# Octal D Flip-Flop with Common Clock and Enable

# **High-Performance Silicon-Gate CMOS**

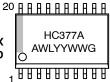
The MC74HC377A is identical in pinout to the LS273. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of eight D flip-flops with common Clock and Enable  $(\overline{E})$  inputs. Each flip-flop is loaded with a low-to-high transition of the Clock input. Enable  $(\overline{E})$  is active low.

#### **Features**

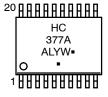
- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 264 FETs or 66 Equivalent Gates
- These are Pb-Free Devices




### ON Semiconductor®

http://onsemi.com

#### MARKING DIAGRAMS

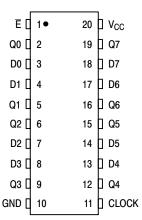



SOIC-20 DW SUFFIX CASE 751D





TSSOP-20 DT SUFFIX CASE 948E




A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb-Free Package ■ = Pb-Free Package

(Note: Microdot may be in either location)

#### **PIN ASSIGNMENT**



#### ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

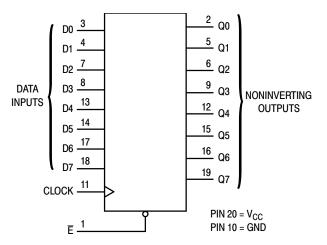



Figure 1. Logic Diagram

#### **FUNCTION TABLE**

| Omanatina          |        | Inputs |    | Outputs                |
|--------------------|--------|--------|----|------------------------|
| Operating<br>Modes | Clock  | Ē      | Dn | Qn                     |
| Load "1"           | 1      | I      | h  | Н                      |
| Load "0"           | 1      | 1      | 1  | L                      |
| Hold (Do Nothing)  | ↑<br>X | h<br>H | X  | No Change<br>No Change |

H = HIGH voltage level
h = HIGH voltage level one setup time prior to the LOW-to-

HIGH CP transition
L = LOW voltage level

I = LOW voltage level one setup time prior to the LOW-to-HIGH CP transition

↑ = LOW-to-HIGH CP transition

X = Don't Care

| Design Criteria                 | Value | Units |
|---------------------------------|-------|-------|
| Internal Gate Count*            | 66    | ea    |
| Internal Gate Propagation Delay | 1.5   | ns    |
| Internal Gate Power Dissipation | 5.0   | μW    |
| Speed Power Product             | .0075 | рЈ    |

<sup>\*</sup>Equivalent to a two-input NAND gate.

#### **ORDERING INFORMATION**

| Device          | Package                   | Shipping <sup>†</sup> |
|-----------------|---------------------------|-----------------------|
| MC74HC377ADWG   | SOIC-20 WIDE<br>(Pb-Free) | 38 Units / Rail       |
| MC74HC377ADWR2G | SOIC-20 WIDE<br>(Pb-Free) | 1000 Tape & Reel      |
| MC74HC377ADTG   | TSSOP-20*                 | 75 Units / Rail       |
| MC74HC377ADTR2G | TSSOP-20*                 | 2500 Tape & Reel      |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

<sup>\*</sup>This package is inherently Pb-Free.

#### **MAXIMUM RATINGS**

| Symbol           | Parameter                                                                           | Value                         | Unit |
|------------------|-------------------------------------------------------------------------------------|-------------------------------|------|
| V <sub>CC</sub>  | DC Supply Voltage (Referenced to GND)                                               | -0.5 to + 7.0                 | V    |
| V <sub>in</sub>  | DC Input Voltage (Referenced to GND)                                                | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| V <sub>out</sub> | DC Output Voltage (Referenced to GND)                                               | -0.5 to V <sub>CC</sub> + 0.5 | V    |
| I <sub>in</sub>  | DC Input Current, per Pin                                                           | ±20                           | mA   |
| l <sub>out</sub> | DC Output Current, per Pin                                                          | ± 25                          | mA   |
| I <sub>CC</sub>  | DC Supply Current, V <sub>CC</sub> and GND Pins                                     | ± 50                          | mA   |
| P <sub>D</sub>   | Power Dissipation in Still Air SOIC Package <sup>†</sup> TSSOP Package <sup>†</sup> | 500<br>450                    | mW   |
| T <sub>stg</sub> | Storage Temperature                                                                 | -65 to +150                   | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

†Derating - SOIC Package: - 7 mW/°C from 65° to 125°C

TSSOP Package: - 6.1 mW/°C from 65° to 125°C

# This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $V_{in}$ and $V_{out}$ should be constrained to the range GND $\leq$ ( $V_{in}$ or $V_{out}$ ) $\leq$ $V_{CC}$ .

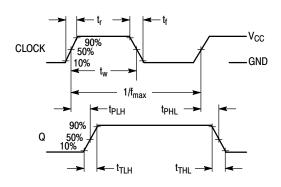
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{CC}$ ). Unused outputs must be left open.

#### RECOMMENDED OPERATING CONDITIONS

| Symbol                             | Parameter                                            |                                                                         | Min         | Max                | Unit |
|------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|-------------|--------------------|------|
| V <sub>CC</sub>                    | DC Supply Voltage (Referenced to GND)                |                                                                         | 2.0         | 6.0                | V    |
| V <sub>in</sub> , V <sub>out</sub> | DC Input Voltage, Output Voltage (Referenced to GND) |                                                                         | 0           | V <sub>CC</sub>    | V    |
| T <sub>A</sub>                     | Operating Temperature, All Package Types             |                                                                         | -55         | +125               | °C   |
| t <sub>r</sub> , t <sub>f</sub>    | (Figure 2) V <sub>C</sub>                            | <sub>CC</sub> = 2.0 V<br><sub>CC</sub> = 4.5 V<br><sub>CC</sub> = 6.0 V | 0<br>0<br>0 | 1000<br>500<br>400 | ns   |

# DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

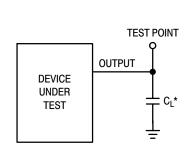
|                 |                                                   |                                                                                                      |                                                                                                  |                          | Gu                        | aranteed Li               | mit                       |      |
|-----------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|------|
| Symbol          | Parameter                                         | Test Conditions                                                                                      |                                                                                                  | V <sub>CC</sub><br>V     | –55 to<br>25°C            | ≤ <b>85</b> °C            | ≤ 125°C                   | Unit |
| V <sub>IH</sub> | Minimum High-Level Input Voltage                  | $\begin{aligned} V_{out} &= V_{CC} - 0.1 \text{ V} \\  I_{out}  &\leq 20  \mu\text{A} \end{aligned}$ |                                                                                                  | 2.0<br>3.0<br>4.5<br>6.0 | 1.5<br>2.1<br>3.15<br>4.2 | 1.5<br>2.1<br>3.15<br>4.2 | 1.5<br>2.1<br>3.15<br>4.2 | V    |
| V <sub>IL</sub> | Maximum Low-Level Input Voltage                   | $V_{out} = 0.1 \text{ V}$<br>$ I_{out}  \le 20 \mu\text{A}$                                          |                                                                                                  | 2.0<br>3.0<br>4.5<br>6.0 | 0.5<br>0.9<br>1.35<br>1.8 | 0.5<br>0.9<br>1.35<br>1.8 | 0.5<br>0.9<br>1.35<br>1.8 | V    |
| V <sub>OH</sub> | Minimum High-Level Output<br>Voltage              | $V_{in} = V_{IH}$<br>$ I_{out}  \le 20 \mu A$                                                        |                                                                                                  | 2.0<br>4.5<br>6.0        | 1.9<br>4.4<br>5.9         | 1.9<br>4.4<br>5.9         | 1.9<br>4.4<br>5.9         | V    |
|                 |                                                   | V <sub>in</sub> = V <sub>IH</sub>                                                                    | $\begin{aligned}  I_{out}  &\leq 4.0 \text{ mA} \\  I_{out}  &\leq 5.2 \text{ mA} \end{aligned}$ | 4.5<br>6.0               | 3.98<br>5.48              | 3.84<br>5.34              | 3.7<br>5.2                |      |
| V <sub>OL</sub> | Maximum Low-Level Output<br>Voltage               | $V_{in} = V_{IL}$<br>$ I_{out}  \le 20 \mu A$                                                        |                                                                                                  | 2.0<br>4.5<br>6.0        | 0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1         | V    |
|                 |                                                   | V <sub>in</sub> = V <sub>IL</sub>                                                                    | $\begin{aligned}  I_{out}  &\leq 4.0 \text{ mA} \\  I_{out}  &\leq 5.2 \text{ mA} \end{aligned}$ | 4.5<br>6.0               | 0.26<br>0.26              | 0.33<br>0.33              | 0.4<br>0.4                |      |
| I <sub>in</sub> | Maximum Input Leakage Current                     | V <sub>in</sub> = V <sub>CC</sub> or GND                                                             |                                                                                                  | 6.0                      | ±0.1                      | ±1.0                      | ±1.0                      | μΑ   |
| I <sub>CC</sub> | Maximum Quiescent Supply<br>Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$                                                         |                                                                                                  | 6.0                      | 4.0                       | 40                        | 160                       | μΑ   |


# AC Electrical Characteristics ( $C_L$ = 50 pF, Input $t_r$ , $t_f$ = 6.0 ns)

|                                     |                            |                 |                     | Gua             | ranteed Li    | mits    |      |
|-------------------------------------|----------------------------|-----------------|---------------------|-----------------|---------------|---------|------|
| Symbol                              | Parameter                  | Test Conditions | V <sub>CC</sub> (V) | –55°C to<br>25° | ≤ <b>85°C</b> | ≤ 125°C | Unit |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay  | Figures 2, 4    | 2.0                 | 160             | 200           | 240     | ns   |
|                                     | Clock to Qn                |                 | 4.5                 | 32              | 40            | 48      | 1    |
|                                     |                            |                 | 6.0                 | 27              | 34            | 41      | 1    |
| t <sub>THL</sub> , t <sub>TLH</sub> | Maximum Output Transition  | Figures 2, 4    | 2.0                 | 75              | 95            | 110     | ns   |
|                                     | Time                       |                 | 4.5                 | 15              | 19            | 22      | 1    |
|                                     |                            |                 | 6.0                 | 13              | 16            | 19      | 1    |
| t <sub>W</sub>                      | Minimum Clock Pulse Width  | Figure 2        | 2.0                 | 80              | 100           | 120     | ns   |
|                                     | High or Low                |                 | 4.5                 | 16              | 20            | 24      | 1    |
|                                     |                            |                 | 6.0                 | 4               | 17            | 20      | 1    |
| t <sub>su</sub>                     |                            | Figure 3        | 2.0                 | 60              | 75            | 90      | ns   |
|                                     | D <sub>n</sub> to Clock    |                 | 4.5                 | 12              | 15            | 18      | 1    |
|                                     |                            |                 | 6.0                 | 10              | 13            | 15      | 1    |
| t <sub>su</sub>                     | Minimum Set-up Time        | Figure 3        | 2.0                 | 60              | 75            | 90      | ns   |
|                                     | Enable to Clock            |                 | 4.5                 | 12              | 15            | 18      | 1    |
|                                     |                            |                 | 6.0                 | 10              | 13            | 15      |      |
| t <sub>h</sub>                      | Minimum Hold Time          | Figure 3        | 2.0                 | 3               | 3             | 3       | ns   |
|                                     | D <sub>n</sub> to Clock    |                 | 4.5                 | 3               | 3             | 3       |      |
|                                     |                            |                 | 6.0                 | 3               | 3             | 3       |      |
| t <sub>h</sub>                      | Minimum Hold Time          | Figure 3        | 2.0                 | 4               | 4             | 4       | ns   |
|                                     | Enable to Clock            |                 | 4.5                 | 4               | 4             | 4       | 1    |
|                                     |                            | 6.0             | 4                   | 4               | 4             | 1       |      |
| f <sub>max</sub>                    | Maximum Clock Pulse        | Figures 2, 4    | 2.0                 | 6               | 5             | 4       | ns   |
|                                     | Frequency (50% duty cycle) |                 | 4.5                 | 30              | 24            | 20      | 1    |
|                                     |                            |                 | 6.0                 | 35              | 28            | 24      | 1    |
| C <sub>in</sub>                     | Maximum Input Capacitance  |                 | -                   | 10              | 10            | 10      | pF   |

| C <sub>PD</sub> |                               | Typical @ 25°C, V <sub>CC</sub> = 5.0 V | pF |  |
|-----------------|-------------------------------|-----------------------------------------|----|--|
| (Note 1)        | Power Dissipation Capacitance | 35                                      |    |  |

<sup>1.</sup>  $C_{PD}$  is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from:  $I_{CC}$  (operating)  $\approx C_{PD} \times V_{CC} \times f_{IN} \times N_{SW}$  where  $N_{SW}$  = total number of outputs switching and  $f_{IN}$  = switching frequency.


### **SWITCHING WAVEFORMS**



DATA  $t_{su}$   $t_{h}$   $V_{cc}$   $t_{su}$   $t_{h}$   $V_{cc}$   $t_{su}$   $t_{h}$   $t_{cc}$   $t_{cc}$ 

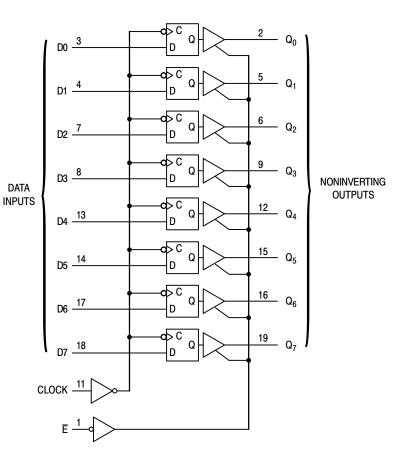
Figure 3.

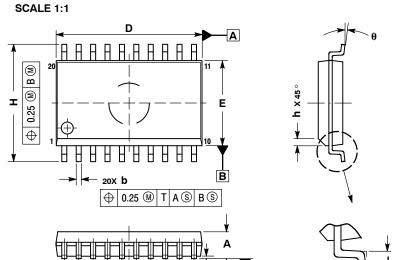
Figure 2.



\*Includes all probe and jig capacitance

Figure 4. Test Circuit

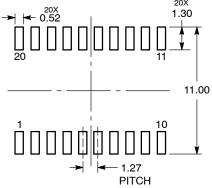




Figure 5. Expanded Logic Diagram



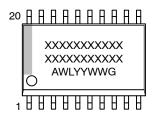


SOIC-20 WB CASE 751D-05 **ISSUE H** 


**DATE 22 APR 2015** 



- DIMENSIONS ARE IN MILLIMETERS.
   INTERPRET DIMENSIONS AND TOLERANCES.
- PER ASME Y14.5M, 1994.
  3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
  MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL


|     | MILLIMETERS |       |  |  |
|-----|-------------|-------|--|--|
| DIM | MIN         | MAX   |  |  |
| Α   | 2.35        | 2.65  |  |  |
| A1  | 0.10        | 0.25  |  |  |
| b   | 0.35        | 0.49  |  |  |
| С   | 0.23        | 0.32  |  |  |
| D   | 12.65       | 12.95 |  |  |
| E   | 7.40        | 7.60  |  |  |
| е   | 1.27        | BSC   |  |  |
| Н   | 10.05       | 10.55 |  |  |
| h   | 0.25        | 0.75  |  |  |
| L   | 0.50        | 0.90  |  |  |
| A   | 0 °         | 7 °   |  |  |

#### **RECOMMENDED SOLDERING FOOTPRINT\***



DIMENSIONS: MILLIMETERS

#### **GENERIC MARKING DIAGRAM\***

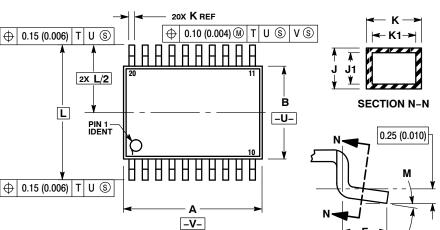


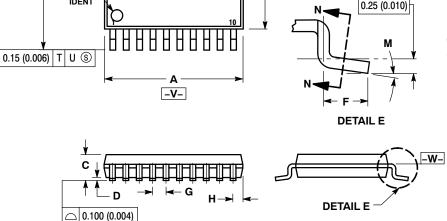
XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SOIC-20 WB  |                                                                                                                                                                                 | PAGE 1 OF 1 |  |


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.


<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

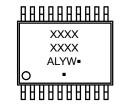


#### TSSOP-20 WB CASE 948E ISSUE D

**DATE 17 FEB 2016** 






#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
- (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

  7. DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-

|     | MILLIMETERS |      | INC       | HES   |
|-----|-------------|------|-----------|-------|
| DIM | MIN         | MAX  | MIN       | MAX   |
| Α   | 6.40        | 6.60 | 0.252     | 0.260 |
| В   | 4.30        | 4.50 | 0.169     | 0.177 |
| С   |             | 1.20 |           | 0.047 |
| D   | 0.05        | 0.15 | 0.002     | 0.006 |
| F   | 0.50        | 0.75 | 0.020     | 0.030 |
| G   | 0.65 BSC    |      | 0.026 BSC |       |
| Н   | 0.27        | 0.37 | 0.011     | 0.015 |
| J   | 0.09        | 0.20 | 0.004     | 0.008 |
| J1  | 0.09        | 0.16 | 0.004     | 0.006 |
| K   | 0.19        | 0.30 | 0.007     | 0.012 |
| K1  | 0.19        | 0.25 | 0.007     | 0.010 |
| L   | 6.40 BSC    |      | 0.252     | BSC   |
| M   | 0°          | 8°   | 0°        | 8°    |

#### **GENERIC SOLDERING FOOTPRINT MARKING DIAGRAM\***



= Assembly Location

= Wafer Lot

= Year

= Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED or "CONTROLL" or "CONTROLLED or "CONTROLL" or "CONTROLLED or "CONTROLL" or "CONTROLLED or "CONTROLL" |             |
|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | TSSOP-20 WB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAGE 1 OF 1 |

DIMENSIONS: MILLIMETERS

0.65

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

0.36

16X

1.26

-T- SEATING

- 7.06

onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative