 1: pairing feature exchange
The two connected devices communicate their input/output capabilities by using the pairing request message.
This message also contains a bit stating if out-of-band data are available and the authentication requirements.
The information exchanged in phase 1 is used to select which pairing method is used on phase 2.
Phase 2: long-term key (LTK) generation
Pairing procedure is started by the initiating device which sends its public key to the receiving device. The
receiving device replies with its public key. The public key exchange phase is done for all the pairing methods
(except the OOB one). Each device generates its own elliptic curve Diffie-Hellman (ECDH) public-private key pair.
Each key pair contains a private (secret) key, and a public key. The key pair should be generated only once on
each device and may be computed before a pairing is performed.
The following pairing key generation methods are supported:
1. The out-of-band (OOB) method which uses out of band communication to set up the public key. This method

is selected if the out-of-band bit in the pairing request/response is set at least by one device, otherwise the
IO capabilities of the devices must be used to determine which other method could be used (Passkey entry,
Just Works or numeric comparison)

2. Just Works: this method is not authenticated, and it does not provide any protection against man-in-the-
middle (MITM) attacks

3. Passkey entry method: this method is authenticated. User passes six numeric digits. This six-digit value is
the base of the device authentication

4. Numeric comparison: this method is authenticated. Both devices have IO capabilities set to either display
Yes/No or keyboard display. The two devices compute a six-digit confirmation values that are displayed to
the user on both devices: user is requested to confirm if there is a match by entering yes or not. If yes is
selected on both devices, pairing is performed with success. This method allows confirmation to user that his
device is connected with the proper one, in a context where there are several devices, which could not have
different names

The selection among the possible methods is based on the following table.

Table 12. Mapping of IO capabilities to possible key generation methods

Initiator/

responder
Display only Display yes/no Keyboard only No input no

output Keyboard display

Display only Just Works Just Works Passkey Entry Just Works Passkey Entry

Display yes/no Just Works

Just Works

(LE legacy)

Numeric comparison (LE secure
connections)

Passkey Entry Just Works
Passkey Entry (LE legacy)

Numeric comparison (LE secure
connections)

Keyboard only Passkey Entry Passkey Entry Passkey Entry Just Works Passkey Entry

No input no output Just Works Just Works Just Works Just Works Just Works

PM0257
Security manager (SM)

PM0257 - Rev 4 page 13/77

Initiator/

responder
Display only Display yes/no Keyboard only No input no

output Keyboard display

Keyboard display Passkey Entry

Passkey Entry

(LE legacy)

Numeric comparison (LE secure
connections)

Passkey Entry Just Works
Passkey Entry (LE legacy)

Numeric comparison (LE secure
connections)

Note: If the possible key generation method does not provide a key that matches the security properties (authenticated
- MITM protection or unauthenticated - no MITM protection), then the device sends the pairing failed command
with the error code “Authentication Requirements”.
Phase 3: transport specific key distribution
The following keys are exchanged between master and slave:
• Connection signature resolving key (CSRK) for authentication of unencrypted data
• Identity resolving key (IRK) for device identity and privacy

When the established encryption keys are stored in order to be used for future authentication, the devices are
bonded.
Data signing
It is also possible to transmit authenticated data over an unencrypted link layer connection by using the CSRK
key: a 12-byte signature is placed after the data payload at the ATT layer. The signature algorithm also uses a
counter which protects against replay attacks (an external device which can simply capture some packets and
send them later as they are, without any understanding of packet content: the receiver device simply checks the
packet counter and discards it since its frame counter is less than the latest received good packet).

1.8 Privacy
A device that always advertises with the same address (public or static random), can be tracked by scanners.
This can be avoided by enabling the privacy feature on the advertising device. On a privacy enabled device,
private addresses are used. There are two kinds of private addresses:
• Non-resolvable private address
• Resolvable private address

Non-resolvable private addresses are completely random (except for the two most significant bits) and cannot be
resolved. Hence, a device using a non-resolvable private address cannot be recognized by those devices which
have not been previously paired. The resolvable private address has a 24-bit random part and a hash part. The
hash is derived from the random number and from an IRK (identity resolving key). Hence, only a device that
knows this IRK can resolve the address and identify the device. The IRK is distributed during the pairing process.
Both types of addresses are frequently changed, enhancing the device identity confidentiality. The privacy feature
is not used during the GAP discovery modes and procedures but during GAP connection modes and procedures
only.
On Bluetooth low energy stacks up to v4.1, the private addresses are resolved and generated by the host. In
Bluetooth v4.2, the privacy feature has been updated from version 1.1 to version 1.2. On Bluetooth low energy
stack v4.2, private addresses can be resolved and generated by the controller, using the device identity
information provided by the host.
Peripheral
A privacy-enabled peripheral in non-connectable mode uses non-resolvable or resolvable private addresses.
To connect to a central, the undirected connectable mode only should be used if host privacy is used. If the
controller privacy is used, the device can also use the directed connectable mode. When in connectable mode,
the device uses a resolvable private address.
Whether non-resolvable or resolvable private addresses are used, they are automatically regenerated after each
interval of 15 minutes. The device does not send the device name to the advertising data.
Central
A privacy-enabled central, performing active scanning, uses non-resolvable or resolvable private addresses only.
To connect to a peripheral, the general connection establishment procedure should be used if host privacy is
enabled. With controller-based privacy, any connection procedure can be used. The central uses a resolvable

PM0257
Privacy

PM0257 - Rev 4 page 14/77

private address as the initiator’s device address. A new resolvable or non-resolvable private address is
regenerated after each interval of 15 minutes.
Broadcaster
A privacy-enabled broadcaster uses non-resolvable or resolvable private addresses. New addresses are
automatically generated after each interval of 15 minutes. A broadcaster should not send the name or unique data
to the advertising data.
Observer
A privacy-enabled observer uses non-resolvable or resolvable private addresses. New addresses are
automatically generated after each interval of 15 minutes.

1.8.1 The device filtering
Bluetooth LE allows a way to reduce the number of responses from the devices in order to reduce power
consumption, since this implies less transmissions and less interactions between controller and upper layers. The
filtering is implemented by a white list. When the white list is enabled, those devices, which are not in this list ,are
ignored by the link layer.
Before Bluetooth 4.2, the device filtering could not be used, while privacy was used by the remote device. Thanks
to the introduction of link layer privacy, the remote device identity address can be resolved before checking
whether it is in the white list or not.

1.9 Generic attribute profile (GATT)
The generic attribute profile (GATT) defines a framework for using the ATT protocol, and it is used for services,
characteristics, descriptors discovery, characteristics reading, writing, indication and notification.
On GATT context, when two devices are connected, there are two devices roles:
• GATT client: the device accesses data on the remote GATT server via read, write, notify, or indicates

operations
• GATT server: the device stores data locally and provides data access methods to a remote GATT client

It is possible for a device to be a GATT server and a GATT client at the same time.
The GATT role of a device is logically separated from the master, slave role. The master, slave roles define how
the BLE radio connection is managed, and the GATT client/server roles are determined by the data storage and
flow of data.
As consequence, a slave (peripheral) device has to be the GATT server and a master (central) device has not to
be the GATT client.
Attributes, as transported by the ATT, are encapsulated within the following fundamental types:
1. Characteristics (with related descriptors)
2. Services (primary, secondary and include)

1.9.1 Characteristic attribute type
A characteristic is an attribute type which contains a single value and any number of descriptors describing the
characteristic value that may make it understandable by the user.
A characteristic exposes the type of data that the value represents, if the value can be read or written, how to
configure the value to be indicated or notified, and it says what a value means.
A characteristic has the following components:
1. Characteristic declaration
2. Characteristic value
3. Characteristic descriptor(s)

PM0257
Generic attribute profile (GATT)

PM0257 - Rev 4 page 15/77

Figure 7. Example of characteristic definition

A characteristic declaration is an attribute defined as follows:

Table 13. Characteristic declaration

Attribute handle Attribute type Attribute value Attribute permissions

0xNNNN
0x2803

(UUID for characteristic
attribute type)

Characteristic value
properties (read, broadcast,
write, write without response,
notify, indicate, …). Determine
how characteristic value can
be used or how characteristic
descriptor can be accessed

Read only,

no authentication, no
authorization

Characteristic value attribute
handle

Characteristic value UUID (16
or 128 bits)

A characteristic declaration contains the value of the characteristic. This value is the first attribute after the
characteristic declaration:

Table 14. Characteristic value

Attribute handle Attribute type Attribute value Attribute permissions

0xNNNN 0xuuuu – 16 bits or 128 bits for characteristic
UUID Characteristic value Higher layer profile or

implementation specific

1.9.2 Characteristic descriptor type
Characteristic descriptors are used to describe the characteristic value to add a specific “meaning” to the
characteristic and making it understandable by the user. The following characteristic descriptors are available:

PM0257
Generic attribute profile (GATT)

PM0257 - Rev 4 page 16/77

1. Characteristic extended properties: it allows extended properties to be added to the characteristic
2. Characteristic user description: it enables the device to associate a text string to the characteristic
3. Client characteristic configuration: it is mandatory if the characteristic can be notified or indicated. Client

application must write this characteristic descriptor to enable characteristic notification or indication (provided
that the characteristic property allows notification or indication)

4. Server characteristic configuration: optional descriptor
5. Characteristic presentation format: it allows the characteristic value presentation format to be defined

through some fields as format, exponent, unit name space, description in order to correctly display the
related value (example temperature measurement value in oC format)

6. Characteristic aggregation format: It allows several characteristic presentation formats to be aggregated.
For a detailed description of the characteristic descriptors, refer to Bluetooth specifications.

1.9.3 Service attribute type
A service is a collection of characteristics which operate together to provide a global service to an applicative
profile. For example, the health thermometer service includes characteristics for a temperature measurement
value, and a time interval among measurements. A service or primary service can refer other services that are
called secondary services.
A service is defined as follows:

Table 15. Service declaration

Attribute
handle Attribute type Attribute value Attribute permissions

0xNNNN 0x2800 – UUID for “Primary Service” or
0x2801 – UUID for “Secondary Service”

0xuuuu – 16 bits or 128 bits for
service UUID

Read only,

no authentication,

no authorization

A service contains a service declaration and may contain definitions and characteristic definitions. A service
includes declaration follows the service declaration and any other attributes of the server.

Table 16. Include declaration

Attribute
handle Attribute type Attribute value Attribute permissions

0xNNNN 0x2802 (UUID for
include attribute type)

Include service
attribute handle

End group
handle Service UUID

Read only,

no authentication, no
authorization

“Include service attribute handle” is the attribute handle of the included secondary service and “end group handle”
is the handle of the last attribute within the included secondary service.

1.9.4 GATT procedures
The generic attribute profile (GATT) defines a standard set of procedures allowing services, characteristics,
related descriptors to be discovered and how to use them.
The following procedures are available:
• Discovery procedures (Table 17. Discovery procedures and related response events)
• Client-initiated procedures (Table 18. Client-initiated procedures and related response events)
• Server-initiated procedures (Table 19. Server-initiated procedures and related response events)

PM0257
Generic attribute profile (GATT)

PM0257 - Rev 4 page 17/77

Table 17. Discovery procedures and related response events

Procedure Response events

Discovery all primary services Read by group response

Discovery primary service by service UUID Find by type value response

Find included services Read by type response event

Discovery all characteristics of a service Read by type response

Discovery characteristics by UUID Read by type response

Discovery all characteristics descriptors Find information response

Table 18. Client-initiated procedures and related response events

Procedure Response events

Read characteristic value Read response event

Read characteristic value by UUID Read response event

Read long characteristic value Read blob response events

Read multiple characteristic values Read response event

Write characteristic value without response No event is generated

Signed write without response No event is generated

Write characteristic value Write response event.

Write long characteristic value
Prepare write response

Execute write response

Reliable write
Prepare write response

Execute write response

Table 19. Server-initiated procedures and related response events

Procedure Response events

Notifications No event is generated

Indications Confirmation event

For a detailed description about the GATT procedures and related responses events refer to the Bluetooth
specifications in Section 5 References.

1.10 Generic access profile (GAP)
The Bluetooth system defines a base profile implemented by all Bluetooth devices called generic access profile
(GAP). This generic profile defines the basic requirements of a Bluetooth device.
The four GAP profile roles are described in the table below:

Table 20. GAP roles

Role(1) Description Transmitter Receiver Typical example

Broadcaster Sends advertising events M O Temperature sensor which
sends temperature values

PM0257
Generic access profile (GAP)

PM0257 - Rev 4 page 18/77

Role(1) Description Transmitter Receiver Typical example

Observer Receives advertising events O M
Temperature display which
just receives and displays
temperature values

Peripheral

Always a slave.

It is on connectable advertising mode.

Supports all LL control procedures; encryption is
optional

M M Watch

Central

Always a master.

It never advertises.

It supports active or passive scan. It supports all LL
control procedures; encryption is optional

M M Mobile phone

1. 1. M = Mandatory; O = Optional

On GAP context, two fundamental concepts are defined:
• GAP modes: it configures a device to act in a specific way for a long time. There are four GAP modes types:

broadcast, discoverable, connectable and bondable type
• GAP procedures: it configures a device to perform a single action for a specific, limited time. There are four

GAP procedures types: observer, discovery, connection, bonding procedures

Different types of discoverable and connectable modes can be used at the same time. The following GAP modes
are defined:

Table 21. GAP broadcaster mode

Mode Description Notes GAP role

Broadcast mode
Device only broadcasts data using the link layer
advertising channels and packets (it does not set
any bit on Flags AD type)

Broadcasts data can be
detected by a device using the
observation procedure

Broadcaster

Table 22. GAP discoverable modes

Mode Description Notes GAP role

Non-discoverable
mode

It cannot set the limited and general
discoverable bits on flags AD type

It cannot be discovered by a device
performing a general or limited discovery
procedure

Peripheral

Limited
discoverable mode

It sets the limited discoverable bit on
flags AD type

It is allowed for about 30 s. It is used by
devices with which user has recently
interacted. For example, when a user
presses a button on the device

Peripheral

General
discoverable mode

It sets the general discoverable bit on
flags AD type

It is used when a device wants to be
discoverable. There is no limit on the
discoverability time

Peripheral

Table 23. GAP connectable modes

Mode Description Notes GAP role

Non-connectable
mode

It can only use ADV_NONCONN_IND or
ADV_SCAN_IND advertising packets

It cannot use a connectable advertising
packet when it advertises Peripheral

PM0257
Generic access profile (GAP)

PM0257 - Rev 4 page 19/77

Mode Description Notes GAP role

Direct connectable
mode It uses ADV_DIRECT advertising packet

It is used from a peripheral device that
wants to connect quickly to a central
device. It can be used only for 1.28
seconds, and it requires both peripheral
and central devices addresses

Peripheral

Undirected
connectable mode It uses the ADV_IND advertising packet

It is used from a device that wants to be
connectable. Since ADV_IND
advertising packet can include the flag
AD type, a device can be in discoverable
and undirected connectable mode at the
same time.

Connectable mode is terminated when
the device moves to connection mode or
when it moves to non-connectable mode

Peripheral

Table 24. GAP bondable modes

Mode Description Notes GAP role

Non-bondable
mode

It does not allow a bond to be created
with a peer device No keys are stored from the device Peripheral

Bondable mode Device accepts bonding request from a
Central device. Peripheral

The following GAP procedures are defined in Table 25. GAP observer procedure:

Table 25. GAP observer procedure

Procedure Description Notes Role

Observation
procedure

It allows a device to look for broadcaster devices
data Observer

Table 26. GAP discovery procedures

Procedure Description Notes Role

Limited discoverable
procedure

It is used for discovery peripheral devices in
limited discovery mode

Device filtering is applied
based on flag AD type
information

Central

General discoverable
procedure

It is used for discovery peripheral devices in
general ad limited discovery mode

Device filtering is applied
based on flag AD type
information

Central

Name discovery
procedure

It is the procedure to retrieve the “Bluetooth
Device Name” from connectable devices Central

Table 27. GAP connection procedures

Procedure Description Notes Role

Auto connection
establishment
procedure

Allows the connection with one or more devices in
the directed connectable mode or the undirected
connectable mode

It uses white lists Central

PM0257
Generic access profile (GAP)

PM0257 - Rev 4 page 20/77

Procedure Description Notes Role

General connection
establishment
procedure

Allows a connection with a set of known peer
devices in the directed connectable mode or the
undirected connectable mode

It supports private addresses
by using the direct connection
establishment procedure when
it detects a device with a
private address during the
passive scan

Central

Selective connection
establishment
procedure

Establish a connection with the host selected
connection configuration parameters with a set of
devices in the white list

It uses white lists and it scans
by this white list Central

Direct connection
establishment
procedure

Establish a connection with a specific device using
a set of connection interval parameters

General and selective
procedures use it Central

Connection
parameter update
procedure

Updates the connection parameters used during
the connection Central

Terminate procedure Terminates a GAP procedure Central

Table 28. GAP bonding procedures

Procedure Description Notes Role

Bonding procedure Starts the pairing process with the bonding bit set
on the pairing request Central

For a detailed description of the GAP procedures, refer to the Bluetooth specifications.

1.11 BLE profiles and applications
A service collects a set of characteristics and exposes the behavior of these characteristics (what the device
does, but not how a device uses them). A service does not define characteristic use cases. Use cases determine
which services are required (how to use services on a device). This is done through a profile which defines which
services are required for a specific use case:
• Profile clients implement use cases
• Profile servers implement services

Standard profiles or proprietary profiles can be used. When using a non-standard profile, a 128-bit UUID is
required and must be generated randomly.
Currently, any standard Bluetooth SIG profile (services, and characteristics) uses 16-bit UUIDs. Services,
characteristics specification and UUID assignation can be downloaded from the following SIG web pages:
• https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
• https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

PM0257
BLE profiles and applications

PM0257 - Rev 4 page 21/77

Figure 8. Client and server profiles

1.11.1 Proximity profile example
This section simply describes the proximity profile target, how it works and required services:

Target

• When a device is close, very far, far away:
– Causes an alert

How it works

• If a device disconnects, it causes an alert
• Alert on link loss: «Link Loss» service

– If a device is too far away
– Causes an alert on path loss: «Immediate Alert» and «Tx Power» service

• «Link Loss» service
– «Alert Level» characteristic
– Behavior: on link loss, causes alert as enumerated

• «Immediate Alert» service
– «Alert Level» characteristic
– Behavior: when written, causes alert as enumerated

• «Tx Power» service
– «Tx Power» characteristic
– Behavior: when read, reports current Tx Power for connection

PM0257
BLE profiles and applications

PM0257 - Rev 4 page 22/77

2 BlueNRG-1, BlueNRG-2 Bluetooth low energy stack

The BlueNRG-1, BlueNRG-2 devices are system-on-chip with a Bluetooth low energy (BLE) radio. A Bluetooth
low energy (BLE) stack standard C library, in binary format, provides a high-level interface to control BlueNRG-1,
BlueNRG-2 Bluetooth low energy functionalities.
The BLE binary library provides the following functionalities:
• Stack APIs for:

– BLE stack initialization
– BLE stack application command interface (HCI command prefixed with hci_, and vendor specific

command prefixed with aci_)
– Sleep timer access
– BLE stack state machines handling

• Stack event callbacks
– Inform user application about BLE stack events
– Sleep timer events

• Provides interrupt handler for radio IP

In order to get access to the BLE stack functionalities, user application is just requested to:
• Call the related stack APIs
• Handle the expected events through the provided stack callbacks

Linking the BLE stack binary library to the user application, as described in Figure 9. BLE stack reference
application.

Figure 9. BLE stack reference application

Note: 1. API is a C function defined by the BLE stack library and called by user application.
2. A callback is a C function called by the BLE stack library and defined by the user application.
3. Driver sources are a set of drivers (header and source files) which handles all the BlueNRG-1, BlueNRG-2

peripherals (ADC, I2C, SPI, timers, Watchdog, UART).

PM0257
BlueNRG-1, BlueNRG-2 Bluetooth low energy stack

PM0257 - Rev 4 page 23/77

2.1 BLE stack library framework
The BLE stack library framework allows commands to be sent to the BlueNRG-1, BlueNRG-2 SoC BLE stack and
it also provides definitions of BLE event callbacks.
The BLE stack APIs utilize and extend the standard HCI data format defined within the Bluetooth specifications.
The provided set of APIs supports the following commands:
• Standard HCI commands for controller as defined by Bluetooth specifications
• Vendor Specific (VS) HCI commands for controller
• Vendor Specific (VS) ACI commands for host (L2CAP,ATT, SM, GATT, GAP)

The reference BLE API interface framework is provided within the BlueNRG-1_2 DK software package targeting
the BlueNRG-1, BlueNRG-2 DK platforms (refer to Section 5 References).
The BLE stack library framework interface for both the BlueNRG-1, BlueNRG-2 devices is defined by the following
header files:

Table 29. BLE stack library framework interface

File Description Location Notes

ble_status.h Header file for BLE stack error codes Library\Bluetooth_LE\inc

bluenrg1_api.h Header file for BlueNRG-1 BLE stack
APIs "

It is included
through
bluenrg1_stack.h
header file

bluenrg1_events.h Header file for BlueNRG-1 BLE stack
events callbacks "

It is included
through
bluenrg1_stack.h
header file

stack_user_cfg.h BLE stack configuration header file "

It provides the
available
configuration
options for BLE
stack v2.1

stack_user_cfg.c BLE stack configuration file Library\Bluetooth_LE\src

Source file to be
included on user
application IDE
project in order to
support the BLE
modular approach
available with BLE
stack v2.1

Note: BLE stack v2.1 or later provides the capability to enable/disable, at compile time, the following BLE stack
features based on user specific application scenario:
1. Enable/disable controller privacy
2. Enable/disable LE secure connections
3. Enable/disable master role
4. Enable/disable data length extension (valid only for BlueNRG-2 device)
This allows user to potentially exclude some features from the available BLE stack binary library and decrease the
overall Flash memory footprint.
Refer to the BLE stack preprocessor configuration options defined on file Library\Bluetooth_LE\inc\
stack_user_cfg.h, in order to identify which are the available and supported combinations.
Starting from the BLE stack v2.1, all the other BLE application layer header files have been moved to the Library
\BLE_Application\layers_inc folder.

PM0257
BLE stack library framework

PM0257 - Rev 4 page 24/77

Table 30. BLE application stack library framework interface

File Description Location Notes

ble_const.h It includes the required BLE stack
header files

Library
\BLE_Application
\layers_inc

To be included on the user main
application

bluenrg1_gap.h Header file for BlueNRG-1 GAP layer
constants “” It is included through ble_const.h

header file

bluenrg1_gatt_server.h Header file for GATT server constants “” It is included through ble_const.h
header file

bluenrg1_hal.h Header file with HAL for BlueNRG-1 “” It is included through ble_const.h
header file

bluenrg1_stack.h Header file for BlueNRG-1 BLE stack
initialization, tick and sleep timer APIs “” To be included on the user main

application

hci_const.h It contains constants for HCI layer. It is included through ble_const.h
header file

link_layer.h Header file for BlueNRG-1's link layer
constants “” It is included through ble_const.h

header file

sm.h Header file for BlueNRG-1 security
manager constants “” It is included through ble_const.h

header file

Note: Starting from the BLE stack v2.1, the AES CMAC encryption functionality required by BLE stack is available on
new standalone binary library: Library\\cryptolib\\cryptolib.a. This library must also be included on user
application IDE project.

2.2 BLE stack event callbacks
The BLE stack library framework provides a set of events and related callbacks which are used to notify the user
application of specific events to be processed.
The BLE event callback prototypes are defined on header file bluenrg1_events.h. All callbacks are defined by
default through weak definitions (no check is done on event callback name defined from the user, so user should
carefully check that each defined callbacks is in line with the expected function name).
The user application must define the used events callbacks with application code, inline with specific application
scenario.

2.3 BLE stack Init and tick APIs
The BlueNRG-1 BLE stack must be initialized in order to proper configure some parameters inline with specific
application scenario.
The following API must be called before using any other BLE stack v2.x functionality:
BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params);
BlueNRG_Stack_Init_params is a variable which contains memory and low level hardware configuration data
for the device, and it is defined using this structure:

 typedef struct {
 uint8_t* bleStartFlashAddress;
 uint32_t secDbSize ;
 uint32_t serverDbSize ;
 uint8_t* stored_device_id_data_p;
 uint8_t* bleStartRamAddress;
 uint32_t total_buffer_size;
 uint16_t numAttrRecord;
 uint16_t numAttrServ ;
 uint16_t attrValueArrSize;
 uint8_t numOfLinks;
 uint8_t extended_packet_length_enable;
 uint8_t prWriteListSize;
 uint8_t mblockCount;

PM0257
BLE stack event callbacks

PM0257 - Rev 4 page 25/77

 uint16_t attMtu;
 hardware_config_table_t hardware_config;
} BlueNRG_Stack_Initialization_t;

The hardware_config_table_t structure is defined as follows:

typedef struct {
uint32_t *hot_ana_config_table;
uint32_t max_conn_event_length;
uint16_t slave_sca;
uint8_t master_sca;
uint8_t ls_source;
uint16_t hs_startup_time ;
} hardware_config_table_t;

Table 31. BlueNRG-1 BLE stack initialization parameters

Name Description Value

bleStartFlashAddress

SDB base address: it is the
start address for the non-
volatile memory area
allocated to the stack for
storing information for
bonded devices

Aligned to 2048 bytes flash sector boundary (1)

secDbSize

Security DB size: it is the
size of the security
database used to store
security information for
bonded devices

1 kB(1)

serverDbSize

Server DB size: it is the
size of the server database
used to store service
change notification for
bonded devices

1 kB(1)

stored_device_id_data_p

Storage area for stack
internal parameters
(security root keys, static
random address, public
address)

56 bytes, 32-bit aligned FLASH area, all elements must be
initialized to 0xFF

bleStartRamAddress
Start address of the RAM
buffer for stack GATT
database

32-bit aligned RAM area

total_buffer_size Total buffer size allocated
for stack

TOTAL_BUFFER_SIZE(NUM_LINKS,NUM_GATT_ATTRIBUTE
S,NUM_GATT_SERVICES,ATT_VALUE_ARRAY_SIZE
MBLOCKS_COUNT,CONTROLLER_DATA_LENGTH_EXTENSI
ON_ENABLED)

numAttrRecord

Maximum number of
attribute records related to
all the required
characteristics (excluding
the services) that can be
stored in the GATT
database, for the specific
user BLE application

For each characteristic, the number of attributes goes from 2 to
5 depending on the characteristic properties:

Minimum of 2 (one for declaration and one for the value)

Add one more record for each additional property: notify or
indicate, broadcast, extended property.

Total calculated value must be increased of 9, due to the records
related to the standard attribute profile and GAP service
characteristics, automatically added when initializing GATT and
GAP layers

PM0257
BLE stack Init and tick APIs

PM0257 - Rev 4 page 26/77

Name Description Value

numAttrServ

Maximum number of
services that can be stored
in the GATT database, for
the specific user BLE
application

Total calculated value must be increased of 2 due to the
standard attribute profile and GAP services, automatically added
when initializing GATT and GAP layers

attrValueArrSize Size of the storage area for
attribute values

Each characteristic contributes to the attrValueArrSize value as
follows:

Characteristic value length

Characteristic UUID is 16 bits: adding 5 bytes

Characteristic UUID is 128 bits: adding 19 bytes

Characteristic has server configuration descriptor: adding 2
bytes

Characteristic has client configuration descriptor: adding 2 bytes
for each simultaneous connection

Characteristic has extended properties: adding 2 bytes

numOfLinks
Maximum number of
simultaneous connections
that the device can support

Valid values are from 1 to 8

extended_packet_length_ena
ble

Unsupported feature
(reserved for future use) 0

prWriteListSize(2)

Number of prepare write
requests needed for a long
write procedure for a
characteristic with len > 20
bytes

The minimum required value is calculated using a specific macro
provided on bluenrg1_stack.h file: PREP_WRITE_X_ATT()

mblockCount(2)
Number of allocated
memory blocks for the BLE
stack

The minimum required value is calculated using a specific macro
provided on bluenrg1_stack.h file: MBLOCKS_COUNT

attMtu(2) Maximum supported
ATT_MTU size Supported values ranges is 23, 247 bytes

hot_ana_config_table
Low level configuration
parameters table for the
radio subsystem.

Configured with the required hot table configuration values (refer
to file system_bluenrg1.c)

max_conn_event_length

Maximum duration of the
connection event when the
device is inslave mode in
units of 625/256 μs (~2.44
μs)

<= 4000 (ms)

slave_sca Sleep clock accuracy in
slave mode ppm value

master_sca Sleep clock accuracy in
master mode 0 to 7 corresponding to 500, 250, 150, 100, 75, 50, 30, 20 ppm

ls_source (3) Source for the 32 kHz slow
speed clock

1: internal RO

0: external crystal

hs_startup_time(3)

Start-up time of the high
speed (16 or 32 MHz)
crystal oscillator in units of
625/256 μs (~2.44 us)

Positive integer(4)

1. These values cannot be changed. To be potentially optimized for making the BLE stack configuration more flexible.
2. New radio initialization parameter supported on BLE stack v2.x.
3. High speed and low speed crystal sources can be defined through some preprocessor options (refer to file

system_bluenrg1.c).

PM0257
BLE stack Init and tick APIs

PM0257 - Rev 4 page 27/77

4. For information about how to define the proper hs_startup_time value refer to the Bringing up the BlueNRG-1, BlueNRG-2
devices application note (AN4818) in Section 5 References at the end of this document.

2.4 The BlueNRG-1, BlueNRG-2 application configuration
During the device initialization phase, after BlueNRG-1, BlueNRG-2 device powers on, some specific parameters
must be defined on BLE device controller registers, in order to define the following configurations:
• Application mode: user or test mode
• High speed crystal configuration: 32 or 16 MHz
• Low speed crystal source: external 32 kHz oscillator, internal RO
• SMPS: on or off (if on: 4.7 μH or 10 μH SMPS inductor)

The BlueNRG-1, BlueNRG-2 controller registers values are defined on file system_bluenrg1.c through the
following configuration table:

/* Configuration Table */
#define COLD_START_CONFIGURATION
{
NUMBER_CONFIG_BYTE, ATB0_ANA_ENG_REG, 0x00,
NUMBER_CONFIG_BYTE, ATB1_ANA_ENG_REG, 0x30,
NUMBER_CONFIG_BYTE, RM1_DIG_ENG_REG, SMPS_10uH_RM1,
NUMBER_CONFIG_BYTE, CLOCK_LOW_ENG_REG, SMPS_ON,
NUMBER_CONFIG_BYTE, CLOCK_HIGH_ENG_REG, HIGH_FREQ_16M,
NUMBER_CONFIG_BYTE, PMU_ANA_ENG_REG, SMPS_10uH_PMU,
NUMBER_CONFIG_BYTE, CLOCK_ANA_USER_REG, LOW_FREQ_XO,
NUMBER_CONFIG_BYTE, PMU_ANA_USER_REG,PMU_ANA_USER_RESET_VALUE, PMU_ANA_USER_RESET_VALUE,
END_CONFIG
}

This table defines the default configuration as follows:
• User mode: ATB0_ANA_ENG_REG = 0x00, USER_MODE_ATB1 = 0x30 SMPS ON, 10 μH inductor:

CLOCK_LOW_ENG_REG = SMPS_ON, RM1_DIG_ENG_REG = SMPS_10uH_RM1
• 16 MHz high speed crystal: CLOCK_HIGH_ENG_REG = HIGH_FREQ_16M
• External 32 kHz oscillator: CLOCK_ANA_USER_REG = LOW_FREQ_XO

When the device powers on, the function SystemInit() (system_bluenrg1.c file) sets the default cold start
parameters defined on the COLD_START_CONFIGURATION table within the cold_start_config[] array.
User application must define its specific cold start settings, based on its application scenario, by setting some
preprocessor options which act on specific fields of the cold_start_config[] array, as described in the
following table:

Table 32. Application configuration preprocessor options

Preprocessor option Preprocessor option values Description

HS_SPEED_XTAL HS_SPEED_XTAL_32MHZ High speed crystal: 32 MHz

HS_SPEED_XTAL HS_SPEED_XTAL_16MHZ
High speed crystal configuration: 16 MHz

(default configuration)

LS_SOURCE LS_SOURCE_EXTERNAL_32kHZ Low speed crystal source: external 32 kHz
oscillator (default configuration)

LS_SOURCE LS_SOURCE_INTERNAL_RO Low speed crystal source: internal RO

SMPS_INDUCTOR SMPS_INDUCTOR_10 uH Enable SMPS with 10 μH (default
configuration)

SMPS_INDUCTOR SMPS_INDUCTOR_4_7 uH Enable SMPS with 4.7 μH inductor

SMPS_INDUCTOR SMPS_INDUCTOR_NONE Disable SMPS

PM0257
The BlueNRG-1, BlueNRG-2 application configuration

PM0257 - Rev 4 page 28/77

Regarding the ATB0_ANA_ENG_REG, ATB1_ANA_ENG_REG registers settings, some test modes are also
available in order to address some test scenarios. User should set such registers as follows:

Table 33. Test mode configurations

Test modes cold_start_config field Notes

Low speed crystal oscillator test mode
cold_start_config[2] = 0x37

cold_start_config[5] = 0x34

Refer to bringing up the BlueNRG-1,
BlueNRG-2 devices AN4818 for more
details about this specific test scenario

High speed start-up time test mode
cold_start_config[2] = 0x04

cold_start_config[5] = 0x34

Refer to bringing up the BlueNRG-1,
BlueNRG-2 devices AN4818 for more
details about this specific test scenario

Internal RO test mode
cold_start_config[2] = 0x36

cold_start_config[5] = 0x34
Internal RO measurements

TX/RX event alert enabling
cold_start_config[2] = 0x38

cold_start_config[5] = 0x34

Refer to BlueNRG-1, BlueNRG-2
datasheets for more details about the
TX/RX event alert enabling

Internal RO crystal measurement
cold_start_config[2] = 0x36

cold_start_config[5] = 0x34

Please notice that the default user mode register setting must be restored for typical user application scenarios:

Table 34. User mode configuration

User mode cold_start_config field Notes

cold_start_config[2] = 0x00

cold_start_config[5] = 0x30
User mode register settings for cold start
configuration

The selected application configuration is defined within the BLE device controller through the following
instructions executed on DeviceConfiguration() function called by SystemInit() API (system_bluenrg1.c file)
at device initialization (power on):

/* Device configuration*/
BLUE_CTRL->RADIO_CONFIG = 0x10000U | (uint16_t)((uint32_t)cold_start_config
& 0x0000FFFFU);
while ((BLUE_CTRL->RADIO_CONFIG & 0x10000) != 0);

2.5 BLE stack tick function
The BlueNRG-1, BlueNRG-2 BLE stack provides a special API BTLE_StackTick() which must be called in
order to process the internal BLE stack state machines and when there are BLE stack activities ongoing (normally
within the main application while loop).
The BTLE_StackTick() function executes the processing of all host stack layers and it has to be executed
regularly to process incoming link layer packets and to process host layers procedures. All stack callbacks are
called by this function.
If low speed ring oscillator is used instead of the LS crystal oscillator, this function also performs the LS RO
calibration and hence must be called at least once at every system wake-up in order to keep the 500 ppm
accuracy (at least 500 ppm accuracy is mandatory if acting as a master).

Note: No BLE stack function must be called while the BTLE_StackTick() is running. For example, if a BLE stack
function may be called inside an interrupt routine, that interrupt must be disabled during the execution of
BTLE_StackTick().

PM0257
BLE stack tick function

PM0257 - Rev 4 page 29/77

Example: if a stack function may be called inside UART ISR the following code should be used:
NVIC_DisableIRQ(UART_IRQn);
BTLE_StackTick();
NVIC_EnableIRQ(UART_IRQn);

Note: Global interrupts disabling should be limited to few microseconds (µs) if radio activities are ongoing.

PM0257
BLE stack tick function

PM0257 - Rev 4 page 30/77

3 Design an application using the BlueNRG-1, BlueNRG-2 BLE stack

This section provides information and code examples about how to design and implement a Bluetooth low energy
application on a BlueNRG-1, BlueNRG-2 device using the BLE stack v2.x binary library.
User implementing a BLE application on a BlueNRG-1, BlueNRG-2 device has to go through some basic and
common steps:
1. Initialization phase and main application loop
2. BLE stack events callbacks setup
3. Services and characteristic configuration (on GATT server)
4. Create a connection: discoverable, connectable modes and procedures
5. Security (pairing and bonding)
6. Service and characteristic discovery
7. Characteristic notification/indications, write, read
8. Basic/typical error conditions description

Note: In the following sections, some user applications “defines” are used to simply identify the device Bluetooth low
energy role (central, peripheral, client and server).

Table 35. User application defines for BLE device roles

Define Description

GATT_CLIENT GATT client role

GATT_SERVER GATT server role

3.1 Initialization phase and main application loop
The following main steps are required for properly configure the BlueNRG-1, BlueNRG-2 devices.
1. Initialize the BLE device vector table, interrupt priorities, clock: SystemInit() API
2. Configure selected BLE platform: SdkEvalIdentification() API
3. Initialize the serial communication channel used for I/O communication as debug and utility information:

SdkEvalComUartInit(UART_BAUDRATE) API
4. Initialize the BLE stack: BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params) API
5. Configure BLE device public address (if public address is used): aci_hal_write_config_data() API
6. Init BLE GATT layer: aci_gatt_init() API
7. Init BLE GAP layer depending on the selected device role: aci_gap_init(“role”) API
8. Set the proper security I/O capability and authentication requirement (if BLE security is used):

aci_gap_set_io_capability() and aci_gap_set_authentication_requirement() APIs
9. Define the required Services & Characteristics & Characteristics Descriptors if the device is a GATT server:

aci_gatt_add_service(), aci_gatt_add_char(), aci_gatt_add_char_desc() APIs
10. Add a while(1) loop calling the BLE stack tick API BTLE_StackTick() and a specific user tick handler

where user actions/events are processed. Further, a call to the BlueNRG_Sleep() API is added in order to
enable BLE device sleep mode and preserve the BLE radio operating modes.

The following pseudocode example illustrates the required initialization steps:

int main(void)
{
 uint8_t ret;

 /* System Init */
 SystemInit();

PM0257
Design an application using the BlueNRG-1, BlueNRG-2 BLE stack

PM0257 - Rev 4 page 31/77

 /* Identify BlueNRG1 platform */
 SdkEvalIdentification();

 /* Configure I/O communication channel */
 SdkEvalComUartInit(UART_BAUDRATE);

 /* BLE stack init */
 ret = BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params);

 if (ret != BLE_STATUS_SUCCESS) {
 printf("Error in BlueNRG_Stack_Initialization() 0x%02x\r\n", ret);
 while(1);
 }

 /* Device Initialization: BLE stack GATT and GAP Init APIs.
 It could add BLE services and characteristics (if it is a GATT
 server) and initialize its state machine and other specific drivers
 (i.e. leds, buttons, sensors, …) */
 ret = DeviceInit();
 if (ret != BLE_STATUS_SUCCESS) {
 while(1);
 }

 while(1)
 {
 /* BLE Stack Tick */
 BTLE_StackTick();

 /* Application Tick: user application where application state machine
 is handled */
 APP_Tick();

 /* Power Save management: enable sleep mode with wakeup on radio
 operating timings (adverting, connections intervals) */
 BlueNRG_Sleep(SLEEPMODE_WAKETIMER, 0, 0, 0);

 }/* while (1) */ }

 } /* end main() */

Note: 1. BlueNRG_Stack_Init_params variable defines the BLE stack initialization parameters as described on
Section 2.2 BLE stack event callbacks

2. BTLE_StackTick() must be called in order to process BLE stack events.
3. APP_Tick() is just an application dependent function, which handles the user application state machine,

according to the application working scenario.
4. BlueNRG_Sleep(SLEEPMODE_WAKETIMER, 0, 0, 0) enables the BLE device HW Sleep low power

mode: CPU is stopped and all the peripherals are disabled (only the low speed oscillator and the external
wake-up source blocks run). It’s worth noticing that this API with the specified parameters
(SLEEPMODE_WAKETIMER, 0, 0, 0) must be called, on application main while loop, in order to allow
the BlueNRG-1, BlueNRG-2 devices to enter sleep mode with wake-up source on BLE stack advertising
and connection intervals. If not called, the BLE device always stays in running power save mode (BLE
stack is not autonomously entering sleep mode unless this specific API is called). The User application can
use the BlueNRG_Sleep() API to select one of the supported BLE device HW low power modes (CPU
halt, sleep, standby) and set the related wake-up sources and sleep timeout, when applicable. The
BlueNRG_Sleep() API combines the low power requests coming from the application with the radio
operating mode, choosing the best low power mode applicable in the current scenario. The negotiation
between the radio module and the application requests is done to avoid losing data exchanged over-the-
air.

5. For more information about the BlueNRG_Sleep() API and BLE device low power modes refer to the
related application note in Section 5 References at the end of this document.

6. When performing the aci_gatt_init() and aci_gap_init() APIs, BLE stack always adds two
standard services: attribute profile service (0x1801) with service changed characteristic and GAP service
(0x1800) with device name and appearance characteristics.

PM0257
Initialization phase and main application loop

PM0257 - Rev 4 page 32/77

7. The last attribute handles reserved for the standard GAP service is 0x000B when no privacy or host-based
privacy is enabled on aci_gap_init() API, 0x000D when controller-based privacy is enabled on
aci_gap_init() API.

Table 36. GATT, GAP default services

Default services Start handle End handle Service UUID

Attribute profile service 0x0001 0x0004 0x1801

Generic access profile (GAP) service 0x0005 0x000B 0x1800

Table 37. GATT, GAP default characteristics

Default
services Characteristic Attribute

handle Char property Char value
handle Char UUID

Char value
length
(bytes)

Attribute
profile service

Service changed 0x0002 Indicate 0x0003 0x2A05 4

Generic
access profile
(GAP)

service

Device came 0x0006
Read|write without response|
write| authenticated signed
writes

0x0007 0x2A00 8

Appearance 0x0008
Read|write without response|
write| authenticated signed
writes

0x0009 0x2A01 2

Peripheral preferred
connection
parameters

0x000A Read| write 0x000B 0x2A04 8

Central address
resolution(1) 0x000C

Readable without
authentication or
authorization.

Not writable

0x000D 0x2AA6 1

1. It is added only when controller-based privacy (0x02) is enabled on aci_gap_init() API.

The aci_gap_init() role parameter values are as follows:

Table 38. aci_gap_init() role parameter values

Parameter Role parameter values Note

Role

0x01:Peripheral

0x02: Broadcaster

0x04: Central

0x08: Observer

The role parameter can be a bitwise OR of any of the
supported values (multiple roles simultaneously support)

enable_Privacy

0x00 for disabling privacy;

0x01 for enabling privacy;

0x02 for enabling controller-based privacy

Controller-based privacy is supported on BLE stack v2.x

PM0257
Initialization phase and main application loop

PM0257 - Rev 4 page 33/77

Parameter Role parameter values Note

device_name_char_len It allows the length of the device name characteristic to
be indicated.

For a complete description of this API and related parameters refer to the Bluetooth LE stack APIs and event
documentations, in Section 5 References.

3.1.1 BLE addresses
The following device addresses are supported from the BlueNRG-1, BlueNRG-2 devices:
• Public address
• Random address
• Private address

Public MAC addresses (6 bytes- 48 bits address) uniquely identifies a BLE device, and they are defined by
Institute of Electrical and Electronics Engineers (IEEE).
The first 3 bytes of the public address identify the company that issued the identifier and are known as the
Organizationally Unique Identifier (OUI). An Organizationally Unique Identifier (OUI) is a 24-bit number that is
purchased from the IEEE. This identifier uniquely identifies a company and it allows a block of possible public
addresses to be reserved (up to 2^24 coming from the remaining 3 bytes of the public address) for the exclusive
use of a company with a specific OUI.
An organization/company can request a new set of 6 bytes addresses when at least the 95% of previously
allocated block of addresses have been used (up to 2^24 possible addresses are available with a specific OUI).
If the user wants to program his custom MAC address, he has to store it on a specific device Flash location used
only for storing the MAC address. Then, at device power-up, it has to program this address on the radio by calling
a specific stack API.
The BLE API command to set the MAC address is aci_hal_write_config_data()
The command aci_hal_write_config_data() should be sent to BlueNRG-1, BlueNRG-2 devices before
starting any BLE operations (after BLE stack initialization API BlueNRG_Stack_Initialization()).
The following pseudocode example illustrates how to set a public address:

uint8_t bdaddr[] = {0x12, 0x34, 0x00, 0xE1, 0x80, 0x02};
ret=aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,CONFIG_DATA_PUBAD DR_LEN, bdaddr);
if(ret)PRINTF("Setting address failed.\n")}

MAC address needs to be stored in the specific Flash location associated to the MAC address during the product
manufacturing.
A user can write its application assuming that the MAC address is placed at a known specific MAC Flash location
of the BLE device. During manufacturing, the microcontroller can be programmed with the customer Flash image
via SWD.
A second step could involve generating the unique MAC address (i.e. reading it from a database) and storing of
the MAC address in the known MAC Flash location.

PM0257
Initialization phase and main application loop

PM0257 - Rev 4 page 34/77

Figure 10. BLE MAC address storage

The BlueNRG-1, BlueNRG-2 devices do not have a valid preassigned MAC address, but a unique serial number
(read only for the user).The unique serial number is a six byte value stored at address 0x100007F4: it is stored as
two words (8 bytes) at address 0x100007F4 and 0x100007F8 with unique serial number padded with 0xAA55.
The static random address is generated and programmed at very 1st boot of the device on the dedicated Flash
area. The value on Flash is the actual value the device uses: each time the user resets the device the stack
checks if valid data are on the dedicated Flash area and it uses it (a special valid marker on FLASH is used to
identify if valid data are present). If the user performs mass erase, the stored values (including marker) are
removed so the stack generates a new random address and stores it on the dedicated flash.
Private addresses are used when privacy is enabled and according to the Bluetooth low energy specification. For
more information about private addresses, refer to Section 1.7 Security manager (SM).

3.1.2 Set tx power level
During the initialization phase, the user can also select the transmitting power level using the following API:
aci_hal_set_tx_power_level(high, power level)
Follow a pseudocode example for setting the radio transmit power in high power and -2 dBm output power:
ret= aci_hal_set_tx_power_level (1,4);
For a complete description of this API and related parameters refer to the Bluetooth LE stack APIs and event
documentation, in Section 5 References.

PM0257
Initialization phase and main application loop

PM0257 - Rev 4 page 35/77

3.2 Services and characteristic configuration
In order to add a service and related characteristics, a user application has to define the specific profile to be
addressed:
1. Standard profile defined by the Bluetooth SIG organization. The user must follow the profile specification and

services, characteristic specification documents in order to implement them by using the related defined
Profile, Services and Characteristics 16-bit UUID (refer to Bluetooth SIG web page: www.bluetooth.org/en-
%20us/specification/adopted-specifications).

2. Proprietary, non-standard profile. The user must define its own services and characteristics. In this case,
128-bit UIDS are required and must be generated by profile implementers (refer to UUID generator web
page: www.famkruithof.net/uuid/uuidgen).

A service can be added using the following command:

aci_gatt_add_service(uint8_t Service_UUID_Type,
 Service_UUID_t *Service_UUID,
 uint8_t Service_Type,
 uint8_t Max_Attribute_Records,
 uint16_t *Service_Handle);

This command returns the pointer to the service handle (Service_Handle), which is used to identify the service
within the user application. A characteristic can be added to this service using the following command:

aci_gatt_add_char(uint16_t Service_Handle,
 uint8_t Char_UUID_Type,
 Char_UUID_t *Char_UUID,
 uint8_t Char_Value_Length,
 uint8_t Char_Properties,
 uint8_t Security_Permissions,
 uint8_t GATT_Evt_Mask,
 uint8_t Enc_Key_Size,
 uint8_t Is_Variable,
 uint16_t *Char_Handle);

This command returns the pointer to the characteristic handle (Char_Handle), which is used to identify the
characteristic within the user application.
For a detailed description of the aci_gatt_add_service() and aci_gatt_add_char() function parameters
refer to the header file Library\Bluetooth_LE\inc\bluenrg1_events.h.
The following pseudocode example illustrates the steps to be followed to add a service and two associated
characteristic to a proprietary, non-standard profile.

/* Service and characteristic UUIDs variables. Refer to the header
file Library\Bluetooth_LE\inc\bluenrg1_api.h for a detailed description
 */
Service_UUID_t service_uuid;
Char_UUID_t char_uuid;

tBleStatus Add_Server_Services_Characteristics(void)
{
 tBleStatus ret = BLE_STATUS_SUCCESS;
 /*
 The following 128bits UUIDs have been generated from the random UUID
 generator:
 D973F2E0-B19E-11E2-9E96-0800200C9A66: Service 128bits UUID
 D973F2E1-B19E-11E2-9E96-0800200C9A66: Characteristic_1 128bits UUID
 D973F2E2-B19E-11E2-9E96-0800200C9A66: Characteristic_2 128bits UUID
 */
 /*Service 128bits UUID */
 const uint8_t uuid[16] =
 {0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe0,0xf2,0x73,0xd9};
 /*Characteristic_1 128bits UUID */
 const uint8_t charUuid_1[16] =

PM0257
Services and characteristic configuration

PM0257 - Rev 4 page 36/77

http://www.bluetooth.org/en-%20us/specification/adopted-specifications
http://www.bluetooth.org/en-%20us/specification/adopted-specifications
http://www.famkruithof.net/uuid/uuidgen

 {0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe1,0xf2,0x73,0xd9};
 /*Characteristic_2 128bits UUID */
 const uint8_t charUuid_2[16] =
 {0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe2,0xf2,0x73,0xd9};
 Osal_MemCpy(&service_uuid.Service_UUID_128, uuid, 16);
 /* Add the service with service_uuid 128bits UUID to the GATT server
 database. The service handle Service_Handle is returned.
 */
 ret = aci_gatt_add_service(UUID_TYPE_128, &service_uuid, PRIMARY_SERVICE,
 6, &Service_Handle);
 if(ret != BLE_STATUS_SUCCESS) return(ret);
 Osal_MemCpy(&char_uuid.Char_UUID_128, charUuid_1, 16);

 /* Add the characteristic with charUuid_1128bitsUUID to the service
 Service_Handle. This characteristic has 20 as Maximum length of the
 characteristic value, Notify properties(CHAR_PROP_NOTIFY), no security
 permissions(ATTR_PERMISSION_NONE), no GATT event mask (0), 16 as key
 encryption size, and variable-length characteristic (1).
 The characteristic handle (CharHandle_1) is returned.
 */
 ret = aci_gatt_add_char(Service_Handle, UUID_TYPE_128, &char_uuid, 20,
 CHAR_PROP_NOTIFY, ATTR_PERMISSION_NONE, 0,16, 1,
 &CharHandle_1);
 if (ret != BLE_STATUS_SUCCESS) return(ret);
 Osal_MemCpy(&char_uuid.Char_UUID_128, charUuid_2, 16);

 /* Add the characteristic with charUuid_2 128bits UUID to the service
 Service_Handle. This characteristic has 20 as Maximum length of the
 characteristic value, Read, Write and Write Without Response properties,
 no security permissions(ATTR_PERMISSION_NONE), notify application when
 attribute is written (GATT_NOTIFY_ATTRIBUTE_WRITE) as GATT event mask ,
 16 as key encryption size, and variable-length characteristic (1). The
 characteristic handle (CharHandle_2) is returned.
 */
 ret = aci_gatt_add_char(Service_Handle, UUID_TYPE_128, &char_uuid, 20,
 CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP,
 ATTR_PERMISSION_NONE, GATT_NOTIFY_ATTRIBUTE_WRITE,
 16, 1, &&CharHandle_2);
 if (ret != BLE_STATUS_SUCCESS)return(ret) ;
}/*end Add_Server_Services_Characteristics() */

3.3 Create a connection: discoverable and connectable APIs
In order to establish a connection between a BLE GAP central (master) device and a BLE GAP peripheral (slave)
device, the GAP discoverable/connectable modes and procedures can be used as described in Table 39. GAP
mode APIs, Table 40. GAP discovery procedure APIs and Table 41. Connection procedure APIs and by using the
related BLE stack APIs provided in header file: Library\Bluetooth_LE\inc\bluenrg1_api.h.
GAP peripheral discoverable and connectable modes APIs
Different types of discoverable and connectable modes can be used as described by the following APIs:

Table 39. GAP mode APIs

API Supported advertising event types Description

aci_gap_set_discoverable()

0x00: connectable undirected advertising (default) Sets the device in general discoverable mode.

The device is discoverable until the device issues
the aci_gap_set_non_discoverable()
API.

0x02: scannable undirected advertising

0x03: non-connectable undirected advertising

aci_gap_set_limited_discoverable()

0x00: connectable undirected advertising (default) Sets the device in limited discoverable mode. The
device is discoverable for a maximum period of
TGAP (lim_adv_timeout) = 180 seconds. The
advertising can be disabled at any time by calling
aci_gap_set_non_discoverable()
API.

0x02: scannable undirected advertising

0x03: non-connectable undirected advertising

PM0257
Create a connection: discoverable and connectable APIs

PM0257 - Rev 4 page 37/77

API Supported advertising event types Description

aci_gap_set_non_discoverable() NA
Sets the device in non- discoverable mode. This
command disables the LL advertising and sets the
device in standby state.

aci_gap_set_direct_connectable() NA

Sets the device in direct connectable mode. The
device is directed connectable mode only for 1.28
seconds. If no connection is established within this
duration, the device enters non-discoverable
mode and advertising has to be enabled again
explicitly.

aci_gap_set_non_connectable()
0x02: scannable undirected advertising

Puts the device into non- connectable mode.
0x03: non-connectable undirected advertising

aci_gap_set_undirect_connectable () NA Puts the device into undirected connectable mode.

Table 40. GAP discovery procedure APIs

API Description

aci_gap_start_limited_discovery_proc()
Starts the limited discovery procedure. The controller is commanded to start active
scanning. When this procedure is started, only the devices in limited discoverable
mode are returned to the upper layers.

aci_gap_start_general_discovery_proc() Starts the general discovery procedure. The controller is commanded to start active
scanning.

Table 41. Connection procedure APIs

API Description

aci_gap_start_auto_connection_establish_proc()

Starts the auto connection establishment procedure. The devices specified
are added to the white list of the controller and a create connection call is
made to the controller by GAP with the initiator filter policy set to “use
whitelist to determine which advertiser to connect to”.

aci_gap_create_connection()

Starts the direct connection establishment procedure. A create connection
call is made to the controller by GAP with the initiator filter policy set to
“ignore whitelist and process connectable advertising packets only for the
specified device”.

aci_gap_start_general_connection_establish_proc()

Starts a general connection establishment procedure. The device enables
scanning in the controller with the scanner filter policy set to “accept all
advertising packets” and from the scanning results, all the devices are sent to
the upper layer using the event callback
hci_le_advertising_report_event().

aci_gap_start_selective_connection_establish_proc()

It starts a selective connection establishment procedure. The GAP adds the
specified device addresses into white list and enables scanning in the
controller with the scanner filter policy set to “accept packets only from
devices in white list”. All the devices found are sent to the upper layer by the
event callback hci_le_advertising_report_event().

aci_gap_terminate_gap_proc() Terminate the specified GAP procedure.

3.3.1 Set discoverable mode and use direct connection establishment procedure
The following pseudocode example illustrates only the specific steps to be followed to let a GAP peripheral device
be in general discoverable mode, and for a GAP central device direct connect to it through a direct connection
establishment procedure.
Note: It is assumed that the device public address has been set during the initialization phase as follows:

PM0257
Create a connection: discoverable and connectable APIs

PM0257 - Rev 4 page 38/77

uint8_t bdaddr[] = {0x12, 0x34, 0x00, 0xE1, 0x80, 0x02};
ret=aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,CONFIG_DATA_PUBAD DR_LEN, bdaddr);
if(ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

/*GAP Peripheral: general discoverable mode (and no scan response is sent)
*/

void GAP_Peripheral_Make_Discoverable(void)
{
 tBleStatus ret;

 const charlocal_name[]=
 {AD_TYPE_COMPLETE_LOCAL_NAME,'B','l','u','e','N','R','G','1','T','e','s',' t'};

 /* disable scan response: passive scan */
 hci_le_set_scan_response_data (0,NULL);

 /* Put the GAP peripheral in general discoverable mode:
 Advertising_Type: ADV_IND(undirected scannable and connectable);
 Advertising_Interval_Min: 100;
 Advertising_Interval_Max: 100;
 Own_Address_Type: PUBLIC_ADDR (public address: 0x00);
 Adv_Filter_Policy: NO_WHITE_LIST_USE (no whit list is used);
 Local_Name_Lenght: 13
 Local_Name: BlueNRG1Test;
 Service_Uuid_Length: 0 (no service to be advertised); Service_Uuid_List: NULL;
 Slave_Conn_Interval_Min: 0 (Slave connection internal minimum value);
 Slave_Conn_Interval_Max: 0 (Slave connection internal maximum value).
 */

 ret = aci_gap_set_discoverable(ADV_IND, 100, 100, PUBLIC_ADDR,
 NO_WHITE_LIST_USE,
 sizeof(local_name),
 local_name,
 0, NULL, 0, 0);
 if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");
} /* end GAP_Peripheral_Make_Discoverable() */

/*GAP Central: direct connection establishment procedure to connect to the
GAP Peripheral in discoverable mode
*/

void GAP_Central_Make_Connection(void)

{
 /*Start the direct connection establishment procedure to the GAP
 peripheral device in general discoverable mode using the
 following connection parameters:
 LE_Scan_Interval: 0x4000;
 LE_Scan_Window: 0x4000;
 Peer_Address_Type: PUBLIC_ADDR (GAP peripheral address type: public
 address);
 Peer_Address: {0xaa, 0x00, 0x00, 0xE1, 0x80, 0x02};
 Own_Address_Type:
 PUBLIC_ADDR (device address type);
 Conn_Interval_Min: 40 (Minimum value for the connection event
 interval);
 Conn_Interval_Max: 40 (Maximum value for the connection event
 interval);
 Conn_Latency: 0 (Slave latency for the connection in a number of
 connection events);
 Supervision_Timeout: 60 (Supervision timeout for the LE Link);
 Minimum_CE_Length: 2000 (Minimum length of connection needed for the
 LE connection);
 Maximum_CE_Length: 2000 (Maximum length of connection needed for the LE connection).

 */

PM0257
Create a connection: discoverable and connectable APIs

PM0257 - Rev 4 page 39/77

 tBDAddr GAP_Peripheral_address = {0xaa, 0x00, 0x00, 0xE1, 0x80, 0x02};
 ret= aci_gap_create_connection(0x4000, 0x4000, PUBLIC_ADDR,
 GAP_Peripheral_address,PUBLIC_ADDR, 40,
 40,
 0, 60, 2000 , 2000);
 if(ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

}/* GAP_Central_Make_Connection(void)*/

Note: 1. If ret = BLE_STATUS_SUCCESS is returned, on termination of the GAP procedure, the event callback
hci_le_connection_complete_event() is called, to indicate that a connection has been established
with the GAP_Peripheral_address (same event is returned on the GAP peripheral device).

2. The connection procedure can be explicitly terminated by issuing the API
aci_gap_terminate_gap_proc().

3. The last two parameters Minimum_CE_Length and Maximum_CE_Length of the
aci_gap_create_connection() are the length of the connection event needed for the BLE
connection. These parameters allows user to specify the amount of time the master has to allocate for a
single slave so they must be wisely chosen. In particular, when a master connects to more slaves, the
connection interval for each slave must be equal or a multiple of the other connection intervals and user
must not overdo the connection event length for each slave. Refer to Section 4 BLE multiple connection
timing strategy for detailed information about the timing allocation policy.

3.3.2 Set discoverable mode and use general discovery procedure (active scan)
The following pseudocode example illustrates only the specific steps to be followed to let a GAP Peripheral device
be in general discoverable mode, and for a GAP central device start a general discovery procedure in order to
discover devices within its radio range.

Note: It is assumed that the device public address has been set during the initialization phase as follows:

 uint8_t bdaddr[] = {0x12, 0x34, 0x00, 0xE1, 0x80, 0x02};
 ret = aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,
 CONFIG_DATA_PUBADDR_LEN,
 bdaddr);
 if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

/* GAP Peripheral:general discoverable mode (scan responses are sent):
*/
void GAP_Peripheral_Make_Discoverable(void)
{
 tBleStatus ret;
 const char local_name[] = {AD_TYPE_COMPLETE_LOCAL_NAME,'B','l','u','e','N','R','G' };
 /* As scan response data, a proprietary 128bits Service UUID is used.
 This 128bits data cannot be inserted within the advertising packet
 (ADV_IND) due its length constraints (31 bytes).
 AD Type description:
 0x11: length
 0x06: 128 bits Service UUID type
 0x8a,0x97,0xf7,0xc0,0x85,0x06,0x11,0xe3,0xba,0xa7,0x08,0x00,0x20,0x0c,
 0x9a,0x66: 128 bits Service UUID
 */
 uint8_t ServiceUUID_Scan[18]=
{0x11,0x06,0x8a,0x97,0xf7,0xc0,0x85,0x06,0x11,0xe3,0xba,0xa7,0x08,0x00,0x2,0x0c,0x9a,0x66};
/* Enable scan response to be sent when GAP peripheral receives scan
 requests from GAP Central performing general
 discovery procedure(active scan) */

 hci_le_set_scan_response_data(18,ServiceUUID_Scan);
 /* Put the GAP peripheral in general discoverable mode:
 Advertising_Type: ADV_IND (undirected scannable and connectable); Advertising_Interval_Min
: 100;
 Advertising_Interval_Max: 100;
 Own_Address_Type: PUBLIC_ADDR (public address: 0x00); Advertising_Filter_Policy: NO_WHITE_
LIST_USE (no whit list is used);
 Local_Name_Length: 8

PM0257
Create a connection: discoverable and connectable APIs

PM0257 - Rev 4 page 40/77

 Local_Name: BlueNRG;
 Service_Uuid_Length: 0 (no service to be advertised); Service_Uuid_List: NULL;
 Slave_Conn_Interval_Min: 0 (Slave connection internal minimum value); Slave_Conn_Interval_
Max: 0 (Slave connection internal maximum value).
 */
 ret = aci_gap_set_discoverable(ADV_IND, 100, 100, PUBLIC_ADDR,
 NO_WHITE_LIST_USE,sizeof(local_name),
 local_name, 0, NULL, 0, 0);
 if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

} /* end GAP_Peripheral_Make_Discoverable() */

/*GAP Central: start general discovery procedure to discover the GAP peripheral device in dis
coverable mode */
void GAP_Central_General_Discovery_Procedure(void)
{
tBleStatus ret;

/* Start the general discovery procedure(active scan) using the following
 parameters:
 LE_Scan_Interval: 0x4000;
 LE_Scan_Window: 0x4000;
 Own_address_type: 0x00 (public device address);
 Filter_Duplicates: 0x00 (duplicate filtering disabled);
*/
ret =aci_gap_start_general_discovery_proc(0x4000,0x4000,0x00,0x00);
if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");
}

The responses of the procedure are given through the event callback
hci_le_advertising_report_event().The end of the procedure is indicated by
aci_gap_proc_complete_event() event callback with Procedure_Code parameter equal to
GAP_GENERAL_DISCOVERY_PROC (0x2).

 /* This callback is called when an advertising report is received */
 void hci_le_advertising_report_event(uint8_t Num_Reports,
 Advertising_Report_t
 Advertising_Report[])
{
 /* Advertising_Report contains all the expected parameters.
 User application should add code for decoding the received
 Advertising_Report event databased on the specific evt_type
 (ADV_IND, SCAN_RSP, ..)
 */

 /* Example: store the received Advertising_Report fields */
 uint8_t bdaddr[6];

 /* type of the peer address (PUBLIC_ADDR,RANDOM_ADDR) */
 uint8_t bdaddr_type = Advertising_Report[0].Address_Type;

 /* event type (advertising packets types) */
 uint8_t evt_type = Advertising_Report[0].Event_Type ;

 /* RSSI value */
 uint8_t RSSI = Advertising_Report[0].RSSI;

 /* address of the peer device found during discovery procedure */
 Osal_MemCpy(bdaddr, Advertising_Report[0].Address,6);

 /* length of advertising or scan response data */
 uint8_t data_length = Advertising_Report[0].Length_Data;

 /* data_length octets of advertising or scan response data formatted are
 on Advertising_Report[0].Data field: to be stored/filtered based on
 specific user application scenario*/

PM0257
Create a connection: discoverable and connectable APIs

PM0257 - Rev 4 page 41/77

} /* hci_le_advertising_report_event() */

In particular, in this specific context, the following events are raised on the GAP central
hci_le_advertising_report_event () , as a consequence of the GAP peripheral device in discoverable
mode with scan response enabled:
1. Advertising Report event with advertising packet type (evt_type =ADV_IND)
2. Advertising Report event with scan response packet type (evt_type =SCAN_RSP)

Table 42. ADV_IND event type

Event type Address type Address Advertising data RSSI

0x00
(ADV_IND) 0x00 (public address)

0x0280E1003

412

0x02,0x01,0x06,0x08,0x09,0x42
,0x6C,0x75,0x65,0x4E,0x52,0x4
7,0x02,0x 0A,0xFE

0xCE

The advertising data can be interpreted as follows (refer to Bluetooth specification version in
Section 5 References):

Table 43. ADV_IND advertising data

Flags AD type field Local name field Tx power level

0x02: length of the field 0x01: AD type flags

0x06: 0x110 (Bit 2: BR/EDR

Not supported; bit 1: general discoverable mode)

0x08: length of the field

0x09: complete local name type

0x42,0x6C,0x75,0x65,0x4E0x

52,0x47: BlueNRG

0x02: length of the field

0x0A: Tx power type

0x08: power value

Table 44. SCAN_RSP event type

Event type Address type Address Scan response data RSSI

0x04 (SCAN_RS P) 0x01 (random
address) 0x0280E1003412

0x12,0x66,0x9A,0x0C,
0x20,0x00,0x08,0xA7,0
xBA,0xE3,0x11,0x06,0x
85,0xC0,0xF7,0x97,0x8
A,0x06,0x11

0xDA

The scan response data can be interpreted as follows (refer to Bluetooth specifications):

Table 45. Scan response data

Scan response data

0x12: data length

0x11: length of service UUID advertising data; 0x06: 128 bits service UUID type;

0x66,0x9A,0x0C,0x20,0x00,0x08,0xA7,0xBA,0xE3,0x11,0x06,0x85,0xC0,0xF7,0x97,0x8A:

128-bit service UUID

3.4 BLE stack events and event callbacks
Whenever there is a BLE stack event to be processed, the BLE stack library notifies this event to the user
application through a specific event callback. A event callback is a function defined by the user application and

PM0257
BLE stack events and event callbacks

PM0257 - Rev 4 page 42/77

called by the BLE stack, while an API is a function defined by the stack and called by the user application. The
BlueNRG-1, BlueNRG-2 BLE stack event callback prototypes are defined on file bluenrg1_events.h. Weak
definitions are available for all the event callbacks in order to have a definition for each event callback. As
consequence, based on its own application scenario, user has to identify the required device event callbacks to
be called and the related application specific actions to be done.
When a BLE application is implemented, the most common and widely used BLE stack events are those related
to the discovery, connection and terminate procedures, services, characteristics, characteristics descriptors
discovery procedures and attribute notification/ indication events on a GATT client, attribute modified events on a
GATT server.

Table 46. BLE stack: main events callbacks

Event callback Description Where

hci_disconnection_complete_event() A connection is terminated
GAP

central/
peripheral

hci_le_connection_complete_event() Indicates to both of the devices forming the connection that a
new connection has been established

GAP

central/
peripheral

aci_gatt_attribute_modified_event() Generated by the GATT server when a client modifies any
attribute on the server, if event is enabled

GATT

server

aci_gatt_notification_event() Generated by the GATT client when a server notifies any
attribute on the client

GATT

client

aci_gatt_indication_event() Generated by the GATT client when a server indicates any
attribute on the client

GATT

client

aci_gap_pass_key_req_event()

Generated by the Security manager to the application when a
passkey is required for pairing.

When this event is received, the application has to respond with
the aci_gap_pass_key_resp() API

GAP

central/
peripheral

aci_gap_pairing_complete_event()
Generated when the pairing process has completed successfully
or a pairing procedure timeout has occurred or the pairing has
failed

GAP

central/
peripheral

aci_gap_bond_lost_event()

Event generated when a pairing request is issued, in response to
a slave security request from a master which has previously
bonded with the slave. When this event is received, the upper
layer has to issue the command aci_gap_allow_rebond() to allow
the slave to continue the pairing process with the master

GAP

peripheral

aci_att_read_by_group_type_resp_event()
The Read-by-group type response is sent in reply to a received
Read-by-group type request and contains the handles and
values of the attributes that have been read

GATT

client

aci_att_read_by_type_resp_event()

The Read-by-type response is sent in reply to a received Read-
by-type

Request and contains the handles and values of the attributes
that have been read

GATT

client

aci_gatt_proc_complete_event() A GATT procedure has been completed
GATT

client

hci_le_advertising_report_event
Event given by the GAP layer to the upper layers when a device
is discovered during scanning as a consequence of one of the
GAP procedures started by the upper layers

GAP

central

PM0257
BLE stack events and event callbacks

PM0257 - Rev 4 page 43/77

For a detailed description about the BLE events, and related formats refer to the BlueNRG-1, BlueNRG-2
Bluetooth LE stack APIs and events documentation, in Section 5 References.
The following pseudocode provides an example of events callbacks handling some of the described BLE stack
events (disconnection complete event, connection complete event, GATT attribute modified event , GATT
notification event):

/* This event callback indicates the disconnection from a peer device.
 It is called in the BLE radio interrupt context.
*/
void hci_disconnection_complete_event(uint8_t Status,
 uint16_t Connection_Handle,
 uint8_t Reason)
{
 /* Add user code for handling BLE disconnection complete event based on
 application scenario.
 */
}/* end hci_disconnection_complete_event() */

/* This event callback indicates the end of a connection procedure.
*/
void hci_le_connection_complete_event(uint8_t Status,
 uint16_t Connection_Handle,
 uint8_t Role,
 uint8_t Peer_Address_Type,
 uint8_t Peer_Address[6],
 uint16_t Conn_Interval,
 uint16_t Conn_Latency,
 uint16_t Supervision_Timeout,
 uint8_t Master_Clock_Accuracy)

{
 /* Add user code for handling BLE connection complete event based on
 application scenario.
 NOTE: Refer to header file Library\Bluetooth_LE\inc\bluenrg1_events.h
 for a complete description of the event callback parameters.
 */

/* Store connection handle */
 connection_handle = Connection_Handle;
 …
}/* end hci_le_connection_complete_event() */

#if GATT_SERVER

/* This event callback indicates that an attribute has been modified from a
 peer device.
*/
void aci_gatt_attribute_modified_event(uint16_t Connection_Handle,
 uint16_t Attr_Handle,
 uint16_t Offset,
 uint8_t Attr_Data_Length,
 uint8_t Attr_Data[])
{
 /* Add user code for handling attribute modification event based on
 application scenario.
 NOTE: Refer to header file Library\Bluetooth_LE\inc\bluenrg1_events.h
 for a complete description of the event callback parameters.
 */
 ...
} /* end aci_gatt_attribute_modified_event() */

#endif /* GATT_SERVER */

#if GATT_CLIENT

PM0257
BLE stack events and event callbacks

PM0257 - Rev 4 page 44/77

/* This event callback indicates that an attribute notification has been
 received from a peer device.
*/
void aci_gatt_notification_event(uint16_t Connection_Handle,
 uint16_t Attribute_Handle,
 uint8_t Attribute_Value_Length,
 uint8_t Attribute_Value[])
{
 /* Add user code for handling attribute modification event based on
 application scenario.
 NOTE: Refer to header file Library\Bluetooth_LE\inc\bluenrg1_events.h
 for a complete description of the event callback parameters.
*/
…
} /* end aci_gatt_notification_event() */
#endif /* GATT_CLIENT */

3.5 Security (pairing and bonding)
This section describes the main functions to be used in order to establish a pairing between two devices
(authenticate the device identity, encrypt the link and distribute the keys to be used on next reconnections).
To successfully pair with a device, IO capabilities have to be correctly configured, depending on the IO capabilily
available on the selected device.
aci_gap_set_io_capability(io_capability) should be used with one of the following io_capability
values:

0x00: 'IO_CAP_DISPLAY_ONLY'
0x01: 'IO_CAP_DISPLAY_YES_NO',
0x02: 'KEYBOARD_ONLY'
0x03: 'IO_CAP_NO_INPUT_NO_OUTPUT'
0x04: 'IO_CAP_KEYBOARD_DISPLAY’

PassKey Entry example with 2 BlueNRG devices: Device_1, Device_2
The following pseudocode example illustrates only the specific steps to be followed to pair two devices by using
the PassKey entry method.
As described in Table 11. Methods used to calculate the temporary key (TK), Device_1, Device_2 have to set the
IO capability in order to select PassKey entry as a security method.
On this particular example, "Display Only" on Device_1 and "Keyboard Only" on Device_2 are selected, as
follows:

/*Device_1:
*/ tBleStatus ret;\
ret= aci_gap_set_io_capability(IO_CAP_DISPLAY_ONLY);
if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

/*Device_2:
*/ tBleStatus ret;
ret= aci_gap_set_io_capability(IO_CAP_KEYBOARD_ONLY);
if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

Once the IO capability are defined, the aci_gap_set_authentication_requirement() should be used to
set all the security authentication requirements the device needs (MITM mode (authenticated link or not), OOB
data present or not, use fixed pin or not, enabling bonding or not).
The following pseudocode example illustrates only the specific steps to be followed to set the authentication
requirements for a device with: “MITM protection , No OOB data, don’t use fixed pin”: this configuration is used to
authenticate the link and to use a not fixed pin during the pairing process with PassKey Method.

ret=aci_gap_set_authentication_requirement(BONDING,/*bonding is
 enabled */
 MITM_PROTECTION_REQUIRED,
 SC_IS_SUPPORTED,/*Secure connection

PM0257
Security (pairing and bonding)

PM0257 - Rev 4 page 45/77

 supported
 but optional */
 KEYPRESS_IS_NOT_SUPPORTED,
 7, /* Min encryption key size */
 16, /* Max encryption
 key size */
 0x01, /* fixed pin is not used*/
 0x123456, /* fixed pin */
 0x00 /* Public Identity address type */);
if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

Once the security IO capability and authentication requirements are defined, an application can initiate a pairing
procedure as follows:
1. By using aci_gap_slave_security_req() on a GAP peripheral (slave) device (it sends a slave security

request to the master):

tBleStatus ret;
ret= aci_gap_slave_security_req(conn_handle,
if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

• Or by using the aci_gap_send_pairing_req() on a GAP central (master) device.

Since the no fixed pin has been set,once the paring procedure is initiated by one of the two devices, BLE device
calls the aci_gap_pass_key_req_event() event callback (with related connection handle) to ask the user
application to provide the password to be used to establish the encryption key. BLE application has to provide the
correct password by using the aci_gap_pass_key_resp(conn_handle,passkey) API.
When the aci_gap_pass_key_req_event() callback is called on Device_1, it should generate a random pin
and set it through the aci_gap_pass_key_resp() API, as follows:

void aci_gap_pass_key_req_event(uint16_t Connection_Handle)
{
 tBleStatus ret;
 uint32_t pin;
 /*Generate a random pin with an user specific function */
 pin = generate_random_pin();
 ret= aci_gap_pass_key_resp(Connection_Handle,pin);
 if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");
}

Since the Device_1, I/O capability is set as “Display Only”, it should display the generated pin in the device
display. Since Device_2 , I/O capability is set as “Keyboard Only”, the user can provide the pin displayed on
Device_1 to the Device_2 though the same aci_gap_pass_key_resp() API, by a keyboard.
Alternatively, if the user wants to set the authentication requirements with a fixed pin 0x123456 (no pass key
event is required), the following pseudocode can be used:

tBleStatus ret;

ret= aci_gap_set_auth_requirement(BONDING, /* bonding is
 enabled */
 MITM_PROTECTION_REQUIRED,
 SC_IS_SUPPORTED, /* Secure
 connection supported
 but optional */
 KEYPRESS_IS_NOT_SUPPORTED,
 7, /* Min encryption
 key size */
 16, /* Max encryption
 key size */
 0x00, /* fixed pin is used*/
 0x123456, /* fixed pin */
 0x00 /* Public Identity address
 type */);
if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

PM0257
Security (pairing and bonding)

PM0257 - Rev 4 page 46/77

Note: 1. When the pairing procedure is started by calling the described APIs (aci_gap_slave_security_req()
or aci_gap_send_pairing_req()) and the value ret= BLE_STATUS_SUCCESS is returned, on
termination of the procedure, a aci_gap_pairing_complete_event() event callback is called to
indicate the pairing status on the callback Status parameter:
– 0x00: pairing success
– 0x01: pairing timeout
– 0x02: pairing failed

The reason parameter provides the pairing failed reason code in case of failure (0 if status
parameter returns success or timeout).

2. When 2 devices get paired, the link is automatically encrypted during the first connection. If bonding is also
enabled (keys are stored for a future time), when the 2 devices get connected again, the link can be simply
encrypted (without no need to perform again the pairing procedure).User applications can simply use the
same APIs, which do not perform the paring process but just encrypt the link:
– aci_gap_slave_security_req) on the GAP peripheral (slave) device or
– aci_gap_send_pairing_req() on the GAP central (master) device.

3. If a slave has already bonded with a master, it can send a slave security request to the master to encrypt
the link. When receiving the slave security request, the master may encrypt the link, initiate the pairing
procedure, or reject the request. Typically, the master only encrypts the link, without performing the pairing
procedure. Instead, if the master starts the pairing procedure, it means that for some reasons, the master
lost its bond information, so it has to start the pairing procedure again. As a consequence, the slave device
calls the aci_gap_bond_lost_event()event callback to inform the user application that it is not
bonded anymore with the master it was previously bonded. Then, the slave application can decide to allow
the security manager to complete the pairing procedure and re-bond with the master by calling the
command aci_gap_allow_rebond(), or just close the connection and inform the user about the
security issue.

3.6 Service and characteristic discovery
This section describes the main functions allowing a BlueNRG-1, BlueNRG-2 GAP central device to discover the
GAP peripheral services and characteristics, once the two devices are connected.
The sensor profile demo services and characteristics with related handles are used as reference services and
characteristics on the following pseudocode examples. Further, it is assumed that a GAP central device is
connected to a GAP peripheral device running the sensor demo profile application. The GAP central device use
the service and discovery procedures to find the GAP peripheral sensor profile demo service and characteristics.

Table 47. BLE sensor profile demo services and characteristic handle

Service Characteristic
Service /

characteristic
handle

Characteristic
value handle

Characteristic
client descriptor

configuration
handle

Characteristic
format handle

Acceleration
service NA 0x000C NA NA NA

Free Fall
characteristic 0x000D 0x000E 0x000F NA

Acceleration
characteristic 0x0010 0x0011 0x0012 NA

Environmental
service NA 0x0013 NA NA NA

Temperature
characteristic 0x0014 0xx0015 NA 0x0016

Pressure
characteristic 0x0017 0xx0018 NA 0x0019

PM0257
Service and characteristic discovery

PM0257 - Rev 4 page 47/77

For detailed information about the sensor profile demo, refer to the BlueNRG-1_2 DK User Manual and the
sensor demo source code available within the BlueNRG-1_2 DK software package (see Section 5 References).
Service discovery procedures and related GATT events.
A list of the service discovery APIs with related description as follows:

Table 48. Service discovery procedures APIs

Discovery service API Description

aci_gatt_disc_all_primary_services()

This API starts the GATT client procedure to discover all
primary services on the GATT server. It is used when a GATT
client connects to a device and it wants to find all the primary
services provided on the device to determine what it can do.

aci_gatt_disc_primary_service_by_uuid()

This API starts the GATT client procedure to discover a
primary service on the GATT server by using its UUID.

It is used when a GATT client connects to a device and it
wants to find a specific service without the need to get any
other services.

aci_gatt_find_included_services()
This API starts the procedure to find all included services. It is
used when a GATT client wants to discover secondary
services once the primary services have been discovered.

The following pseudocode example illustrates the aci_gatt_disc_all_primary_services() API:

/*GAP Central starts a discovery all services procedure:
conn_handle is the connection handle returned on
hci_le_advertising_report_event() event callback
*/
if (aci_gatt_disc_all_primary_services(conn_handle) !=BLE_STATUS_SUCCESS)
{
 PRINTF("Failure.\n");

}

The responses of the procedure are given through the aci_att_read_by_group_type_resp_event() event
callback. The end of the procedure is indicated by aci_gatt_proc_complete_event() event callback() call.

/* This event is generated in response to a Read By Group Type
Request: refer to aci_gatt_disc_all_primary_services() */
void aci_att_read_by_group_type_resp_event(uint16_t Conn_Handle,
 uint8_t Attr_Data_Length,

 uint8_t Data_Length,
 uint8_t Att_Data_List[]);

{
/*
 Conn_Handle: connection handle related to the response;
 Attr_Data_Length: the size of each attribute data;
 Data_Length: length of Attribute_Data_List in octets;
 Att_Data_List: Attribute Data List as defined in Bluetooth Core
 specifications. A sequence of attribute handle, end group handle,
 attribute value tuples: [2 octets for Attribute Handle, 2
 octets End Group Handle, (Attribute_Data_Length - 4 octets) for
 Attribute Value].
*/
/* Add user code for decoding the Att_Data_List field and getting
the services attribute handle, end group handle and service uuid
*/
}/* aci_att_read_by_group_type_resp_event() */

PM0257
Service and characteristic discovery

PM0257 - Rev 4 page 48/77

In the context of the sensor profile demo, the GAP central application should get three read by group type
response events (through related aci_att_read_by_group_type_resp_event() event callback), with the
following callback parameters values.
First read by group type response event callback parameters:

Connection_Handle: 0x0801 (connection handle);
Attr_Data_Length: 0x06 (length of each discovered service data: service
handle, end group handle,service uuid);
Data_Length: 0x0C (length of Attribute_Data_List in octets
Att_Data_List: 0x0C bytes as follows:

Table 49. First read by group type response event callback parameters

Attribute handle End group handle Service UUID Notes

0x0001 0x0004 0x1801
Attribute profile service (GATT_Init() addsit).

Standard 16-bit service UUID

0x0005 0x000B 0x1800
GAP profile service (GAP_Init() adds it).

Standard 16-bit service UUID.

Second read by group type response event callback parameters:

Conn_Handle: 0x0801 (connection handle);
Attr_Data_Length: 0x14 (length of each discovered service data:
service handle, end group handle,service uuid);
Data_Length: 0x14 (length of Attribute_Data_List in octets);
Att_Data_List: 0x14 bytes as follows:

Table 50. Second read by group type response event callback parameters

Attribute handle End group handle Service UUID Notes

0x000C 0x0012 0x02366E80CF3A11E19AB4
0002A5D5C51B

Acceleration service 128-bit
service proprietary UUID

Third read by group type response event callback parameters:

Connection_Handle: 0x0801 (connection handle);
Attr_Data_Length: 0x14 (length of each discovered service data:
service handle, end group handle, service uuid);
Data_Length: 0x14 (length of Attribute_Data_List in octets);
Att_Data_List: 0x14 bytes as follows:

Table 51. Third read by group type response event callback parameters

Attribute handle End group handle Service UUID Notes

0x0013 0x0019 0x42821A40E47711E282D00
002A5D5C51B

Environmental service 128-bit
service proprietary UUID

In the context of the sensor profile demo, when the discovery all primary service procedure completes, the
aci_gatt_proc_complete_event() event callback is called on GAP central application, with the following
parameters

PM0257
Service and characteristic discovery

PM0257 - Rev 4 page 49/77

Conn_Handle: 0x0801 (connection handle;
Error_Code: 0x00

3.6.1 Characteristic discovery procedures and related GATT events
A list of the characteristic discovery APIs with associated description as follows:

Table 52. Characteristics discovery procedures APIs

Discovery service API Description

aci_gatt_disc_all_char_of_service () This API starts the GATT procedure to discover all the characteristics
of a given service

aci_gatt_disc_char_by_uuid () This API starts the GATT the procedure to discover all the
characteristics specified by a UUID

aci_gatt_disc_all_char_desc () This API starts the procedure to discover all characteristic descriptors
on the GATT server

In the context of the BLE sensor profile demo, follow a simple pseudocode illustrating how a GAP central
application can discover all the characteristics of the acceleration service (refer to Table 1 second read by group
type response event callback parameters):

uint16_t service_handle= 0x000C;
uint16_t end_group_handle = 0x0012;

/*GAP Central starts a discovery all the characteristics of a service
procedure: conn_handle is the connection handle returned on
hci_le_advertising_report_event()eventcallback */
if(aci_gatt_disc_all_char_of_service(conn_handle,
 service_handle,/* Servicehandle */
 end_group_handle/* End group handle
 */
);) != BLE_STATUS_SUCCESS)
{
 PRINTF("Failure.\n");
}

The responses of the procedure are given through theaci_att_read_by_type_resp_event() event
callback. The end of the procedure is indicated by aci_gatt_proc_complete_event() event callback call.

/* This event is generated in response to aci_att_read_by_type_req(). Refer to aci_gatt_disc_
all_char() API */

void aci_att_read_by_type_resp_event(uint16_t Connection_Handle ,
 uint8_t Handle_Value_Pair_Length,
 uint8_t Data_Length,
 uint8_t Handle_Value_Pair_Data[])
{

/*
 Connection_Handle: connection handle related to the response;
 Handle_Value_Pair_Length: size of each attribute handle-value
 Pair;
 Data_Length: length of Handle_Value_Pair_Data in octets.
 Handle_Value_Pair_Data: Attribute Data List as defined in
 Bluetooth Core specifications. A sequence of handle-value pairs: [2
 octets for Attribute Handle, (Handle_Value_Pair_Length - 2 octets)

PM0257
Service and characteristic discovery

PM0257 - Rev 4 page 50/77

 for Attribute Value].
*/
/* Add user code for decoding the Handle_Value_Pair_Data field and
 get the characteristic handle, properties,characteristic value handle,
 characteristic UUID*/
 */

}/* aci_att_read_by_type_resp_event() */

In the context of the BLE sensor profile demo, the GAP central application should get two read type response
events (through related aci_att_read_by_type_resp_event() event callback), with the following callback
parameter values.
First read by type response event callback parameters:

 conn_handle : 0x0801 (connection handle);
 Handle_Value_Pair_Length: 0x15 length of each discovered
 characteristic data: characteristic handle, properties,
 characteristic value handle, characteristic UUID;
 Data_Length: 0x16(length of the event data);
 Handle_Value_Pair_Data: 0x15 bytes as follows:

Table 53. First read by type response event callback parameters

Characteristic
handle

Characteristic
properties

Characteristic
value handle Characteristic UUID Note

0x000D 0x10 (notify) 0x000E 0xE23E78A0CF4A11E18FFC0002A5D5C51B

Free fall
characteristic
128-bit
characteristic
proprietary
UUID

Second read by type response event callback parameters:

 conn_handle : 0x0801 (connection handle);
 Handle_Value_Pair_Length: 0x15 length of each discovered
 characteristic data: characteristic handle, properties,
 characteristic value handle, characteristic UUID;
 Data_Length: 0x16(length of the event data);
 Handle_Value_Pair_Data: 0x15 bytes as follows:

Table 54. Second read by type response event callback parameters

Characteristic handle Characteristic
properties

Characteristic
value handle Characteristic UUID Note

0x0010 0x12 (notify and
read) 0x0011 0x340A1B80CF4B11E1AC360002A5D5C51B

Acceleration
characteristic 128-
bit characteristic
proprietary UUID

In the context of the sensor profile demo, when the discovery all primary service procedure completes, the
aci_gatt_proc_complete_event() event callback is called on GAP central application, with the following
parameters:

Connection_Handle: 0x0801 (connection handle);
Error_Code: 0x00.

PM0257
Service and characteristic discovery

PM0257 - Rev 4 page 51/77

Similar steps can be followed in order to discover all the characteristics of the environment service (Table 47. BLE
sensor profile demo services and characteristic handle).

3.7 Characteristic notification/indications, write, read
This section describes the main functions to get access to BLE device characteristics.

Table 55. Characteristic update, read, write APIs

Discovery service API Description Where

aci_gatt_update_char_value_ext() If notifications (or indications) are enabled on the characteristic, this API
sends a notification (or indication) to the client. GATT server

aci_gatt_read_char_value() It starts the procedure to read the attribute value. GATT client

aci_gatt_write_char_value() It starts the procedure to write the attribute value (when the procedure is
completed, a GATT procedure complete event is generated). GATT client

aci_gatt_write_without_resp() It starts the procedure to write a characteristic value without waiting for any
response from the server. GATT client

aci_gatt_write_char_desc() It starts the procedure to write a characteristic descriptor. GATT client

aci_gatt_confirm_indication() It confirms an indication. This command has to be sent when the
application receives a characteristic indication. GATT client

In the context of the sensor profile demo, the GAP central application should use a simple pseudo code in order
to configure the free fall and the acceleration characteristic client descriptors configuration for notification:

tBleStatus ret;
uint16_t handle_value = 0x000F;
/*Enable the free fall characteristic client descriptor configuration for
ret = aci_gatt_write_charac_desc(conn_handle,
 handle_value /* handle for free fall
 client descriptor
 configuration */
 0x02, /* attribute value length */
 0x0001, /* attribute value: 1 for
 notification */
);
if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

handle_value = 0x0012;
/*Enable the acceleration characteristic client descriptor configuration
 for notification */
ret= aci_gatt_write_char_desc(conn_handle,
 handle_value /* handle for acceleration
 client descriptor
 configuration *
 0x02, /*attribute value
 length */
 0x0001, /* attribute value:
 1 for notification */
);
if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

Once the characteristic notification has been enabled from the GAP central, the GAP peripheral can notify a new
value for the free fall and acceleration characteristics as follows:

tBleStatus ret;
uint8_t val = 0x01;
uint16_t service_handle = 0x000C;
uint16_t charac_handle = 0x000D;

/*GAP peripheral notifies free fall characteristic to GAP central*/

PM0257
Characteristic notification/indications, write, read

PM0257 - Rev 4 page 52/77

ret= aci_gatt_update_char_value_ext(connection_handle , /* connection
 handle */
 service_handle, /* acceleration
 service handle */
 charac_handle, /* free fall
 characteristic
 handle*/
 1, /* updated type */
 1, /* Char Length */
 0, /* characteristic value offset */
 0x01, /* characteristic value length */
 &val /* characteristic value */
);

if(ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

tBleStatus ret;
uint8_t buff[6];
uint16_t charac_handle = 0x0010;

/*Set the mems acceleration values on three axis x,y,z on buff array */
....
/*GAP peripheral notifies acceleration characteristic to GAP Central*/
ret= aci_gatt_update_char_value_ext(connection_handle, /* connection
 handle */
 service_handle, /* acceleration
 service handle */
 charac_handle, /* acceleration
 characteristic
 handle*/
 1, /* updated type */
 1, /* Char Length */
 0, /* characteristic value offset */
 0x06, /* characteristic value length */
 buff /* characteristic value */
);
if(ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

On GAP central, the aci_gatt_notification_event() event callback is raised on reception of the
characteristic notification (acceleration or free fall) from the GAP peripheral device. Follow a pseudo code of the
aci_gatt_notification_event() callback:

void aci_gatt_notification_event(uint16_t Connection_Handle,
 uint16_t Attribute_Handle,
 uint8_t Attribute_Value_Length,
 uint8_t Attribute_Value[])
{
/* aci_gatt_notification_event() event callback parameters:
 Connection_Handle: connection handle related to the response;
 Attribute_Handle: the handle of the notified characteristic;
 Attribute_Value_Length: length of Attribute_Value in octets;
 Attribute_Value: the current value of the notified characteristic.
*/
/* Add user code for handling the received notification based on the
 application scenario.
*/

}/* aci_gatt_notification_event() */

3.8 Basic/typical error condition description
On the BlueNRG-1, BlueNRG-2 BLE stack APIs framework, the tBleStatus type is defined in order to return
the BlueNRG-1, BlueNRG-2 stack error conditions. The error codes are defined within the header file
“ble_status.h”.
When a stack API is called, it is recommended to get the API return status and to monitor it in order to track
potential error conditions.

PM0257
Basic/typical error condition description

PM0257 - Rev 4 page 53/77

BLE_STATUS_SUCCESS (0x00) is returned when the API is successfully executed. For a list of error conditions
associated to each ACI API refer to the BlueNRG-1, BlueNRG-2 Bluetooth LE stack APIs and event
documentation, in Section 5 References

3.9 BLE simultaneously master, slave scenario
The BlueNRG-1, BlueNRG-2 BLE stack supports multiple roles simultaneously. This allows the same device to
act as master on one or more connections (up to eight connections are supported), and to act as a slave on
another connection.
The following pseudo code describes how a BLE stack device can be initialized to support central and peripheral
roles simultaneously:

uint8_t role= GAP_PERIPHERAL_ROLE | GAP_CENTRAL_ROLE;
ret= aci_gap_init(role, 0, 0x07, &service_handle,
&dev_name_char_handle, &appearance_char_handle);

A simultaneous master and slave test scenario can be targeted as follows:

Figure 11. BLE simultaneous master and slave scenario

Slave_A (3) Slave_B (3)

(1) BLE GAP central
(2) BLE GAP central & peripheral
(3) BLE GAP peripheral

Master (1)

Master&Slave is a GAP peripheral

Master&Slave (2)

Master&Slave
is a GAP central

Master&Slave
is a GAP central

Step 1. One BLE device (called Master&Slave) is configured as central and peripheral by setting role as
GAP_PERIPHERAL_ROLE |GAP_CENTRAL_ROLE on GAP_Init() API . Let’s also assume that this
device also defines a service with a characteristic.

Step 2. Two BLE devices (called Slave_A, Slave_B) are configured as peripheral by setting role as
GAP_PERIPHERAL_ROLE on GAP_Init() API. Both Slave_A and Slave_B define the same service
and characteristic as Master&Slave device.

Step 3. One BLE device (called Master) is configured as central by setting role as GAP_CENTRAL_ROLE on
GAP_Init()API.

Step 4. Both Slave_A and Slave_B devices enter discovery mode as follows:

ret =aci_gap_set_discoverable(Advertising_Type=0x00,
 Advertising_Interval_Min=0x20,
 Advertising_Interval_Max=0x100,
 Own_Address_Type= 0x0;
 Advertising_Filter_Policy= 0x00;
 Local_Name_Length=0x05,

PM0257
BLE simultaneously master, slave scenario

PM0257 - Rev 4 page 54/77

 Local_Name=[0x08,0x74,0x65,0x73,0x74],
 Service_Uuid_length = 0;
 Service_Uuid_length = NULL;
 Slave_Conn_Interval_Min = 0x0006,
 Slave_Conn_Interval_Max = 0x0008);

Step 5. Master&Slave device performs a discovery procedure in order to discover the peripheral devices
Slave_A and Slave_B:

ret = aci_gap_start_gen_disc_proc (LE_Scan_Interval=0x10,
 LE_Scan_Window=0x10,
 Own_Address_Type = 0x0,
 Filter_Duplicates = 0x0);

The two devices are discovered through the advertising report events notified with the
hci_le_advertising_report_event() event callback.

Step 6. Once the two devices are discovered, Master&Slave device starts two connection procedures (as
central) to connect, respectively, to Slave_A and Slave_B devices:

/* Connect to Slave_A:Slave_Aaddress type and address have been found
 during the discovery procedure through the Advertising Report events.
*/
ret= aci_gap_create_connection(LE_Scan_Interval=0x0010,
 LE_Scan_Window=0x0010
 Peer_Address_Type= ”Slave_A address type”
 Peer_Address= ”Slave_A address,
 Own_Address_Type = 0x0;
 Conn_Interval_Min=0x6c,
 Conn_Interval_Max=0x6c,
 Conn_Latency=0x00,
 Supervision_Timeout=0xc80,
 Minimum_CE_Length=0x000c,
 Maximum_CE_Length=0x000c);

/* Connect to Slave_B:Slave_Baddress type and address have been found
 during the discovery procedure through the Advertising Report events.
*/
ret= aci_gap_create_connection(LE_Scan_Interval=0x0010,
 LE_Scan_Window=0x0010,
 Peer_Address_Type= ”Slave_B address type”,
 Peer_Address= ”Slave_B address”,
 Own_Address_Type = 0x0;
 Conn_Interval_Min=0x6c,
 Conn_Interval_Max=0x6c,
 Conn_Latency=0x00,
 Supervision_Timeout=0xc80,
 Minimum_CE_Length=0x000c,
 Maximum_CE_Length=0x000c);

Step 7. Once connected, Master&Slave device enables the characteristics notification, on both of them, using
the aci_gatt_write_char_desc() API. Slave_A and Slave_B devices start the characteristic
notification by using the aci_gatt_upd_char_val() API.

Step 8. At this stage, Master&Slave device enters discovery mode (acting as peripheral):

/*Put Master&Slave device in Discoverable Mode with Name = 'Test' = [0x08,0x74,0x65,
0x73,0x74*/
ret =aci_gap_set_discoverable(Advertising_Type=0x00,
 Advertising_Interval_Min=0x20,
 Advertising_Interval_Max=0x100,
 Own_Address_Type= 0x0;
 Advertising_Filter_Policy= 0x00;
 Local_Name_Length=0x05,

PM0257
BLE simultaneously master, slave scenario

PM0257 - Rev 4 page 55/77

 Local_Name=[0x08,0x74,0x65,0x73,0x74],
 Service_Uuid_length = 0;
 Service_Uuid_List = NULL;
 Slave_Conn_Interval_Min = 0x0006,
 Slave_Conn_Interval_Max = 0x0008);

Since Master&Slave device also acts as a central device, it receives the notification event related to the
characteristic values notified from, respectively, Slave_A and Slave_B devices.

Step 9. Once Master&Slave device enters discovery mode, it also waits for the connection request coming
from the other BLE device (called Master) configured as GAP central. Master device starts discovery
procedure to discover the Master&Slave device:

 ret = aci_gap_start_gen_disc_proc(LE_Scan_Interval=0x10,
 LE_Scan_Window=0x10,
 Own_Address_Type = 0x0,
 Filter_Duplicates = 0x0);

Step 10. Once the Master&Slave device is discovered, Master device starts a connection procedure to connect
to it:

/* Master device connects to Master&Slave device: Master&Slave
 address type and address have been found during the discovery
 procedure through the Advertising Report events */
 ret= aci_gap_create_connection(LE_Scan_Interval=0x0010,
 LE_Scan_Window=0x0010,
 Peer_Address_Type= ”Master&Slave address type”,
 Peer_Address= ” Master&Slave address",
 Own_Address_Type = 0x0;
 Conn_Interval_Min=0x6c,
 Conn_Interval_Max=0x6c,
 Conn_Latency=0x00,
 Supervision_Timeout=0xc80,
 Minimum _CE_Lenght=0x000c
 Maximum_CE_Length=0x000c);

Master&Slave device is discovered through the advertising report events notified with the
hci_le_advertising_report_event() event callback.

Step 11. Once connected, Master device enables the characteristic notification on Master&Slave device using
the aci_gatt_write_char_desc() API.

Step 12. At this stage, Master&Slave device receives the characteristic notifications from both Slave_A, Slave_B
devices, since it is a GAP central and, as GAP peripheral, it is also able to notify these characteristic
values to the Master device.

Note: A set of test scripts allowing to exercise the described BLE simultaneously master, slave scenario are provided
within the BlueNRG GUI SW package (see Section Revision history). These scripts can be run using the
BlueNRG GUI and they can be taken as reference to implement a firmware application using the BlueNRG-1,
BlueNRG-2 simultaneously master and slave feature.

3.10 Bluetooth low energy privacy 1.2
BLE stack v2.x supports the Bluetooth low energy privacy 1.2.
Privacy feature reduces the ability to track a specific BLE by modifying the related BLE address frequently. The
frequently modified address is called the private address and the trusted devices are able to resolve it.
In order to use this feature, the devices involved in the communication need to be previously paired: the private
address is created using the devices IRK exchanged during the previous pairing/bonding procedure.
There are two variants of the privacy feature:
1. Host-based privacy private addresses are resolved and generated by the host
2. Controller-based privacy private addresses are resolved and generated by the controller without involving

the host after the Host provides the controller device identity information.
When controller privacy is supported, device filtering is possible since address resolution is performed in the
controller (the peer's device identity address can be resolved prior to checking whether it is in the white list).

PM0257
 Bluetooth low energy privacy 1.2

PM0257 - Rev 4 page 56/77

3.10.1 Controller-based privacy and the device filtering scenario
On BLE stack v2.x, the aci_gap_init() API supports the following options for the
privacy_enabled parameter:
• 0x00: privacy disabled
• 0x01: host privacy enabled
• 0x02: controller privacy enabled

When a slave device wants to resolve a resolvable private address and be able to filter on private addresses for
reconnection with bonded and trusted devices, it must perform the following steps:
1. Enable privacy controller on aci_gap_init(): use 0x02 as privacy_enabledparameter.
2. Connect, pair and bond with the candidate trusted device using one of the allowed security methods: the
private address is created using the devices IRK.
3. Call the aci_gap_configure_whitelist() API to add the address of bonded device into the BLE device
controller's whitelist.
4. Get the bonded device identity address and type using the aci_gap_get_bonded_devices() API.
5. Add the bonded device identity address and type to the list of address translations used to resolve resolvable
private addresses in the controller, by using the aci_gap_add_devices_to_resolving_list() API.
6. The device enters the undirected connectable mode by calling the
aci_gap_set_undirected_connectable() API with Own_Address_Type = 0x02 (resolvable private
address) and Adv_Filter_Policy = 0x03 (allow scan request from whitelist only, allow connect request from
whitelist only).
7. When a bonded master device performs a connection procedure for reconnection to the slave device, the slave
device is able to resolve and filter the master address and connect with it.

Note: A set of test scripts allowing the described privacy controller and device filtering scenario to be executed, which
are provided within the BlueNRG GUI SW package (see Section 5 References). These scripts can be run using
the BlueNRG GUI and they can be taken as reference to implement a firmware application using the privacy
controller and device filtering feature.

3.10.2 Resolving addresses
After a reconnection with a bonded device, it is not strictly necessary to resolve the address of the peer device to
encrypt the link. In fact, BlueNRG-1, BlueNRG-2 stack automatically finds the correct LTK to encrypt the link.
However, there are some cases where the peer's address must be resolved. When a resolvable privacy address
is received by the device, it can be resolved by the host or by the controller (i.e. link layer).
Host-based privacy
If controller privacy is not enabled, a resolvable private address can be resolved by using
aci_gap_resolve_private_addr(). The address is resolved if the corresponding IRK can be found among
the stored IRKs of the bonded devices. A resolvable private address may be received when BlueNRG-1 and
BlueNRG-2 are in scanning, through hci_le_advertising_report_event(), or when a connection is
established, through hci_le_connection_complete_event().
Controller-based privacy
If the resolution of addresses is enabled at link layer, a resolving list is used when a resolvable private address is
received. To add a bonded device to the resolving list, the aci_gap_add_devices_to_resolving_list()
has to be called. This function searches for the corresponding IRK and adds it to the resolving list.
When privacy is enabled, if a device has been added to the resolving list, its address is automatically resolved by
the link layer and reported to the application without the need to explicitly call any other function. After a
connection with a device, the hci_le_enhanced_connection_complete_event() is returned. This event
reports the identity address of the device, if it has been successfully resolved (if the
hci_le_enhanced_connection_complete_event() is masked, only the
hci_le_connection_complete_event() is returned).
When scanning, the hci_le_advertising_report_event() contains the identity address of the device in
advertising if that device uses a resolvable private address and its address is correctly resolved. In that case, the
reported address type is 0x02 or 0x03. If no IRK can be found that can resolve the address, the resolvable private
address is reported. If the advertiser uses directed advertisement, the resolved private address is reported
through the hci_le_advertising_report_event() or through the

PM0257
 Bluetooth low energy privacy 1.2

PM0257 - Rev 4 page 57/77

hci_le_direct_advertising_report_event() if it has been unmasked and the scanner filer policy is set
to 0x02 or 0x03.

3.11 ATT_MTU and exchange MTU APIs, events
ATT_MTU is defined as the maximum size of any packet sent between a client and a server:
• default ATT_MTU value: 23 bytes

This determines the current maximum attribute value size when the user performs characteristic operations
(notification/write max. size is ATT_MTU-3).
The client and server may exchange the maximum size of a packet that can be received using the exchange MTU
request and response messages. Both devices use the minimum of these exchanged values for all further
communications:

tBleStatus aci_gatt_exchange_config(uint16_t Connection_Handle);

In response to an exchange MTU request, the aci_att_exchange_mtu_resp_event() callback is triggered
on both devices:

void aci_att_exchange_mtu_resp_event(uint16_t Connection_Handle, uint16_t
 Server_RX_MTU);

Server_RX_MTU specifies the ATT_MTU value agreed between the server and client.

3.12 LE data packet length extension APIs and events
On BLE specification v4.2, packet data unit (PDU) size has been increased from 27 to 251 bytes. This allows data
rate to be increased by reducing the overhead (header, MIC) needed on a packet. As a consequence, it is
possible to achieve: faster OTA FW upgrade operations, more efficiency due to less overhead.
The BlueNRG-2 device with BLE stack v2.1 or later support LE data packet length extension features and related
APIs, events:
• HCI LE APIs (API prototypes on bluenrg1_api.h)

– hci_le_set_data_length()
– hci_le_read_suggested_default_data_length()
– hci_le_write_suggested_default_data_length()
– hci_le_read_maximum_data_length()

• HCI LE events (events callbacks prototypes on bluenrg1_events.h)
– hci_le_data_length_change_event()

hci_le_set_data_length() API allows the user's application to suggest maximum transmission packet size
(TxOctets) and maximum packet (TxTime) transmission time to be used for a given connection:

tBleStatus hci_le_set_data_length(uint16_t Connection_Handle,
 uint16_t TxOctets,
 uint16_t TxTime);

The supported TxOctets value is in the range [27-251] and the TxTime is provided as follows: (TxOctets +14)*8.
Once hci_le_set_data_length() API is performed on a BlueNRG-2 device after the device connection, if
the connected peer device supports LE data packet length extension feature, the following event is raised on both
devices:

hci_le_data_length_change_event(uint16_t Connection_Handle,
 uint16_t MaxTxOctets,
 uint16_t MaxTxTime,
 uint16_t MaxRxOctets,
 uint16_t MaxRxTime)

This event notifies the host of a change to either the maximum link layer payload length or the maximum time of
link layer data channel PDUs in either direction (TX and RX). The values reported (MaxTxOctets,

PM0257
ATT_MTU and exchange MTU APIs, events

PM0257 - Rev 4 page 58/77

MaxTxTime, MaxRxOctets, MaxRxTime) are the maximum values that are actually used on the connection
following the change.

3.13 No packet retry feature
BLE stack v2.1 provides the capability to disable the standard BLE link layer retransmission mechanism for
characteristic notifications that are not acknowledged by the link layer of the peer device. This feature is
supported only on notifications which are within the maximum allowed link layer packet length.
When standard Bluetooth low energy protocol is used, no packets can be lost, since an unlimited number of
retries is applied by the protocol. In case of a weak link with lot of errors and retries, the time taken to deliver a
certain number of packets can increase with the number of errors. If the “no packet retry feature” is applied, the
corrupted packets are not retried by the protocol and, as a consequence, the time to deliver the selected number
of packets is the same, but the number of lost packet moves from 0 to something proportional to the error rates.
No packet retry feature can be enabled when a notification is sent by setting the parameter
Update_Type = 0x05 on aci_gatt_update_char_value_ext() API:

aci_gatt_update_char_value_ext(uint16_tConn_Handle_To_Notify,
 uint16_t Service_Handle,
 uint16_t Char_Handle,
 uint8_t Update_Type,
 uint16_t Char_Length,
 uint16_t Value_Offset,
 uint8_t Value_Length,
 uint8_t Value[]);

Refer to the aci_gatt_update_char_value_ext() API description for detailed information about API usage
and its parameter values.

3.14 BLE radio activities and Flash operations
During Flash erase or write operations, execution from Flash is stalled and so critical activities like radio interrupt
may be delayed. This can lead to a loss of connection and/or incorrect radio behavior.
In order to prevent this problem, Flash erase and write operations should be properly handled in order to preserve
BLE radio activities.
This is achieved by synchronizing Flash erase and write operations with the scheduled BLE radio activities
through the aci_hal_end_of_radio_activity_event() callback.
The aci_hal_end_of_radio_activity_event() callback is called when the device completes a radio
activity and provides information when a new radio activity is performed. Provided information includes the type of
radio activity and absolute time in system ticks when a new radio activity is scheduled. Application can use this
information to schedule user activity synchronous to selected radio activities.
Let us assume a BLE application starts advertising and it also performs write operations on Flash.
The aci_hal_end_of_radio_activity_event() callback is used to register the
Next_Advertising_SysTime time when next advertising event is programmed:

void aci_hal_end_of_radio_activity_event(uint8_t Last_State,
 uint8_t Next_State,
 uint32_t Next_State_SysTime)
{
 if (Next_State == 0x01) /* 0x01: Advertising */
 {
 /* Store time of next programmed advertising */
 Next_Advertising_SysTime = Next_State_SysTime;
 }
 }

The FlashRoutine() performs the Flash write operation only if there is enough time for this operation before
next scheduled radio activity.

void FlashRoutine(void)
{
 static uint32_t flash_counter = 0;
 static uint32_t flash_pattern = 0xAAAAAAAA;

PM0257
No packet retry feature

PM0257 - Rev 4 page 59/77

 if (HAL_VTimerDiff_ms_sysT32(Next_Advertising_SysTime,
 HAL_VTimerGetCurrentTime_sysT32()) > FLASH_WRITE_GUARD_TIME)
 {
 if(FLASH->IRQRAW_b.CMDDONE == SET)
 {
 FLASH_ProgramWord((TEST_PAGE_ADDRESS flash_counter*4),
 flash_pattern);
 flash_counter++;
 }
 }
}

PM0257
BLE radio activities and Flash operations

PM0257 - Rev 4 page 60/77

4 BLE multiple connection timing strategy

This section provides an overview of the connection timing management strategy of the BlueNRG-1, BlueNRG-2
stack when multiple master and slave connections are active.

4.1 Basic concepts about Bluetooth low energy timing
This section describes the basic concepts related to the Bluetooth low energy timing management related to the
advertising, scanning and connection operations.

4.1.1 Advertising timing
The timing of the advertising state is characterized by 3 timing parameters, linked by this formula:
T_advEvent = advInterval + advDelay
where:
• T_advEvent: time between the start of two consecutive advertising events; if the advertising event type is

either a scannable undirected event type or a non-connectable undirected type, the advInterval shall not be
less than 100 ms; if the advertising event type is a connectable undirected event type or connectable
directed event type used in a low duty cycle mode, the advInterval can be 20 ms or greater.

• advDelay: pseudo-random value with a range of 0 ms to 10 ms generated by the link layer for each
advertising event.

Figure 12. Advertising timings

4.1.2 Scanning timing
The timing of the scanning state is characterized by 2 timing parameters:
• scanInterval: defined as the interval between the start of two consecutive scan windows
• scanWindow: time during which link layer listens to on an advertising channel index

The scanWindow and scanInterval parameters are less than or equal to 10.24 s.
The scanWindow is less than or equal to the scanInterval.

4.1.3 Connection timing
The timing of connection events is determined by 2 parameters:
• connection event interval (connInterval): time interval between the start of two consecutive connection

events, which never overlap; the point in time where a connection event starts is named an anchor point.

At the anchor point, a master starts transmitting a data channel PDU to the slave, which in turn listens to the
packet sent by its master at the anchor point.
The master ensures that a connection event closes at least T_IFS=150 µs (inter frame spacing time, i.e. time
interval between consecutive packets on the same channel index) before the anchor point of next connection
event.
The connInterval is a multiple of 1.25 ms in the range of 7.5 ms to 4.0 s.

PM0257
BLE multiple connection timing strategy

PM0257 - Rev 4 page 61/77

• slave latency (connSlaveLatency): allows a slave to use a reduced number of connection events. This
parameter defines the number of consecutive connection events that the slave device is not required to
listen to the master.

When the host wants to create a connection, it provides the controller with the maximum and minimum values of
the connection interval (Conn_Interval_Min, Conn_Interval_Max) and connection length (Minimum_CE_Length,
Maximum_CE_Length) thus giving the controller some flexibility in choosing the current parameters in order to
fulfill additional timing constraints e.g. in the case of multiple connections.

4.2 BLE stack timing and slot allocation concepts
The BlueNRG-1, BlueNRG-2 BLE stack adopts a time slotting mechanism in order to allocate simultaneous
master and slave connections. The basic parameters, controlling the slotting mechanism, are indicated in the
table below:

Table 56. Timing parameters of the slotting algorithm

Parameter Description

Anchor period
Recurring time interval inside which up to 8 connection slots can be allocated.

Among these 8 slots, only 1 at a time may be a scanning or advertising slot (they are
mutually exclusive)

Slot duration
Time interval inside which a full event (i.e. advertising or scanning, and connection) takes
place; the slot duration is the time duration assigned to the connection slot and is linked to
the maximum duration of a connection event

Slot offset Time value corresponding to the delay between the beginning of an anchor period and the
beginning of the connection slot

Slot latency

Number representing the actual utilization rate of a certain connection slot in successive
anchor periods.

(For instance, a slot latency equal to ‘1’ means that a certain connection slot is actually
used in each anchor period; a slot latency equal to n means that a certain connection slot
is actually used only once every n anchor periods)

Timing allocation concept allows a clean time to handle multiple connections but at the same time imposes some
constraints to the actual connection parameters that the controller can accept. An example of the time base
parameters and connection slot allocation is shown in the figure below

Figure 13. Example of allocation of three connection slots

Slot #1 has offset 0 with respect to the anchor period, slot #2 has slot latency = 2, all slots are spaced by 1.25 ms
guard time.

4.2.1 Setting the timing for the first master connection
The time base mechanism above described, is actually started when the first master connection is created. The
parameters of such first connection determine the initial value for the anchor period and influence the timing
settings that can be accepted for any further master connection simultaneous with the first one.

PM0257
BLE stack timing and slot allocation concepts

PM0257 - Rev 4 page 62/77

In particular:
• The initial anchor period is chosen equal to the mean value between the maximum and minimum connection

period requested by the host
• The first connection slot is placed at the beginning of the anchor period
• The duration of the first connection slot is set equal to the maximum of the requested connection length

Clearly, the relative duration of such first connection slot compared to the anchor period limits the possibility to
allocate further connection slots for further master connections.

4.2.2 Setting the timing for further master connections
Once that the time base has been configured and started as described above, then the slot allocation algorithm
tries, within certain limits, to dynamically reconfigure the time base to allocate further host requests.
In particular, the following three cases are considered:
1. The current anchor period falls within the Conn_Interval_Min and Conn_Interval_Max range specified for the

new connection. In this case no change is applied to the time base and the connection interval for the new
connection is set equal to the current anchor period.

2. The current anchor period in smaller than the Conn_Interval_Min required for the new connection. In this
case the algorithm searches for an integer number m such that: Conn_Interval_Min ≤ Anchor_Period × m ≤
Conn_Interval_Max
If such value is found then the current anchor period is maintained and the connection interval for the new
connection is set equal to Anchor_Period·mwith slot latency equal to m.

3. The current anchor period in larger than the Conn_Interval_Max required for the new connection. In this
case the algorithm searches for an integer number k such that:Conn_Interval_Min ≤ Ancℎor_Periodk ≤ Conn_Interval_Max
If such value is found then the current anchor period is reduced to:Ancℎor_Periodk
The connection interval for the new connection is set equal to:Ancℎor_Periodk
and the slot latency for the existing connections is multiplied by a factor k. Note that in this case the following
conditions must also be satisfied:
– Anchor_Period/k must be a multiple of 1.25 ms
– Anchor_Period/k must be large enough to contain all the connection slots already allocated to the

previous connections
Once that a suitable anchor period has been found according to the criteria listed above, then a time interval for
the actual connection slot is allocated therein. In general, if enough space can be found in the anchor period, the
algorithm allocates the maximum requested connection event length otherwise reduces it to the actual free space.
When several successive connections are created, the relative connection slots are normally placed in sequence
with a small guard interval between (1.5 ms); when a connection is closed this generally results in an unused gap
between two connection slots. If a new connection is created afterwards, then the algorithm first tries to fit the new
connection slot inside one of the existing gaps; if no gap is wide enough, then the connection slot is placed after
the last one.
Figure 14. Example of timing allocation for three successive connections shows an example of how the time base
parameters are managed when successive connections are created.

PM0257
BLE stack timing and slot allocation concepts

PM0257 - Rev 4 page 63/77

Figure 14. Example of timing allocation for three successive connections

B) Second connection
ConnIntMin = 250 ms Anchor Period = 200 ms, Connection Interval = 400 ms
ConnIntMax = 500 ms Slot #2 offset = 21.5 ms
CE_len_min = 10 ms Slot #2 len = 50 ms
CE_len_max = 50 ms Slot #2 latency = 2

S
2

S
1

S
2

Anchor Period

t

S
1

S
1

S
1

Anchor Period

t

S
1

S
1

S
1

S
2

Anchor Period

S
3

t

S
1

S
3

S
1

S
2

S
3

A) First connection
ConnIntMin = 100 ms Anchor Period = 200 ms, Connection Interval #1 = 200 ms
ConnIntMax = 300 ms Slot #1 offset = 0 ms
CE_len_min = 10 ms Slot #1 len = 20 ms
CE_len_max = 20 ms Slot #1 latency = 1

C) Third connection
ConnIntMin = 50 ms Anchor Period = 100 ms, Connection Interval = 100 ms
ConnIntMax = 150 ms Slot #3 offset = 73 ms
CE_len_min = 10 ms Slot #3 len = 25.5 ms
CE_len_max = 100 ms Slot #1 latency = 2, Slot #2 latency = 4, Slot #3 latency = 1

S
3

S
3

S
3

4.2.3 Timing for advertising events
The periodicity of the advertising events, controlled by advInterval, is computed based on the following
parameters specified by the slave through the host in the HCI_LE_Set_Advertising_parameters command:
• Advertising_Interval_Min, Advertising_Interval_Max;
• Advertising_Type;

if Advertising_Type is set to high duty cycle directed advertising, then advertising interval is set to 3.75 ms
regardless of the values of Advertising_Interval_Min and Advertising_Interval_Max; in this case, a timeout is also
set to 1.28 s, that is the maximum duration of the advertising event for this case.
In all other cases the advertising interval is chosen equal to the mean value between (Advertising_Interval_Min +
5 ms) and (Advertising_Interval_Max + 5 ms). The advertising has not a maximum duration as in the previous
case, but it is stopped only if a connection is established, or upon explicit request by host.
The length of each advertising event is set by default by the SW to be equal to 14.6 ms (i.e. the maximum allowed
advertising event length) and it cannot be reduced.
Advertising slots are allocated within the same time base of the master slots (i.e. scanning and connection slots).
For this reason, the advertising enable command to be accepted by the SW when at least one master slot is
active, the advertising interval has to be an integer multiple of the actual anchor period.

4.2.4 Timing for scanning
Scanning timing is requested by the master through the following parameters specified by the host in the
HCI_LE_Set_Scan_parameters command:
• LE_Scan_Interval: used to compute the periodicity of the scan slots
• LE_Scan_Window: used to compute the length of the scan slots to be allocated into the master time base

Scanning slots are allocated within the same time base of the other active master slots (i.e. connection slots) and
of the advertising slot (if there is one active).
If there is already an active slot, the scan interval is always adapted to the anchor period.
Every time the LE_Scan_Interval is greater than the actual anchor period, the SW automatically tries to
subsample the LE_Scan_Interval and to reduce the allocated scan slot length (up to ¼ of the
LE_Scan_Window) in order to keep the same duty cycle required by the host, given that scanning parameters
are just recommendations as stated by BT official specifications (v.4.1, vol.2, part E, §7.8.10).

PM0257
BLE stack timing and slot allocation concepts

PM0257 - Rev 4 page 64/77

4.2.5 Slave timing
The slave timing is defined by the Master when the connection is created so the connection slots for slave links
are managed asynchronously with respect to the time base mechanism described above. The slave assumes that
the master may use a connection event length as long as the connection interval.
The scheduling algorithm adopts a round-robin arbitration strategy any time a collision condition is predicted
between a slave and a master slot. In addition to this, the scheduler may also impose a dynamic limit to the slave
connection slot duration to preserve both master and slave connections.
In particular:
• If the end of a master connection slot overlaps the beginning of a slave connection slot then master and

slave connections are alternatively preserved/canceled
• If the end of a slave connection slot overlaps the beginning of a master connection slot then the slave

connection slot length is hard limited to avoid such overlap. If the resulting time interval is too small to allow
for at least a two packets to be exchanged then round-robin arbitration is used.

4.3 Multiple master and slave connection guidelines
The following guidelines should be followed to properly handle multiple master and slave connections using the
BlueNRG-1, BlueNRG-2 devices:
1. Avoid over-allocating connection event length: choose Minimum_CE_Length and Maximum_CE_Length as

small as possible to strictly satisfy the application needs. In this manner, the allocation algorithm allocates
several connections within the anchor period and reduces the anchor period, if needed, to allocate
connections with a small connection interval.

2. For the first master connection:
a. If possible, create the connection with the shortest connection interval as the first one so to allocate

further connections with connection interval multiple of the initial anchor period.
b. If possible, choose Conn_Interval_Min = Conn_Interval_Max as multiple of 10 msto allocate further

connections with connection interval sub multiple by a factor 2, 4 and 8 (or more) of the initial anchor
period being still a multiple of 1.25 ms.

3. For additional master connections:
a. Choose ScanInterval equal to the connection interval of one of the existing master connections
b. Choose ScanWin such that the sum of the allocated master slots (including Advertising, if active) is

lower than the shortest allocated connection interval
c. Choose Conn_Interval_Min and Conn_Interval_Max such that the interval contains either:

◦ a multiple of the shortest allocated connection interval
◦ a sub multiple of the shortest allocated connection interval being also a multiple of 1,25 ms

d. Choose Maximum_CE_Length =Minimum_CE_Length such that the sum of the allocated master slots
(including Advertising, if active) plus Minimum_CE_Length is lower than the shortest allocated
connection interval

4. Every time you start advertising:
a. If direct advertising, choose Advertising_Interval_Min = Advertising_Interval_Max = integer multiple of

the shortest allocated connection interval
b. If not direct advertising, choose Advertising_Interval_Min = Advertising_Interval_Max such that

(Advertising_Interval_Min + 5ms) is an integer multiple of the shortest allocated connection interval
5. Every time you start scanning:

a. Every time you start scanning: a) choose ScanInterval equal to the connection interval of one of the
existing master connections

b. Choose ScanWin such that the sum of the allocated master slots (including advertising, if active) is
lower than the shortest allocated connection interval

6. Keep in mind that the process of creating multiple connections, then closing some of them and creating new
ones again, over time, tends to decrease the overall efficiency of the slot allocation algorithm. In case of
difficulties in allocating new connections, the time base can be reset to the original state closing all existing
connections.

4.4 Multiple master and slave connection formula
The BlueNRG-1, BlueNRG-2 BLE stack multiple master/slave feature offers the capability for one device (called
Master_Slave in this context), to handle up to 8 connections at the same time, as follows:

PM0257
Multiple master and slave connection guidelines

PM0257 - Rev 4 page 65/77

1. Master of multiple slaves:
– Master_Slave connected up to 8 slaves devices (Master_Slave device is not a slave of any other

master device)
2. Simultaneously advertising/scanning and master of multiple slaves:

a. Master_Slave device connected as a slave to one master device and as a master up to 7 slaves
devices

b. Master_Slave device connected as a slave to two master devices and as a master up to 6 slaves
devices

In order to address the highlighted scenarios, the user must properly defines the advertising/scanning and
connection parameters to calculate the optimized anchor period allowing the required multiple Master_Slave
connection scenario to be handled.
A specific formula allows the required advertising/scanning and connection parameters to be calculated on the
highlighted scenarios, where one device (Master_Slave) manages up to Num_Masters master devices, up to
Num_Slaves slave devices and performs advertising and scanning with Scan_window length.
On the STSW-BLUENRG1-DK SW package, file Library\BLE_Application\Utils\src\ble_utils.c, the following
formula is defined:
• GET_Master_Slave_device_connection_parameters(Num_Masters, Num_Slaves, Scan_Window,

Sleep_Time)

User is requested to provide the following input parameters, based on its specific application scenario:

Table 57. Input parameters to define Master_Slave device connection parameters

Input
parameter Description Allowed range Notes

Num_Masters

Number of master devices to
which the master/slave should be
connected as slave, including the
non-connectable advertising

[0-2]
If 0, master device is not slave of any other
master device: it can connect up to 8 slave
devices at the same time

Num_Slaves
Number of slave devices to which
the master/slave should be
connected as master

[0 – Allowed_Slaves]

The max. number of slave devices depends on
how many master devices Master_Slave device
is expected to be connected: Allowed_Slaves =
8 - Num_Masters

Scan_Window Master_Slave device scan window
length in ms [2.5 - 10240] ms This input value defines the minimum selected

scanning window for Master_Slave device

Sleep_time
Additional time (ms) to be added to
the minimum required anchor
period

[0-N] ms
0: no additional time is added to the minimum
anchor period (which defines the optimized
configuration for throughput)

When the user selects Sleep_Time = 0, the GET_Master_Slave_device_connection_parameters() formula
defines the optimized Master_Slave device connections parameters in order to satisfy the required multiple
connection scenarios and keeping the best possible data throughput. If user wants to enhance the power
consumption profile, he can add a specific time through the Sleep_Time parameter, which leads to increase the
device connection parameters with a benefit on power consumption but with lower data throughput.
Based on the provided input parameters, the formula calculates the following Master_Slave device connections
parameters:
• Connection_Interval
• CE_Length
• Advertising_Interval
• Scan_Interval
• Scan_Window
• AnchorPeriodLength

PM0257
Multiple master and slave connection formula

PM0257 - Rev 4 page 66/77

Table 58. Output parameters for Master_Slave device multiple connections

Output parameter Description Allowed range/time(ms) How to use

Connection_Interval
Connection event interval
minimum value for the connection
event interval

Values: 0x0006 (7.50
ms) ... 0x0C80 (4000.00
ms).Time = N * 1.25 ms

Value to be used for the
Conn_Interval_Min,
Conn_Interval_Max parameters of
created connections APIs (i.e.:
ACI_GAP_CREATE_CONNECTIO
N())

CE_Length Length of connection needed for
this LE connection. Time = N * 0.625 ms

Value to be used for the
Minimum_CE_Length,
Maximum_CE_Length parameters
of created connections APIs (i.e.:
ACI_GAP_CREATE_CONNECTIO
N())

Advertising_Interval Advertising interval
Values: 0x0020 (20.000
ms) ... 0x4000 (10240.000
ms). Time = N * 0.625 ms

Value to be used for the
Advertising_Interval_Min,
Advertising_Interval_Max
parameters of discovery mode,
connectable mode APIs
(i.e. :ACI_GAP_SET_DISCOVERAB
LE(), ..)

Scan_Interval Scanning interval
Values: 0x0004 (2.500
ms) ... 0x4000 (10240.000
ms) Time = N * 0.625 ms

Value to be used for the
LE_Scan_Interval parameter of
discovery procedures (i.e.:
ACI_GAP_CREATE_CONNECTIO
N(),ACI_GAP_START_GENERAL_
DISCOVERY_PROC(), ..)

Scan_Window Scanning window
Values: 0x0004 (2.500
ms) ... 0x4000 (10240.000
ms) Time = N * 0.625 ms

Value to be used for the
LE_Scan_Window parameter of
discovery procedures (i.e.:
ACI_GAP_CREATE_CONNECTIO
N(),
ACI_GAP_START_GENERAL_DIS
COVERY_PROC(), ..)

AnchorPeriodLength

Minimum time interval used to
represent all the periodic master
slots associated to Master_Slave
device

It is calculated from
GET_Master_Slave_device_conne
ction_parameters() formula based
on input parameters, and it used to
define the device connection output
parameters

Assumptions: the formula defines internally the number of packets, at maximum length, that can be exchanged to
each slave per connection interval.

PM0257
Multiple master and slave connection formula

PM0257 - Rev 4 page 67/77

5 References

Table 59. References

Name Title/description

AN4818 Bringing up the BlueNRG-1, BlueNRG-2 device application note

AN4820 BlueNRG-1, BlueNRG-2 device power mode application note

BlueNRG-1 datasheet BlueNRG-1 SoC datasheet

BlueNRG-2 datasheet BlueNRG-2 SoC datasheet

Bluetooth specifications Specification of the Bluetooth system (v4.0, v4.1, v4.2, v5.0)

STSW-BLUENRG1-DK BlueNRG-1, BlueNRG-2 DK SW package for BLE stack v2.x, SW package with BLE stack v2.1 for
the BlueNRG-1, BlueNRG-2 devices

STSW-BNRGUI BlueNRG GUI SW package

UM2071 BlueNRG-1, BlueNRG-2 DK user manual

PM0257
References

PM0257 - Rev 4 page 68/77

6 List of acronyms and abbreviations

This section lists the standard acronyms and abbreviations used throughout the document.

Table 60. List of acronyms

Term Meaning

ACI Application command interface

ATT Attribute protocol

BLE Bluetooth low energy

BR Basic rate

CRC Cyclic redundancy check

CSRK Connection signature resolving key

EDR Enhanced data rate

DK Development kits

EXTI External interrupt

GAP Generic access profile

GATT Generic attribute profile

GFSK Gaussian frequency shift keying

HCI Host controller interface

IFR Information register

IRK Identity resolving key

ISM Industrial, scientific and medical

LE Low energy

L2CAP Logical link control adaptation layer protocol

LTK Long-term key

MCU Microcontroller unit

MITM Man-in-the-middle

NA Not applicable

NESN Next sequence number

OOB Out-of-band

PDU Protocol data unit

RF Radio frequency

RSSI Received signal strength indicator

SIG Special interest group

SM Security manager

SN Sequence number

USB Universal serial bus

UUID Universally unique identifier

WPAN Wireless personal area networks

PM0257
List of acronyms and abbreviations

PM0257 - Rev 4 page 69/77

Revision history

Table 61. Document revision history

Date Revision Changes

25-Oct-2016 1 Initial release.

29-Jun-2017 2

Added reference to BlueNRG-2 device throughout the document.

Updated Introduction, Section 1.7: Security manager, (SM); Section 2: BlueNRG-1, BlueNRG-2
Bluetooth lowenergy stack, Section 3.1: Initialization phase and main application loop, Section 3.5:
Security (pairing and bonding), Section 3.10: Privacy and Table 56: List of references.

Added Section 1.8: Privacy, Section 2.4: BlueNRG-1, BlueNRG-2 cold start configuration, Section
2.5: BLE stack tick function

20-Jun-2018 3 Minor text changes throughout the document.

15-Jan-2019 4 Added Section 3.14 BLE radio activities and Flash operations.

PM0257

PM0257 - Rev 4 page 70/77

Contents

1 Bluetooth low energy technology .2

1.1 BLE stack architecture . 2

1.2 Physical layer. 4

1.3 Link layer . 5

1.3.1 BLE packets . 6

1.3.2 Advertising state . 8

1.3.3 Scanning state . 9

1.3.4 Connection state . 9

1.4 Host controller interface (HCI) . 10

1.5 Logical link control and adaptation layer protocol (L2CAP) . 10

1.6 Attribute protocol (ATT) . 10

1.7 Security manager . 11

1.8 Privacy . 14

1.8.1 The device filtering . 15

1.9 Generic attribute profile (GATT) . 15

1.9.1 Characteristic attribute type. 15

1.9.2 Characteristic descriptor type . 16

1.9.3 Service attribute type . 17

1.9.4 GATT procedures . 17

1.10 Generic access profile (GAP) . 18

1.11 BLE profiles and applications . 21

1.11.1 Proximity profile example . 22

2 BlueNRG-1, BlueNRG-2 Bluetooth low energy stack .23

2.1 BLE stack library framework . 24

2.2 BLE stack event callbacks . 25

2.3 BLE stack Init and tick APIs . 25

2.4 The BlueNRG-1, BlueNRG-2 application configuration . 28

2.5 BLE stack tick function . 29

3 Design an application using the BlueNRG-1, BlueNRG-2 BLE stack.31

3.1 Initialization phase and main application loop . 31

PM0257
Contents

PM0257 - Rev 4 page 71/77

3.1.1 BLE addresses . 34

3.1.2 Set tx power level . 35

3.2 Services and characteristic configuration. 36

3.3 Create a connection: discoverable and connectable APIs . 37

3.3.1 Set discoverable mode and use direct connection establishment procedure. 38

3.3.2 Set discoverable mode and use general discovery procedure (active scan) 40

3.4 BLE stack events and event callbacks . 42

3.5 Security (pairing and bonding). 45

3.6 Service and characteristic discovery. 47

3.6.1 Characteristic discovery procedures and related GATT events . 50

3.7 Characteristic notification/indications, write, read . 52

3.8 Basic/typical error condition description . 53

3.9 BLE simultaneously master, slave scenario. 54

3.10 Bluetooth low energy privacy 1.2 . 56

3.10.1 Controller-based privacy and the device filtering scenario. 56

3.10.2 Resolving addresses. 57

3.11 ATT_MTU and exchange MTU APIs, events . 58

3.12 LE data packet length extension APIs and events . 58

3.13 No packet retry feature . 59

3.14 BLE radio activities and Flash operations . 59

4 BLE multiple connection timing strategy .61

4.1 Basic concepts about Bluetooth low energy timing. 61

4.1.1 Advertising timing . 61

4.1.2 Scanning timing . 61

4.1.3 Connection timing . 61

4.2 BLE stack timing and slot allocation concepts. 62

4.2.1 Setting the timing for the first master connection. 62

4.2.2 Setting the timing for further master connections . 63

4.2.3 Timing for advertising events. 64

4.2.4 Timing for scanning. 64

4.2.5 Slave timing . 64

PM0257
Contents

PM0257 - Rev 4 page 72/77

4.3 Multiple master and slave connection guidelines . 65

4.4 Multiple master and slave connection formula. 65

5 References .68

6 List of acronyms and abbreviations .69

Revision history .70

PM0257
Contents

PM0257 - Rev 4 page 73/77

List of tables
Table 1. BLE RF channel types and frequencies . 4
Table 2. Advertising data header content. 6
Table 3. Advertising packet types . 6
Table 4. Advertising event type and allowable responses . 7
Table 5. Data packet header content . 7
Table 6. Packet length field and valid values . 8
Table 7. Connection request timing intervals . 10
Table 8. Attribute example. 10
Table 9. Attribute protocol messages . 11
Table 10. Combination of input/output capabilities on a BLE device . 12
Table 11. Methods used to calculate the temporary key (TK) . 12
Table 12. Mapping of IO capabilities to possible key generation methods . 13
Table 13. Characteristic declaration . 16
Table 14. Characteristic value . 16
Table 15. Service declaration . 17
Table 16. Include declaration. 17
Table 17. Discovery procedures and related response events . 18
Table 18. Client-initiated procedures and related response events . 18
Table 19. Server-initiated procedures and related response events . 18
Table 20. GAP roles . 18
Table 21. GAP broadcaster mode . 19
Table 22. GAP discoverable modes . 19
Table 23. GAP connectable modes . 19
Table 24. GAP bondable modes . 20
Table 25. GAP observer procedure . 20
Table 26. GAP discovery procedures . 20
Table 27. GAP connection procedures . 20
Table 28. GAP bonding procedures . 21
Table 29. BLE stack library framework interface . 24
Table 30. BLE application stack library framework interface. 25
Table 31. BlueNRG-1 BLE stack initialization parameters . 26
Table 32. Application configuration preprocessor options . 28
Table 33. Test mode configurations . 29
Table 34. User mode configuration . 29
Table 35. User application defines for BLE device roles . 31
Table 36. GATT, GAP default services . 33
Table 37. GATT, GAP default characteristics . 33
Table 38. aci_gap_init() role parameter values. 33
Table 39. GAP mode APIs . 37
Table 40. GAP discovery procedure APIs . 38
Table 41. Connection procedure APIs. 38
Table 42. ADV_IND event type . 42
Table 43. ADV_IND advertising data . 42
Table 44. SCAN_RSP event type. 42
Table 45. Scan response data . 42
Table 46. BLE stack: main events callbacks . 43
Table 47. BLE sensor profile demo services and characteristic handle . 47
Table 48. Service discovery procedures APIs . 48
Table 49. First read by group type response event callback parameters . 49
Table 50. Second read by group type response event callback parameters . 49
Table 51. Third read by group type response event callback parameters . 49
Table 52. Characteristics discovery procedures APIs . 50

PM0257
List of tables

PM0257 - Rev 4 page 74/77

Table 53. First read by type response event callback parameters . 51
Table 54. Second read by type response event callback parameters . 51
Table 55. Characteristic update, read, write APIs . 52
Table 56. Timing parameters of the slotting algorithm . 62
Table 57. Input parameters to define Master_Slave device connection parameters . 66
Table 58. Output parameters for Master_Slave device multiple connections . 67
Table 59. References . 68
Table 60. List of acronyms . 69
Table 61. Document revision history . 70

PM0257
List of tables

PM0257 - Rev 4 page 75/77

List of figures
Figure 1. Bluetooth low energy technology enabled coin cell battery devices . 2
Figure 2. Bluetooth low energy stack architecture . 3
Figure 3. Link Layer state machine . 5
Figure 4. Packet structure . 6
Figure 5. Packet structure with LE data packet length extension feature . 6
Figure 6. Advertising packet with AD type flags . 8
Figure 7. Example of characteristic definition . 16
Figure 8. Client and server profiles . 22
Figure 9. BLE stack reference application . 23
Figure 10. BLE MAC address storage . 35
Figure 11. BLE simultaneous master and slave scenario . 54
Figure 12. Advertising timings . 61
Figure 13. Example of allocation of three connection slots . 62
Figure 14. Example of timing allocation for three successive connections . 64

PM0257
List of figures

PM0257 - Rev 4 page 76/77

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

PM0257

PM0257 - Rev 4 page 77/77

	1 Bluetooth low energy technology
	1.1 BLE stack architecture
	1.2 Physical layer
	1.3 Link Layer (LL)
	1.3.1 BLE packets
	1.3.2 Advertising state
	1.3.3 Scanning state
	1.3.4 Connection state

	1.4 Host controller interface (HCI)
	1.5 Logical link control and adaptation layer protocol (L2CAP)
	1.6 Attribute protocol (ATT)
	1.7 Security manager (SM)
	1.8 Privacy
	1.8.1 The device filtering

	1.9 Generic attribute profile (GATT)
	1.9.1 Characteristic attribute type
	1.9.2 Characteristic descriptor type
	1.9.3 Service attribute type
	1.9.4 GATT procedures

	1.10 Generic access profile (GAP)
	1.11 BLE profiles and applications
	1.11.1 Proximity profile example

	2 BlueNRG-1, BlueNRG-2 Bluetooth low energy stack
	2.1 BLE stack library framework
	2.2 BLE stack event callbacks
	2.3 BLE stack Init and tick APIs
	2.4 The BlueNRG-1, BlueNRG-2 application configuration
	2.5 BLE stack tick function

	3 Design an application using the BlueNRG-1, BlueNRG-2 BLE stack
	3.1 Initialization phase and main application loop
	3.1.1 BLE addresses
	3.1.2 Set tx power level

	3.2 Services and characteristic configuration
	3.3 Create a connection: discoverable and connectable APIs
	3.3.1 Set discoverable mode and use direct connection establishment procedure
	3.3.2 Set discoverable mode and use general discovery procedure (active scan)

	3.4 BLE stack events and event callbacks
	3.5 Security (pairing and bonding)
	3.6 Service and characteristic discovery
	3.6.1 Characteristic discovery procedures and related GATT events

	3.7 Characteristic notification/indications, write, read
	3.8 Basic/typical error condition description
	3.9 BLE simultaneously master, slave scenario
	3.10 Bluetooth low energy privacy 1.2
	3.10.1 Controller-based privacy and the device filtering scenario
	3.10.2 Resolving addresses

	3.11 ATT_MTU and exchange MTU APIs, events
	3.12 LE data packet length extension APIs and events
	3.13 No packet retry feature
	3.14 BLE radio activities and Flash operations

	4 BLE multiple connection timing strategy
	4.1 Basic concepts about Bluetooth low energy timing
	4.1.1 Advertising timing
	4.1.2 Scanning timing
	4.1.3 Connection timing

	4.2 BLE stack timing and slot allocation concepts
	4.2.1 Setting the timing for the first master connection
	4.2.2 Setting the timing for further master connections
	4.2.3 Timing for advertising events
	4.2.4 Timing for scanning
	4.2.5 Slave timing

	4.3 Multiple master and slave connection guidelines
	4.4 Multiple master and slave connection formula

	5 References
	6 List of acronyms and abbreviations
	Revision history

