EPC2015C – Enhancement Mode Power Transistor

 V_{DS} , 40 V $R_{DS(on)}$, $4 \, m\Omega$ I_D, 53 A

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings				
	PARAMETER	VALUE	UNIT	
V _{DS}	Drain-to-Source Voltage (Continuous)	40	M	
	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	48	V	
I _D	Continuous ($T_A = 25^{\circ}C, R_{\theta JA} = 6^{\circ}C/W$)	53	А	
	Pulsed (25°C, T _{PULSE} = 300 μs)	235		
V _{GS}	Gate-to-Source Voltage	6	V	
	Gate-to-Source Voltage	-4	v	
٦	Operating Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-40 to 150		

	Thermal Characteristics				
	PARAMETER	ТҮР	UNIT		
R _{θJC}	Thermal Resistance, Junction to Case	0.8			
R _{θJB}	Thermal Resistance, Junction to Board	1.7	°C/W		
R _{θJA}	Thermal Resistance, Junction to Ambient (Note 1)	54			

Note 1: R_{0JA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See http://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

EFFICIENT POWER CONVERSION

EPC2015C eGaN[®] FETs are supplied only in passivated die form with solder bars Die size: 4.1 mm x 1.6 mm

Applications

RoHS M

- High Frequency DC-DC Conversion
- Point-of-Load Converters
- Industrial Automation
- Synchronous Rectification
- Class-D Audio
- Low Inductance Motor Drives

Benefits

Zero Q_{RR}

- Ultra High Efficiency
- Ultra Low Switching and Conduction Losses

Ultra Small Footprint

Static Characteristics ($T_1 = 25^{\circ}$ C unless otherwise stated) PARAMETER **TEST CONDITIONS** MIN TYP MAX UNIT Drain-to-Source Voltage $V_{GS} = 0 V, I_{D} = 500 \mu A$ 40 V **BV**_{DSS} $V_{GS} = 0 V, V_{DS} = 32 V$ 400 Drain-Source Leakage 200 μΑ I_{DSS} Gate-to-Source Forward Leakage $V_{GS} = 5 V$ 1 7 mΑ I_{GSS} Gate-to-Source Reverse Leakage $V_{GS} = -4 V$ 200 400 μA $V_{\text{GS(TH)}}$ $V_{DS} = V_{GS}$, $I_D = 9 \text{ mA}$ 1.4 2.5 V Gate Threshold Voltage 0.8 $R_{DS(on)}$ Drain-Source On Resistance $V_{GS} = 5 V, I_D = 33 A$ 3.2 4 mΩ V Source-Drain Forward Voltage $I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$ 1.7 V_{SD}

All measurements were done with substrate connected to source.

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021

(HAL) Halogen-Free

	Dynamic Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	
C _{ISS}	Input Capacitance			980	1180		
C _{RSS}	Reverse Transfer Capacitance	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$		18			
C _{OSS}	Output Capacitance			710	1070	pF	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	$V_{DS} = 0$ to 20 V, $V_{GS} = 0$ V		870			
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)			940			
R _G	Gate Resistance			0.3		Ω	
Q_{G}	Total Gate Charge	$V_{DS} = 20 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 33 \text{ A}$		8.7	11.2		
Q _{GS}	Gate-to-Source Charge			2.7			
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 33 \text{ A}$		1.2			
Q _{G(TH)}	Gate Charge at Threshold			1.9		nC	
Q _{OSS}	Output Charge	$V_{DS} = 20 V, V_{GS} = 0 V$		19	29		
Q _{RR}	Source-Drain Recovery Charge			0			

All measurements were done with substrate connected to source.

Note 2: C_{OSS(ER)} is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Note 3: C_{OSS(TR)} is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 2: Transfer Characteristics

EPC2015C

Figure 8: Normalized On-State Resistance vs. Temperature

All measurements were done with substrate shortened to source.

Figure 5b: Capacitance (Log Scale)

Figure 7: Reverse Drain-Source Characteristics

t_p, Rectangular Pulse Duration, seconds

TAPE AND REEL CONFIGURATION

4 mm pitch, 12 mm wide tape on 7" reel

- Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.
- Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

е

g

f (Note 2)

4.00

2.00

1.50

3.90

1.95

1.50

4.10

2.05

1.60

Dout	Laser Markings			
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3	
EPC2015C	2015	үүүү	2222	

EPC2015C

EPC2015C

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021

6