OVAL SOLID STATE LAMP Part Number: WP5603SYDL/SD/J3 Super Bright Yellow #### **Features** - Outstanding material efficiency. - Reliable and rugged. - RoHS compliant. ### Description The Super Bright Yellow device is based on light emitting diode chip made from AlGaInP. ## **Package Dimensions** - 1. All dimensions are in millimeters (inches). - 2. Tolerance is $\pm 0.25(0.01")$ unless otherwise noted. - 3. Lead spacing is measured where the leads emerge from the package.4. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice. SPEC NO: DSAI9679 **REV NO: V.6B** DATE: MAR/19/2013 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: F.Cui PAGE: 1 OF 6 ERP: 1101024789 ### **Selection Guide** | Part No. | Dice | Lens Type | lv (mcd) [2]
@ 20mA | | Viewing
Angle [1] | |------------------|-------------------------------|----------------------|------------------------|------|----------------------| | | | , | | Тур. | 201/2 | | WP5603SYDL/SD/J3 | Super Bright Yellow (AlGaInP) | Yellow Semi Diffused | 1000 | 1600 | 80°(H)
40°(V) | #### Notes: - 1. θ 1/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value. - 2. Luminous intensity/ luminous Flux: +/-15%. - 3. Luminous intensity value is traceable to the CIE127-2007 compliant national standards. ### Electrical / Optical Characteristics at TA=25°C | Symbol | Parameter | Device | Тур. | Max. | Units | Test Conditions | |--------|--------------------------|---------------------|------|------|-------|---------------------| | λpeak | Peak Wavelength | Super Bright Yellow | 590 | | nm | IF=20mA | | λD [1] | Dominant Wavelength | Super Bright Yellow | 590 | | nm | IF=20mA | | Δλ1/2 | Spectral Line Half-width | Super Bright Yellow | 20 | | nm | IF=20mA | | С | Capacitance | Super Bright Yellow | 45 | | pF | VF=0V;f=1MHz | | VF [2] | Forward Voltage | Super Bright Yellow | 2 | 2.5 | V | IF=20mA | | lR | Reverse Current | Super Bright Yellow | | 10 | uA | V _R = 5V | - 1.Wavelength: +/-1nm. - Forward Voltage: +/-0.1V. Wavelength value is traceable to the CIE127-2007 compliant national standards. ## Absolute Maximum Ratings at TA=25°C | Parameter | Super Bright Yellow | Units | | |-------------------------------|---------------------|-------|--| | Power dissipation | 75 | mW | | | DC Forward Current | 30 | mA | | | Peak Forward Current [1] 140 | | mA | | | Reverse Voltage | 5 | V | | | Operating/Storage Temperature | -40°C To +85°C | | | | Lead Solder Temperature [2] | 260°C For 3 Seconds | | | | Lead Solder Temperature [3] | 260°C For 5 Seconds | | | - 1. 1/10 Duty Cycle, 0.1ms Pulse Width. - 2. 2mm below package base. 5mm below package base. DATE: MAR/19/2013 SPEC NO: DSAI9679 **REV NO: V.6B** PAGE: 2 OF 6 APPROVED: WYNEC **CHECKED: Allen Liu** ERP: 1101024789 DRAWN: F.Cui RELATIVE INTENSITY Vs. WAVELENGTH #### **Super Bright Yellow** WP5603SYDL/SD/J3 SPATIAL DISTRIBUTION SPEC NO: DSAI9679 **REV NO: V.6B** DATE: MAR/19/2013 PAGE: 3 OF 6 APPROVED: WYNEC **CHECKED: Allen Liu** ERP: 1101024789 DRAWN: F.Cui SPEC NO: DSAI9679 APPROVED: WYNEC REV NO: V.6B CHECKED: Allen Liu DATE: MAR/19/2013 DRAWN: F.Cui PAGE: 4 OF 6 ERP: 1101024789 #### **PRECAUTIONS** 1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead—forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. (Fig. 1) - "() " Correct mounting method "imes" Incorrect mounting method - 2. When soldering wire to the LED, use individual heat—shrink tubing to insulate the exposed leads to prevent accidental contact short—circuit. (Fig.2) - 3. Use stand—offs (Fig.3) or spacers (Fig.4) to securely position the LED above the PCB. - 4. Maintain a minimum of 2mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6) - 5. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7) SPEC NO: DSAI9679 APPROVED: WYNEC REV NO: V.6B CHECKED: Allen Liu DATE: MAR/19/2013 DRAWN: F.Cui PAGE: 5 OF 6 ERP: 1101024789 6. Do not bend the leads more than twice. (Fig. 8) 7. During soldering, component covers and holders should leave clearance to avoid placing damaging stress on the LED during soldering. - 8. The tip of the soldering iron should never touch the lens epoxy. - 9. Through—hole LEDs are incompatible with reflow soldering. - 10. If the LED will undergo multiple soldering passes or face other processes where the part may be subjected to intense heat, please check with Kingbright for compatibility. - 11. Recommended Wave Soldering Profiles: ### Notes: - 1.Recommend pre—heat temperature of 105°C or less (as measured with a thermocouple attached to the LED pins) prior to immersion in the solder wave with a maximum solder bath temperature of 260°C - 2.Peak wave soldering temperature between 245°C \sim 255°C for 3 sec (5 sec max). - 3.Do not apply stress to the epoxy resin while the temperature is above 85°C. - 4.Fixtures should not incur stress on the component when mounting and during soldering process. - 5.SAC 305 solder alloy is recommended. - 6.No more than one wave soldering pass. All design applications should refer to Kingbright application notes available at http://www.KingbrightUSA.com/ApplicationNotes SPEC NO: DSAI9679 REV NO: V.6B DATE: MAR/19/2013 PAGE: 6 OF 6 APPROVED: WYNEC CHECKED: Allen Liu DRAWN: F.Cui ERP: 1101024789