64 Kbit (8 K x 8) AutoStore nvSRAM #### **Features** - 35 ns and 55 ns access times - Hands off automatic STORE on power down with external 68 µF capacitor - STORE to QuantumTrap[™] nonvolatile elements is initiated by software, hardware, or AutoStore[™] on power down - RECALL to SRAM initiated by software or power up - Unlimited Read, Write, and Recall cycles - 1,000,000 STORE cycles to QuantumTrap - 100 year data retention to QuantumTrap - Single 5 V + 10% operation - Military temperature - 28-pin (300mil) CDIP and 28-pad LCC packages # **Functional Description** The Cypress STK12C68-5 is a fast static RAM with a nonvolatile element in each memory cell. The embedded nonvolatile elements incorporate QuantumTrap technology producing the world's most reliable nonvolatile memory. The SRAM provides unlimited read and write cycles, while independent nonvolatile data resides in the highly reliable QuantumTrap cell. Data transfers from the SRAM to the nonvolatile elements (the STORE operation) takes place automatically at power down. On power up, data is restored to the SRAM (the RECALL operation) from the nonvolatile memory. Both the STORE and RECALL operations are also available under software control. A hardware STORE is initiated with the HSB pin. For a complete list of related documentation, click here. # **Contents** | Pinouts | 3 | |--------------------------------|---| | Pin Definitions | 3 | | Device Operation | 4 | | SRAM Read | 4 | | SRAM Write | 4 | | AutoStore Operation | 4 | | AutoStore Inhibit Mode | 5 | | Hardware STORE (HSB) Operation | 5 | | Hardware RECALL (Power Up) | 5 | | Software STORE | 5 | | Software RECALL | 5 | | Data Protection | 6 | | Noise Considerations | 6 | | Hardware Protect | 6 | | Low Average Active Power | 6 | | Preventing Store | 6 | | Best Practices | 7 | | Maximum Ratings | 8 | | Operating Range | | | DC Floatwicel Characteristics | _ | | Data Retention and Endurance | 9 | |---|----| | Capacitance | 9 | | Thermal Resistance | 9 | | AC Test Conditions | 9 | | SRAM Read Cycle | 10 | | SRAM Write Cycle | 11 | | AutoStore or Power Up RECALL | 12 | | Software Controlled STORE/RECALL Cycle | 13 | | Switching Waveform | 14 | | Part Numbering Nomenclature | 15 | | Ordering Information | | | Acronyms | | | Document Conventions | | | Units of Measure | 17 | | Document History Page | 18 | | Sales, Solutions, and Legal Information | | | Worldwide Sales and Design Support | | | Products | | | PSoC Solutions | 10 | # **Pinouts** Figure 1. Pin Diagram - 28-Pin CDIP Figure 2. Pin Diagram - 28-Pin LCC # **Pin Definitions** | Pin Name | Alt | IO Type | Description | | | |----------------------------------|-----|-----------------|--|--|--| | A ₀ -A ₁₂ | | Input | Address Inputs. Used to select one of the 8,192 bytes of the nvSRAM. | | | | DQ ₀ -DQ ₇ | | Input or Output | Bidirectional Data IO Lines. Used as input or output lines depending on operation. | | | | WE | W | Input | Write Enable Input, Active LOW . When the chip is enabled and WE is LOW, data on the I/O pins is written to the specific address location. | | | | CE | Ē | Input | Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects th chip. | | | | ŌĒ | G | Input | Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read cycles. Deasserting OE HIGH causes the I/O pins to tristate. | | | | V_{SS} | | Ground | Ground for the Device. The device is connected to ground of the system. | | | | V _{CC} | | Power Supply | Power Supply Inputs to the Device. | | | | HSB | | Input or Output | Hardware Store Busy (HSB). When LOW, this output indicates a Hardware Store is in progress. When pulled low external to the chip, it initiates a nonvolatile STORE operation. A weak internal pull up resistor keeps this pin high if not connected (connection optional). | | | | V _{CAP} | | Power Supply | AutoStore Capacitor . Supplies power to nvSRAM during power loss to store data from SRAM to nonvolatile elements. | | | # **Device Operation** The STK12C68-5 nvSRAM is made up of two functional components paired in the same physical cell. These are an SRAM memory cell and a nonvolatile QuantumTrap cell. The SRAM memory cell operates as a standard fast static RAM. Data in the SRAM is transferred to the nonvolatile cell (the STORE operation) or from the nonvolatile cell to SRAM (the RECALL operation). This unique architecture enables the storage and recall of all cells in parallel. During the STORE and RECALL operations, SRAM Read and Write operations are inhibited. The STK12C68-5 supports unlimited reads and writes similar to a typical SRAM. In addition, it provides unlimited RECALL operations from the nonvolatile cells and up to one million STORE operations. #### **SRAM Read** The STK12C68-5 performs a Read cycle whenever $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are LOW while $\overline{\text{WE}}$ and $\overline{\text{HSB}}$ are HIGH. The address specified on pins A_{0-12} determines the 8,192 data bytes accessed. When the Read is initiated by an address transition, the outputs are valid after $\underline{\text{a}}$ delay of t_{AA} (Read cycle 1). If the Read is initiated by $\overline{\text{CE}}$ or $\overline{\text{OE}}$, the outputs are valid at t_{ACE} or at t_{DOE} , whichever is later (Read cycle 2). The data outputs repeatedly respond to address changes within the t_{AA} access time without the need for transitions on any control input pins, and remains valid until another $\underline{\text{address}}$ change or until $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is brought HIGH, or $\overline{\text{WE}}$ or $\overline{\text{HSB}}$ is brought LOW. ### **SRAM Write** A W<u>rite</u> cycle is performed whenever $\overline{\text{CE}}$ and $\overline{\text{WE}}$ are LOW and HSB is HIGH. The address inputs must be stable prior to entering the Write cycle and must remain stable until either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ goes HIGH at the end of the cycle. The data on the common I/O pins DQ₀₋₇ are <u>written</u> into the memory if it has valid t_{SD}, <u>bef</u>ore the end of a $\overline{\text{WE}}$ controlled Write or before the end of an $\overline{\text{CE}}$ controlled Write. Keep $\overline{\text{OE}}$ HIGH during the entire Write cycle to avoid data bus contention on common I/O lines. If $\overline{\text{OE}}$ is left $\underline{\text{LOW}}$, internal circuitry turns off the output buffers t_{HZWE} after $\overline{\text{WE}}$ goes LOW. # **AutoStore Operation** The STK12C68-5 stores data to nvSRAM using one of three storage operations: - 1. Hardware store activated by $\overline{\text{HSB}}$ - 2. Software store activated by an address sequence - 3. AutoStore on device power down AutoStore operation is a unique feature of QuantumTrap technology and is enabled by default on the STK12C68-5. During normal operation, the device draws current from V_{CC} to charge a capacitor connected to the V_{CAP} pin. This stored charge is used by the chip to perform a single STORE operation. If the voltage on the V_{CC} pin drops below V_{SWITCH} , the part automatically disconnects the V_{CAP} pin from V_{CC} . A STORE operation is initiated with power provided by the V_{CAP} capacitor. Figure 3 shows the proper connection of the storage capacitor (V_{CAP}) for automatic store operation. A charge storage capacitor between 68 μF and 220 μF (±20%) rated at 6 V must be provided. The voltage on the V_{CAP} pin is driven to 5 <u>V by</u> a charge pump internal to the chip. A pull-up is placed on WE to hold it inactive during power up. Figure 3. AutoStore Mode In system power mode, both V_{CC} and V_{CAP} are connected to the +5 V power supply without the 68 μF capacitor. In this mode, the AutoStore function of the STK12C68-5 operates on the stored system charge as power goes down. The user must, however, guarantee that V_{CC} does not drop below 3.6 V during the 10 ms STORE cycle. To reduce unnecessary nonvolatile stores, AutoStore, and Hardware Store operations are ignored, unless at least one Write operation has taken place since the most recent STORE or RECALL cycle. Software initiated STORE cycles are performed regardless of whether a Write operation has taken place. An optional pull-up resistor is shown connected to HSB. The HSB signal is monitored by the system to detect if an AutoStore cycle is in progress. Figure 4. AutoStore Inhibit Mode If the power supply drops faster than 20 $\mu s/volt$ before V_{CC} reaches $V_{SWITCH},$ then a 2.2 Ω resistor must be connected between V_{CC} and the system supply to avoid momentary excess of current between V_{CC} and V_{CAP} #### **AutoStore Inhibit Mode** If an automatic STORE on power loss is not required, then V_{CC} is tied to ground and +5 V is applied to V_{CAP} (Figure 4). This is the AutoStore Inhibit mode, where the AutoStore function is disabled. If the STK12C68-5 is operated in this configuration, references to V_{CC} are changed to V_{CAP} throughout this data sheet. In this mode, STORE operations are triggered through software control or the HSB pin. To enable or disable Autostore using an I/O port pin see Preventing Store on page 6. It is not permissible to change between these three options "on the fly". # Hardware STORE (HSB) Operation The STK12C68-5 provides the $\overline{\text{HSB}}$ pin for controlling and acknowledging the STORE operations. The HSB pin is used to request a hardware STORE cycle. When the HSB pin is driven LOW, the STK12C68-5 conditionally initiates a STORE operation after t_{DELAY}. An actual STORE cycle only begins if a Write to the SRAM takes place since the last STORE or RECALL cycle. The HSB pin also acts as an open drain driver that is internally driven LOW to indicate a busy condition, while the STORE (initiated by any means) is in progress. $\underline{\mathtt{SRAM}}$ Read and Write operations, that are in progress when HSB is driven LOW by any means, are given $\underline{\mathtt{time}}$ to complete before the STORE operation is initiated. After HSB goes LOW, the STK12C68-5 continues SRAM operations for $t_{\mathtt{DELAY}}$. During $t_{\mathtt{DELAY}}$, multiple SRAM Read operations take place. If a Write is in progress when HSB is pulled LOW, it allows a time, $t_{\mathtt{DELAY}}$ to $\underline{\mathtt{complete}}$. However, any SRAM $\underline{\mathtt{Write}}$ cycles requested after HSB goes LOW are inhibited until HSB returns HIGH. During any STORE operation, regardless of how it is initiated, the STK12C68-5 continues to drive the HSB pin LOW, releasing it only when the STORE is complete. After completing the STORE operation, the STK12C68-5 remains disabled until the HSB pin returns HIGH. If HSB is not used, it is left unconnected. # Hardware RECALL (Power Up) During power-up or after any low-power condition ($V_{CC} < V_{RESET}$), an internal RECALL request is latched. When V_{CC} once again exceeds the sense voltage of V_{SWITCH} , a RECALL cycle is automatically initiated and takes $t_{HRECALL}$ to complete. If the STK12C68-5 is in a Write state at the end of power-up RECALL, the SRAM data is corrupted. To help avoid this situation, a 10 K Ω resistor is connected either between WE and system V_{CC} or between CE and system V_{CC}. #### **Software STORE** Data is transferred from the SRAM to the nonvolatile memory by a software address sequence. The STK12C68-5 software STORE cycle is initiated by executing sequential CE controlled Read cycles from six specific address locations in exact order. During the STORE cycle, an erase of the previous nonvolatile data is first performed followed by a program of the nonvolatile elements. When a STORE cycle is initiated, input and output are disabled until the cycle is completed. Because a sequence of Reads from specific addresses is used for STORE initiation, it is important that no other Read or Write accesses intervene in the sequence. If they intervene, the sequence is aborted and no STORE or RECALL takes place. To initiate the software STORE cycle, the following Read sequence is performed: - 1. Read address 0x0000, Valid READ - 2. Read address 0x1555, Valid READ - 3. Read address 0x0AAA, Valid READ - 4. Read address 0x1FFF, Valid READ - 5. Read address 0x10F0, Valid READ - 6. Read address 0x0F0F, Initiate STORE cycle The software sequence is clocked with $\overline{\text{CE}}$ controlled Reads or $\overline{\text{OE}}$ controlled Reads. When the sixth address in the sequence is entered, the STORE cycle commences and the chip is disabled. It is important that Read cycles and not Write cycles are used in the sequence. It is not necessary that $\overline{\text{OE}}$ is LOW for a valid sequence. After the t_{STORE} cycle time is fulfilled, the SRAM is again activated for Read and Write operation. #### Software RECALL Data is transferred from the nonvolatile memory to the SRAM by a software address sequence. A software RECALL cycle is initiated with a sequence of Read operations in a manner similar to the software STORE initiation. To initiate the RECALL cycle, the following sequence of CE controlled Read operations is performed: - 1. Read address 0x0000, Valid READ - 2. Read address 0x1555, Valid READ - 3. Read address 0x0AAA, Valid READ - 4. Read address 0x1FFF, Valid READ - 5. Read address 0x10F0, Valid READ - 6. Read address 0x0F0E, Initiate RECALL cycle Internally, RECALL is a two step procedure. First, the SRAM data is cleared; then, the nonvolatile information is transferred into the SRAM cells. After the t_{RECALL} cycle time, the SRAM is again ready for Read and Write operations. The RECALL operation does not alter the data in the nonvolatile elements. The nonvolatile data can be recalled an unlimited number of times. #### **Data Protection** The STK12C68-5 protects data from corruption during low-voltage conditions by inhibiting all externally initiated STORE and Write operations. The low-voltage condition is detected when V_{CC} is less than V_{SWITCH} . If the STK12C68-5 is in a Write mode (both \overline{CE} and \overline{WE} are low) at power up after a RECALL or after a \underline{STORE} , the Write is inhibited until a negative transition on \overline{CE} or \overline{WE} is detected. This protects against inadvertent writes during power up or brown out conditions. #### **Noise Considerations** The STK12C68-5 is a high-speed memory. It must have a high frequency bypass capacitor of approximately 0.1 μF connected between V_{CC} and V_{SS} , using leads and traces that are as short as possible. As with all high-speed CMOS ICs, careful routing of power, ground, and signals reduce circuit noise. #### **Hardware Protect** The STK12C68-5 offers hardware protection against inadvertent STORE operation and SRAM Writes during low-voltage conditions. When $V_{CAP} < V_{SWITCH}$, all externally initiated STORE operations and SRAM Writes are inhibited. AutoStore can be completely disabled by tying V_{CC} to ground and applying +5 V to V_{CAP} . This is the AutoStore Inhibit mode; in this mode, STOREs are only initiated <u>by explicit request using either the software sequence or the HSB pin.</u> # **Low Average Active Power** CMOS technology provides the STK12C68-5 the benefit of drawing significantly less current when it is cycled at times longer than 50 ns. Figure 5 and Figure 6 shows the relationship between $I_{\rm CC}$ and Read or Write cycle time. Worst case current consumption is shown for both CMOS and TTL input levels (commercial temperature range, $V_{\rm CC}=5.5$ V, 100% duty cycle on chip enable). Only standby current is drawn when the chip is disabled. The overall average current drawn by the STK12C68-5 depends on the following items: - The duty cycle of chip enable - The overall cycle rate for accesses - The ratio of Reads to Writes - CMOS versus TTL input levels - The operating temperature - The V_{CC} level - I/O loading Figure 5. Current Versus Cycle Time (Read) Figure 6. Current Versus Cycle Time (Write) ## **Preventing Store** The STORE function is disabled by holding HSB high with a driver capable of sourcing 30 mA at a V_{OH} of at least 2.2 V, because it must overpower the internal pull-down device. This device drives HSB LOW for 20 ms at the onset of a STORE. When the STK12C68-5 is connected for AutoStore operation (system V_{CC} connected to V_{CC} and a 68 mF capacitor on $V_{CAP})$ and V_{CC} crosses V_{SWITCH} on the way down, the STK12C68-5 attempts to pull HSB LOW. If HSB does not actually get below V_{IL} , the part stops trying to pull HSB LOW and abort the STORE attempt. #### **Best Practices** nvSRAM products have been used effectively for over 15 years. While ease-of-use is one of the product's main system values, experience gained working with hundreds of applications has resulted in the following suggestions as best practices: - The nonvolatile cells in an nvSRAM are programmed on the test floor during final test and quality assurance. Incoming inspection routines at customer or contract manufacturer's sites sometimes reprograms these values. Final NV patterns are typically repeating patterns of AA, 55, 00, FF, A5, or 5A. The end product's firmware must not assume that an NV array is in a set programmed state. Routines that check memory content values to determine first time system configuration, cold or warm boot status, and so on must always program a unique NV pattern (for example, complex 4-byte pattern of 46 E6 49 53 hex or more random bytes) as part of the final system manufacturing test to ensure these system routines work consistently. - Power-up boot firmware routines must rewrite the nvSRAM into the desired state. While the nvSRAM is shipped in a preset state, best practice is to again rewrite the nvSRAM into the desired state as a safeguard against events that might flip the bit inadvertently (program bugs, incoming inspection routines, and so on). - The V_{CAP} value specified in this datasheet includes a minimum and a maximum value size. The best practice is to meet this requirement and not exceed the maximum V_{CAP} value because the higher inrush currents may reduce the reliability of the internal pass transistor. Customers who want to use a larger V_{CAP} value to make sure there is extra store charge must discuss their V_{CAP} size selection with Cypress. Table 1. Hardware Mode Selection | CE | WE | HSB | A12-A0 | Mode | Ю | Power | |----|----|-----|--|---|--|---| | Н | X | Н | X | Not Selected | Output High Z | Standby | | L | Н | Н | X | Read SRAM | Output Data | Active ^[3] | | L | L | Н | X | Write SRAM | Input Data | Active | | X | X | L | X | Nonvolatile STORE | Output High Z | I _{CC2} ^[1] | | L | Н | Н | 0x0000
0x1555
0x0AAA
0x1FFF
0x10F0
0x0F0F | Read SRAM
Read SRAM
Read SRAM
Read SRAM
Read SRAM
Nonvolatile STORE | Output Data Output Data Output Data Output Data Output Data Output Data Output High Z | Active I _{CC2} ^[2, 3] | | L | Н | Н | 0x0000
0x1555
0x0AAA
0x1FFF
0x10F0
0x0F0E | Read SRAM
Read SRAM
Read SRAM
Read SRAM
Read SRAM
Nonvolatile RECALL | Output Data
Output Data
Output Data
Output Data
Output Data
Output High Z | Active ^[2, 3] | #### Note<u>s</u> HSB STORE operation occurs only <u>if an</u> SRAM Write is done since the last nonvolatile cycle. After the STORE (If any) completes, the part goes into standby mode, inhibiting all operations until HSB rises. The six consecutive addresses must be in the order listed. WE must be high during all six consecutive CE controlled cycles to enable a nonvolatile cycle. I/O state assumes OE ≤ V_{IL}. Activation of nonvolatile cycles does not depend on state of OE. # **Maximum Ratings** Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested. Storage Temperature-65 °C to +150 °C Temperature under Bias -55 °C to +125 °C Voltage on Input Relative to GND.....-0.5 V to 7.0 V Voltage on Input Relative to V_{SS}-0.6 V to V_{CC} + 0.5 V | Voltage on DQ ₀₋₇ or HSB | –0.5 V to V _{CC} + 0.5 V | |---------------------------------------|-----------------------------------| | Power Dissipation | 1.0 W | | DC output Current (1 output at a time | ne, 1s duration) 15 mA | # **Operating Range** | Range | Ambient Temperature | V _{CC} | | | |----------|---------------------|-----------------|--|--| | Military | –55 °C to +125 °C | 4.5 V to 5.5 V | | | # **DC Electrical Characteristics** Over the operating range $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V})^{[4]}$ | Parameter | Description | Test Conditions | Min | Max | Unit | | |---------------------------------|---|---|-----------------------|-----------------------|----------|--| | I _{CC1} | Average V _{CC} current | $t_{\rm RC}$ = 35 ns $t_{\rm RC}$ = 55 ns Dependent on output loading and cycle rate. Values obtained without output loads. $t_{\rm OUT}$ = 0 mA. | | 75
55 | mA
mA | | | I _{CC2} | Average V _{CC} current during STORE | All Inputs Do Not Care, V _{CC} = Max
Average current for duration t _{STORE} | - | 3 | mA | | | I _{CC3} | Average V _{CC} current at t _{RC} = 200 ns, 5 V, 25 °C Typical | WE ≥ (V _{CC} – 0.2 V). All other inputs cycling. Dependent on output loading and cycle rate. Values obtained without output loads. | - | 10 | mA | | | I _{CC4} | Average V _{CAP} Current during AutoStore Cycle | All Inputs Do Not Care, V _{CC} = Max
Average current for duration t _{STORE} | _ | 2 | mA | | | I _{SB1} ^[5] | V _{CC} standby current
(Standby, Cycling TTL
Input Levels) | t_{RC} = 35 ns, $\overline{CE} \ge V_{IH}$
t_{RC} = 55 ns, $\overline{CE} \ge V_{IH}$ | - | 24
19 | mA
mA | | | I _{SB2} ^[5] | V _{CC} standby current | $CE \ge (V_{CC} - 0.2 \text{ V})$. All others $V_{IN} \le 0.2 \text{ V}$ or $\ge (V_{CC} - 0.2 \text{ V})$. Standby current level after nonvolatile cycle is complete. Inputs are static. $f = 0 \text{ MHz}$. | - | 2.5 | mA | | | I _{IX} | Input leakage current | $V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}$ | -1 | +1 | μΑ | | | I _{OZ} | Off state output leakage current | $V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}, \overline{CE} \text{ or } \overline{OE} \ge V_{IH} \text{ or } \overline{WE} \le V_{IL}$ | - 5 | +5 | μΑ | | | V_{IH} | Input HIGH voltage | | 2.2 | V _{CC} + 0.5 | V | | | V_{IL} | Input LOW voltage | | V _{SS} – 0.5 | 8.0 | V | | | V _{OH} | Output HIGH voltage | I _{OUT} = –4 mA | 2.4 | - | V | | | V_{OL} | Output LOW voltage | I _{OUT} = 8 mA | - | 0.4 | V | | | V_{BL} | Logic '0' voltage on
HSB output | I _{OUT} = 3 mA | ı | 0.4 | V | | | V_{CAP} | Storage capacitor | Between V_{CAP} pin and V_{SS} , 6 V rated. 68 μ F \pm 20% nominal | 54 | 260 | μF | | V_{CC} reference levels throughout this data sheet refer to V_{CC} if that is where the power supply connection is made, or V_{CAP} if V_{CC} is connected to ground. CE ≥ V_{IH} does not produce standby current levels until any nonvolatile cycle in progress has timed out. # **Data Retention and Endurance** | Parameter | Description | Min | Unit | |-------------------|------------------------------|-------|-------| | DATA _R | Data retention | 100 | Years | | NV _C | Nonvolatile STORE operations | 1,000 | K | # Capacitance In the following table, the capacitance parameters are listed. [6] | Parameter | Description | Test Conditions | Max | Unit | |------------------|--------------------|--|-----|------| | C _{IN} | Input capacitance | $T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz},$ | 8 | pF | | C _{OUT} | Output capacitance | $V_{CC} = 0 \text{ to } 3.0 \text{ V}$ | 7 | pF | # **Thermal Resistance** In the following table, the thermal resistance parameters are listed. [6] | Parameter | Description | Test Conditions | 28-CDIP | 28-LCC | Unit | |---------------|--|--|---------|--------|------| | Θ_{JA} | Thermal resistance (junction to ambient) | Test conditions follow standard test methods and procedures for measuring thermal impedance, per | TBD | TBD | °C/W | | Θ_{JC} | Thermal resistance (junction to case) | EIA / JESD51. | TBD | TBD | °C/W | Figure 7. AC Test Loads # **AC Test Conditions** | Input Pulse Levels | .0 V to 3 V | |--|------------------| | Input Rise and Fall Times (10% to 90%) | <u><</u> 5 ns | | Input and Output Timing Reference Levels | 1.5 | #### Note ^{6.} These parameters are guaranteed by design and are not tested. # **AC Switching Characteristics SRAM Read Cycle** | Par | ameter | | 35 ns | | 55 | ns | | |---------------------------------|---------------------------------------|-----------------------------------|-------|-----|-----|-----|------| | Cypress
Parameter | Alt | Description | Min | Max | Min | Max | Unit | | t _{ACE} | t _{ELQV} | Chip enable access time | - | 35 | _ | 55 | ns | | t _{RC} [7] | t _{AVAV} , t _{ELEH} | Read cycle time | 35 | _ | 55 | _ | ns | | t _{AA} [8] | t _{AVQV} | Address access time | _ | 35 | _ | 55 | ns | | t _{DOE} | t_{GLQV} | Output enable to data valid | - | 15 | _ | 35 | ns | | t _{OHA} [8] | t _{AXQX} | Output hold after address change | 5 | _ | 5 | _ | ns | | t _{LZCE} [9] | t _{ELQX} | Chip enable to output active | 5 | _ | 5 | _ | ns | | t _{HZCE} [9] | t _{EHQZ} | Chip disable to output inactive | - | 10 | _ | 12 | ns | | t _{LZOE} [9] | t _{GLQX} | Output enable to output active | 0 | _ | 0 | _ | ns | | t _{HZOE} [9] | t _{GHQZ} | Output disable to output inactive | _ | 10 | _ | 12 | ns | | t _{PU} ^[10] | t _{ELICCH} | Chip enable to power active | 0 | _ | 0 | _ | ns | | t _{PD} ^[10] | t _{EHICCL} | Chip disable to power standby | _ | 35 | _ | 55 | ns | # **Switching Waveforms** Figure 8. SRAM Read Cycle 1: Address Controlled $^{[7,\,8]}$ Figure 9. SRAM Read Cycle 2: $\overline{\text{CE}}$ and $\overline{\text{OE}}$ Controlled [7] - 7. WE and HSB must be High during SRAM Read cycles. 8. Device is continuously selected with CE and OE both Low. 9. Measured ±200 mV from steady state output voltage. - 10. These parameters are guaranteed by design and are not tested. # **SRAM Write Cycle** | Parameter | | | 35 ns | | 55 ns | | | |---------------------------|---------------------------------------|----------------------------------|-------|-----|-------|-----|------| | Cypress
Parameter | Alt | Description | Min | Max | Min | Max | Unit | | t _{WC} | t _{AVAV} | Write cycle time | 35 | _ | 55 | - | ns | | t _{PWE} | t _{WLWH} , t _{WLEH} | Write pulse width | 25 | _ | 45 | _ | ns | | t _{SCE} | t _{ELWH} , t _{ELEH} | Chip enable to end of write | 25 | _ | 45 | _ | ns | | t _{SD} | t _{DVWH} , t _{DVEH} | Data setup to end of write | 12 | _ | 25 | _ | ns | | t _{HD} | t _{WHDX} , t _{EHDX} | Data hold after end of write | 0 | _ | 0 | _ | ns | | t _{AW} | t _{AVWH} , t _{AVEH} | Address setup to end of write | 25 | _ | 45 | _ | ns | | t _{SA} | t _{AVWL} , t _{AVEL} | Address setup to start of write | 0 | _ | 0 | _ | ns | | t _{HA} | t _{WHAX} , t _{EHAX} | Address hold after end of write | 0 | _ | 0 | _ | ns | | t _{HZWE} [11,12] | t_{WLQZ} | Write enable to output disable | _ | 13 | _ | 15 | ns | | t _{LZWE} [11] | t_{WHQX} | Output active after end of write | 5 | _ | 5 | _ | ns | # **Switching Waveforms** Figure 10. SRAM Write Cycle 1: WE Controlled [13, 14] Figure 11. SRAM Write Cycle 2: $\overline{\text{CE}}$ Controlled [13, 14] - 11. Measured ±200 mV from steady state output voltage. 12. If WE is Low when CE goes Low, the outputs remain in the high impedance state. 13. HSB must be high during SRAM Write cycles. 14. CE or WE must be greater than V_{IH} during address transitions. # **AutoStore or Power Up RECALL** | Parameter | Alt | Description | STK12 | Unit | | |-----------------------------------|---------------------------------------|---|---|------|------| | Parameter | | Description | Min | Max | Onit | | t _{HRECALL} [17] | t _{RESTORE} | Power up RECALL duration | ver up RECALL duration – 550 | | μS | | t _{STORE} [18, 19, 20] | t _{HLHZ} | STORE cycle duration | DRE cycle duration – 10 | | ms | | t _{DELAY} [15, 19] | t _{HLQZ} , t _{BLQZ} | ime allowed to complete SRAM cycle 1 - | | _ | μS | | V _{SWITCH} | | ow voltage trigger level 4.0 4.5 | | V | | | V _{RESET} | | Low voltage reset level | _ | 3.9 | V | | t _{VCCRISE} | | V _{CC} rise time | 150 | _ | μ\$ | | t _{VSBL} ^[16] | | Low voltage trigger (V _{SWITCH}) to HSB Low | Itage trigger (V _{SWITCH}) to HSB Low – 300 | | ns | # **Switching Waveform** Figure 12. AutoStore/Power Up RECALL - 15. Measured ±200 mV from steady state output voltage. 16. HSB must be high during SRAM Write cycles. - 17. t_{HRECALL} starts from the time V_{CC} rises above V_{SWITCH}-18. $\overline{\text{CE}}$ and $\overline{\text{OE}}$ low for output behavior. 19. $\overline{\text{CE}}$ and $\overline{\text{OE}}$ low and WE high for output behavior. - 20. HSB is asserted low for 1us when V_{CAP} drops through V_{SWITCH}. If an SRAM Write has not taken place since the last nonvolatile cycle, HSB is released and no store # **Software Controlled STORE/RECALL Cycle** The software controlled STORE/RECALL cycle follows. [23] | Parameter | Alt | Description | 35 ns | | 55 ns | | Unit | |-----------------------------------|-------------------|------------------------------------|-------|-----|-------|-----|------| | Farailletei | | | Min | Max | Min | Max | Onne | | t _{RC} ^[21] | t _{AVAV} | STORE/RECALL initiation cycle time | 35 | _ | 55 | _ | ns | | t _{SA} ^[22] | t _{AVEL} | Address setup time | 0 | _ | 0 | _ | ns | | t _{CW} ^[22] | t _{ELEH} | Clock pulse width | 25 | _ | 30 | _ | ns | | t _{HACE} ^[22] | t _{ELAX} | Address hold time | 20 | _ | 20 | _ | ns | | t _{RECALL} | | RECALL duration | _ | 20 | - | 20 | μS | # **Switching Waveform** Figure 13. CE Controlled Software STORE/RECALL Cycle [23] ^{21.} $\overline{\text{CE}}$ and $\overline{\text{OE}}$ low for output behavior. 22. The software sequence is clocked on the falling edge of $\overline{\text{CE}}$ without involving $\overline{\text{OE}}$ (double clocking aborts the sequence). 23. The six consecutive addresses must be read in the order listed in Table 1 on page 7. $\overline{\text{WE}}$ must be HIGH during all six consecutive cycles. # **Hardware STORE Cycle** | Parameter | Alt | Description | STK12 | Unit | | |-----------------------------|--|------------------------------------|-------|------|-------| | Parameter | | Description | Min | Max | Oilit | | t _{STORE} [25, 26] | t _{HLHZ} | STORE cycle duration | - | 10 | ms | | t _{DHSB} [26, 24] | t _{RECOVER} , t _{HHQX} | Hardware STORE High to inhibit Off | _ | 700 | ns | | t _{PHSB} | t _{HLHX} | Hardware STORE pulse width | 15 | _ | ns | | t_{HLBL} | | Hardware STORE Low to STORE busy | _ | 300 | ns | # **Switching Waveform** Figure 14. Hardware STORE Cycle ^{24.} t_{DHSB} is only applicable after t_{STORE} is complete. 25. Measured ±200 mV from steady state output voltage. 26. CE and OE low for output behavior. # **Part Numbering Nomenclature** # STK12C68 - 5 C 35 M Temperature Range: M - Military (-55 °C to 125 °C) Speed: 35 - 35 ns 55 - 55 ns Package: C = Ceramic 28-pin 300 mil DIP (gold lead finish) K = Ceramic 28-pin 300 mil DIP (Solder dip finish) L = Ceramic 28-pin LCC $5 = Military (10 years or <math>10^5 cycles)$ # SMD5962 - 94599 01 MX X # **Ordering Information** | Speed (ns) | Ordering Code | Package Diagram | Package Type | Operating Range | |------------|----------------|-----------------|-----------------------|-----------------| | 35 | STK12C68-5C35M | 001-51695 | 28-pin CDIP (300 mil) | Military | | | STK12C68-5L35M | 001-51696 | 28-pin LCC (350 mil) | | | 55 | STK12C68-5C55M | 001-51695 | 28-pin CDIP (300 mil) | | | | STK12C68-5L55M | 001-51696 | 28-pin LCC (350 mil) | | The above table contains Final information. Contact your local Cypress sales representative for availability of these parts # **Package Diagrams** Figure 15. 28-Pin (300-Mil) Side Braze DIP (001-51695) - 1. ALL DIMENSIONS ARE IN INCHES AND MILLIMETERS [MIN/MAX] - 2. PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress Web - 3. JEDEC REFERENCE : MO-058 001-51695 *C # Package Diagrams (continued) Figure 16. 28-Pad (350-Mil) LCC (001-51696) - 1. ALL DIMENSION ARE IN INCHES AND MILLIMETERS [MIN/MAX] - 2. JEDEC 95 OUTLINE# MO-041 - ${\it 3. PACKAGE\ WEIGHT:\ See\ Cypress\ Package\ Material\ Declaration\ Datasheet}\quad \hbox{(PMDD)\ posted\ on\ the\ Cypress\ Web}$ 001-51696 *C # **Acronyms** | Acronym | Description | | | |---------|---|--|--| | CE | chip enable | | | | CMOS | complementary metal oxide semiconductor | | | | I/O | input/output | | | | nvSRAM | nonvolatile static random access memory | | | | OE | output enable | | | | SRAM | static random access memory | | | | TTL | transistor-transistor logic | | | | WE | write enable | | | # **Document Conventions** # **Units of Measure** | Symbol | Unit of Measure | | | |--------|-----------------|--|--| | °C | degrees Celsius | | | | kΩ | kilohm | | | | μΑ | microampere | | | | mA | milliampere | | | | μF | microfarad | | | | μS | microsecond | | | | ms | millisecond | | | | ns | nanosecond | | | | pF | picofarad | | | | V | volt | | | | Ω | ohm | | | | W watt | | | | # **Document History Page** | | Document Title: STK12C68-5 (SMD5962-94599), 64 Kbit (8 K x 8) AutoStore nvSRAM
Document Number: 001-51026 | | | | | | | |-----|--|--------------------|--------------------|--|--|--|--| | Rev | ECN No. | Orig. of
Change | Submission
Date | Description of Change | | | | | ** | 2666844 | GVCH/PYRS | 03/02/09 | New datasheet | | | | | *A | 3528539 | GVCH | 02/17/2012 | Added Acronyms, Document Conventions, and Table of Contents. Updated Package Diagrams 001-51695 (from Rev ** to *A) and 001-51696 (from Rev ** to *A). Completing sunset review. | | | | | *B | 4568935 | GVCH | 11/14/2014 | Added documentation related hyperlink Removed 02 pruned parts - STK12C68-5K35M, STK12C68-5K55M Updated package diagram - 001-51695*A to 001-51695*B and 001-51696*A to 001-51696*B | | | | | *C | 4706588 | GVCH | 04/02/2015 | Updated package diagrams from 001-51695*B to 001-51695*C and 001-51696*B to 001-51696*C | | | | # Sales, Solutions, and Legal Information #### **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. #### **Products** Automotive cypress.com/go/automotive cypress.com/go/clocks lnterface cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc Memory cypress.com/go/memory Optical & Image Sensing cypress.com/go/image PSoC cypress.com/go/psoc Touch Sensing cypress.com/go/touch USB Controllers cypress.com/go/USB Wireless/RF cypress.com/go/wireless #### **PSoC Solutions** psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5 © Cypress Semiconductor Corporation, 2009-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 001-51026 Rev. *C Revised April 2, 2015 Page 18 of 18