RENESAS

KGF12N05

N-Channel 5.5V Power MOSFET

The KGF12N05 is a 5.5V, $1.9m\Omega$, chip-scale, N-channel, multidirectional current flow MOSFET. The device uses technology that uniquely integrates low cost CMOS and WLCSP fabrication processes. The chip-scale WLCSP package offers small area, low vertical profile and is fully compatible with standard SMT assembly processes. The KGF12N05 device offers unprecedented low on-resistance and total gate charge, outperforming conventional trench MOSFETs and enabling high frequency, low voltage switching. The device offers extremely high power density, reducing the board size of DC/DC converters and other power management systems.

PRODUCT SUMMARY			
I _D	T _A = +25°C	12A	Maximum
V _{(BR)DSS}	I _D = 10mA	5.5V	Minimum
r _{DS(ON)}	V _{GS} = 4.5V	1.9mΩ	Typical
r _{DS(ON)}	V _{GS} = 3.5V	2.1mΩ	Typical
Qg	I _D = 12A	5nC	Typical
Q _{gd}		1.2nC	Typical

Features

- Industry leading figures of merit: $r_{DS(ON)} \times Q_g$ and $r_{DS(ON)} \times Q_{gd}$
- · Low profile/small footprint chip-scale WLCSP package
- High frequency switching
- Known Good FET (KGF) Quality Assurance Process

Applications

- Low thermal resistance
- Point-of-load DC/DC converters
- Portable electronics
- OR'ing diodes

Related Literature

• <u>AN1968</u>, "Unclamped Inductive Switching (UIS) Test and Rating Methodology"

FIGURE 1. EQUIVALENT CIRCUIT

FIGURE 2. N-CHANNEL MOSFET WLCSP PACKAGE

FN8787 Rev 1.00

December 18, 2015

Ordering Information

PART NUMBER	PART MARKING	TEMP RANGE (°C)	PACKAGE (RoHS Compliant)
KGF12N05-400-SP	S	-55 to +150	6 Bump WLCSP

Pin Configuration

Pin Descriptions

PIN #	PIN NAME	DESCRIPTION
1	G	Gate of MOSFET
2, 3, 4, 5	S	Source of MOSFET
6	D	Drain of MOSFET

Absolute Maximum Ratings (Note 1)

Thermal Information

Thermal Resistance (Typical)	θ _{JA} (°C/W)	θ JP (°C/W)
WLCSP Package	50	10
Maximum Power Dissipation (P _D) (<u>Note 2</u>)		
T _A = +25°C		2.5W (10s)
T _A = +70°C		1.6W
Junction and Storage Temperature Range (T	, T _{stg})5	5°C to +150°C
Pb-free Reflow Profile		see TB493

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

1. $T_J = +25$ °C unless otherwise noted.

2. When mounted on 1 inch square 2oz copper clad FR-4.

Electrical Characteristics T_j = +25°C unless otherwise noted.

SYMBOL	PARAMETER	TEST CONDITIONS	MIN (<u>Note 3</u>)	TYP (<u>Note 4</u>)	MAX (<u>Note 3</u>)	UNIT
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	V _{GS} = 0V, I _D = 10mA	5.5			v
IDSS	Zero Gate Voltage Drain Current	V_{DS} = 3.5V, V_{GS} = 0V, T_J = +25 ° C			1	μA
		V_{DS} = 5.5V, V_{GS} = 0V, T_J = +25 °C			25	μA
		V_{DS} = 5.5V, V_{GS} = 0V, T_J = +125 °C			250	μA
IGSS	Gate-Body Leakage	V _{GS} = 5.5V, V _{DS} = 0V			150	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	0.52	0.62	0.80	v
r _{DS(ON)} Drain-	Drain-to-Source On-State Resistance	V _{GS} = 3.5V, I _D = 12A		2.1	2.6	mΩ
		$V_{GS} = 4.5V, I_D = 12A$		1.9	2.4	mΩ
Ciss	Input Capacitance	V_{DS} = 5.5V, V_{GS} = 0V, f = 1MHz		750	940	pF
Coss	Output Capacitance			940	1175	pF
C _{rss}	Reverse Transfer Capacitance			230	300	pF
Ciss	Input Capacitance	$V_{DS} = 0V, V_{GS} = 0V, f = 1MHz$		790	990	pF
Coss	Output Capacitance			1450	1800	pF
C _{rss}	Reverse Transfer Capacitance			270	400	pF
rg	Gate Resistance	$V_{DS} = 0V, f = 1MHz$		1.0		Ω
Qg	Total Gate Charge	V_{GS} = 3.5V, I_D = 12A, V_{DS} = 4.4V		5.0	6.0	nC
Qgs	Gate-to-Source Charge			1.1	1.5	nC
Qgd	Gate-to-Drain Charge			1.2	2.0	nC
Qg	Total Gate Charge	V_{GS} = 4.5V, I_D = 12A, V_{DS} = 4.4V		6.2	7.0	nC
t _{rr}	Source-to-Drain Reverse Recovery Time	$I_S = 3A$, di/dt = 33A/ μ s		100		ns
V _{SD}	Diode Forward Voltage	I _S = 5A, V _{GS} = 0V		0.65	1.00	v

NOTES:

3. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

4. Typical values are for $T_A = +25$ °C.

Typical Performance Curves

Typical Performance Curves (Continued)

FIGURE 13. MAXIMUM RATED FORWARD BIASED SAFE OPERATING AREA

Typical Performance Curves (Continued)

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE	
December 18, 2015	FN8787.1	Added "Note 1. T_J = +25 °C unless otherwise noted." to Abs Max on page 3.	
October 30, 2015	FN8787.0	Initial release	

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.

For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at <u>www.intersil.com</u>.

You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.

Reliability reports are also available from our website at www.intersil.com/support.

© Copyright Intersil Americas LLC 2015. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Dimensional Outline and Pad Layout

All dimensions in mm

Die Size = 1.47mm ± 0.005 mm (square) Pad Thickness = 3μ m NiAu Die Thickness = 400μ m $\pm 15\mu$ m

