IPS1025HF, IPS1025HFQ

Datasheet

High efficiency, high-side switch with extended diagnostics, smart driving for capacitive loads and short propagation delay at power-on

Product status link IPS1025HF IPS1025HFQ Product label

Features

- 8.65 V to 60 V operating supply voltage range
- 2.4 A operating output current
- Smart driving of capacitive load
- Fast demagnetization of inductive loads
- Under-voltage lock-out
- V_{CC} over-voltage protection
- Output overload and over-temperature protection
- Case over-temperature protection
- Ground disconnection protection
- Overload and over-temperature event diagnostic pins
- Designed to meet IEC 61000-4-2, IEC 61000-4-4, IEC 61000-4-5
- Packages: PowerSSO-24 and QFN48L 8x6x0.9 mm

Applications

- Programmable logic control
- Vending machines
- Industrial PC peripheral input/output
- Numerical control machines
- General high-side switch applications

Description

The IPS1025HF and IPS1025HFQ are single high-side switch ICs able to drive capacitive, resistive or inductive loads with one side connected to ground.

The 60 V operating range and $R_{DS-ON} = 12 \text{ m}\Omega$ (typ.), combined with the extended diagnostic (Over Load, Over-temperature) and the < 60 us propagation delay time at startup (enabling Class 3 for interface types C and D), make the IC suitable for applications implementing the proper architectures to address higher SIL levels.

The very low R_{DS-ON} ($\leq 25 \text{ m}\Omega$ up to $T_J = 125 \text{ °C}$) makes the IC suitable for the applications with up to 2.4 A steady state operating current.

The output channel is protected against junction over-temperature events by a junction temperature sensor, and a further temperature sensor is included to monitor case temperature, so the overheated output channel can only be turned back ON when the case temperature returns below the reset temperature.

The embedded overload protection circuit monitors the output current and, on triggering of the activation threshold (I_{PK}), starts modulating the impedance of the output switch to limit the output current to I_{LIM} , for both IC and load protection.

The IC offers two different sets of activation threshold and limitation levels (I_{PKH} , I_{LIMH} and I_{PKL} , I_{LIML}) for smart driving of capacitive loads (such as bulb lamps) and loads with initial peak current requirements.

The IC diagnostics is based on FLT_1 and FLT_2 pins (both current source); activated by respective overload or overtemperature events on the output channel.

1 Block diagram

2 Pin connection

Figure 2. Pin connections (top through view)

Table 1. Pin descriptions

	Pin no.		
PSSO24	QFN48L	Name	Description
1, exposed pad	exposed pad	VCC	Supply voltage
2,3	1,2,4,5,7,8,9,10,11,12,14,16,25,26,2 7,28,29,30,31,32,33,34,43,45,47	NC	Internally not connected. If necessary, these pins can be routed in the application
4	13	FLT2	Overload event diagnostic pin
5 to 20	17 to 24, 35 to 42	OUT	Power stage output channel. Short these pins on the same net of the
21	46	FLT1	application board Over-temperature event diagnostic pin
22	48	IPD	Initial current duration / level selector. Connect to GND by a capacitor to set duration of I_{PKH} (see Section 7.3 and Table 9). Connect to IN pin by a 220 k Ω resistor to disable initial I_{PKH} threshold (the over-current limit is only I_{PKL}). Connect to GND by a 10 k Ω resistor to disable I_{PKL} (the over-current threshold is only I_{PKH}). Note: Leaving I_{PD} floating is equivalent to a 1 µs duration for I_{PKH} .
23	3	IN	Input
24	6	GND	Device ground

3 Absolute maximum ratings

Absolute maximum ratings are the values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All voltages are referenced to GND.

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.3 to 65	V
I _{CC}	Maximum DC reverse current (from GND to $V_{\mbox{CC}}$)	-250	mA
I _{OUT}	Output stage current	Internally limited	А
-I _{OUT}	Reverse current (from OUT to V _{CC})	5	А
VIN	IN pin voltage	-0.3 to V_{CC}	V
I _{IN}	IN pin current	-10/+10	mA
V _{PD}	I _{PD} pin voltage	-0.3 to 5.5	V
I _{PD}	I _{PD} pin current	-1/+10	mA
V _{FAULT}	FLT pins voltage	-0.3 to 5.5	V
I _{FAULT}	FLT pins current	-1 ⁽¹⁾ /+10	mA
F	Single pulse avalanche energy	14 ⁽²⁾	J
E _{AS}	$(T_{AMB} = 125 \text{ °C}, V_{CC} = 24 \text{ V}, I_{OUT} = 2 \text{ A})$	5.8 ⁽³⁾	J
P _{TOT}	Power Dissipation at T_C = 25 °C	Internally limited	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Junction Operating Temperature	Internally limited	°C
T _C	Case Operating Temperature	-40 to 150	°C

Table 2. Absolute maximum ratings

1. intended as worst case when IC is in normal operation (no fault)

2. IPS1025HF

3. IPS1025HFQ

4 Thermal data

Table 3. Thermal data

Symbol	Parameter	PSSO24	QFN48L	Unit
R _{th(JC)} ⁽¹⁾	Thermal resistance junction-case	0.7	1	°C/W
R _{th(JA)} ⁽²⁾	Thermal resistance junction-ambient	22	26	°C/W

1. Rth between the die and the bottom case surface measured by cold plate as per JESD51.

2. JESD51-7.

5 Electrical characteristics

(8.65 V < V_{CC} < 60 V; -40 °C < T_J < 125 °C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{UVON}	Under-voltage ON threshold	-	7.4	-	8.65	V
V _{UVOFF}	Under-voltage OFF threshold	-	6.5	-	7.8	V
V _{UVH}	Under-voltage hysteresis	-	0.7	0.95	-	V
		V _{CC} = 24 V, IN = GND, OUT = open load	0.28	-	0.64	mA
I _{SOFF}	Supply current in OFF state	V _{CC} = 36 V, IN = GND, OUT = open load	0.28	-	0.64	mA
		V _{CC} = 60 V, IN = GND, OUT = open load	0.29	-	0.685	mA
		V_{CC} = 24 V, IN = 5 V, OUT = open load	1.05	-	2.25	mA
I _{SON}	Supply current in ON state	V_{CC} = 36 V, IN = 5 V, OUT = open load	1.15	-	2.35	mA
	-	V_{CC} = 60 V, IN = 5 V, OUT = open load	1.35	-	2.55	mA

Table 4. Supply

Table 5. Output stage

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Press	On state registeres	$V_{CC} = 24$ V, R _{LOAD} = 12 Ω, @ T _J = 25 °C	-	12	15	mΩ
R _{DSON}	On-state resistance	V _{CC} = 24 V, R _{LOAD} = 12 Ω, @ T _J = 125 °C	-	-	25	mΩ
V _{OUT(OFF)}	OFF state output voltage	$V_{IN} = 0 V$ and $I_{OUT} = 0 A$	-	-	2	V
I _{OUT(OFF)}	OFF state output current	V _{IN} = 0 V, V _{OUT} = 0 V	-	-	10	μA

Table 6. Switching

(V_{CC}\, = 24 V; -40 °C < T_J < 125 °C, R_{LOAD}\, = 12 $\Omega,$ input rise time < 0.1 $\mu s)$

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _r	Rise time		-	30	60	μs
t _f	Fall time		-	25	60	μs
t _{PD(L-H)}	Propagation delay time IN to OUT, low to high		-	13	25	μs
t _{PD(H-L)}	Propagation delay time IN to OUT, high to low		-	60	100	μs
td(Vccon)	Propagation delay time IN to OUT at power-on	V_{IN} = V_{CC} and rising from 0 to 24 V	5	-	60	μs

Figure 3. Timing

Table 7. Input pin (IN)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _{IL}	Input pin low level voltage	-	-	-	0.8	V
VIH	Input pin high level voltage	-	2.2	-	-	V
V _{I(HYST)}	Input pin hysteresis voltage	-	-	0.4	-	V
I	Input sin ourront	V _{IN} = V _{CC} = 36 V	-	-	200	
IIN	Input pin current	$V_{IN} = V_{CC} = 60 V$	-	-	600	μA

Table 8. Diagnostic pins (FLT₁, FLT₂)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
	IH _{FLT} Diagnostic pins source current in fault condition	V _{FLT} = 1 V (fault condition active)	-2.0	-	-4.0	mA
U IFLI		V _{FLT} = 5 V (fault condition active)	-0.4	-0.7	-1.0	mA
IL _{FLT}	Diagnostic pins leakage current	Normal operation V_{CC} = 60 V	0	-	-25	μA
BT _{FLT}	Diagnostic pins blanking time	@ T _J = 25 °C	200	-	470	μs
DIFLI		-	60	-	550	μs
VCL _{FLT}	Diagnostic pins clamp voltage	I _{FLT} = +1 mA	6	6.8	8	v
VOLFLT		I _{FLT} = -1 mA	-	-	0.7	V

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Uni
Overload	l with Dual Threshold Protection: I _{PD} pin to Gl	ND by C_{PD} (470 pF $\leq C_{PD} \leq 4$	7 0 nF); s	ee Section 7.3	.1	
I _{PKH}	Initial over-current activation threshold		-	15.4	-	A
I _{LIMH}	Initial over-current limitation level	-	6.25	9.0	11.75	A
D _{PK}	Time limit of Initial over-current	-	-	215*C _{PD} [nF]	-	μs
I _{PKL}	Steady state over-current activation threshold		-	8.0	-	A
I _{LIML}	Steady state over-current limitation level	V _{CC} = 24 V	2.5	3.5	4.5	A
I _{HYS}	Steady state output Current limitation hysteresis	-	-	0.3	-	A
I _{LIML-OFF}	Steady state over-current limitation deactivation threshold	_	-	I _{LIML} - I _{HYS}	-	A
Overload	I with Single Level (Lowest) Protection: I _{PD} pi	n connected to IN by 10 k Ω r	esistor;	see Section 7.	3.2	
I _{PKL}	Steady state over-current activation threshold		-	8.0	-	A
I _{LIML}	Steady state over-current limitation level		2.5	3.5	4.5	A
I _{HYS}	Steady state output Current limitation hysteresis	V_{CC} = 24 V	-	0.3	-	A
I _{LIML-OFF}	Steady state over-current limitation deactivation threshold		-	I _{LIML} -I _{HYS}	-	A
Overload	I with Single Level (Highest) Protection: I _{PD} pi	n connected to GND by 10 k	Ω resist	or; see Section	7.3.3	
I _{PKH}	Initial over-current activation threshold	$\gamma = 24\gamma$	-	15.4	-	A
I _{LIMH}	Initial over-current limitation level	V _{CC} = 24 V	6.25	9.0	11.75	A
Over-tem	perature protections	1			1	
T_{JSD}	Junction temperature shutdown	-	150	170	190	°C
T_{JR}	Junction temperature reset	-	-	150	-	°C
T _{JHYS}	Junction temperature hysteresis	-	-	20	-	°C
T _{CSD}	Case temperature shutdown	-	-	130	-	°C
T _{CR}	Case temperature reset	-	-	110	-	°C
T _{CHYS}	Case temperature hysteresis	-	-	20	-	°C
Ground o	disconnection/Wire break			1	1	
		V _{INX} = 24 V,				
I _{LGND}	GND disconnection output current	V _{CC} = 24 V,	-	-	0.5	m/
		V _{OUT} = 0 V				
V _{CC} over	-voltage					
V _{CLAMP}	V _{CC} Clamp Voltage	I _{CC} ≤ 10 mA	65.5	70.0	73.5	V
Demagne	etization of inductive load					
VDEMAG	Demagnetization Voltage	I _{OUT} = 0.5 A, Load ≥ 10 mH	Vcc-76	Vcc-72.5	Vcc-68	V

Table 9. Protections

Figure 4. High (left) and Low (right) I_{LOAD} control activation thresholds (I_{PK}) and limitation levels (I_{LIM})

6 Output Logic

Table 10. Output stage truth table

(L = pin voltage Low, H = pin voltage High, X = not determined)

Condition	IN	OUT	FLT1	FLT2
Normal Operation	L H	L H	L	L
Overload protection	L H	L X ⁽¹⁾	L	L H
Junction over-temperature protection (see Section 7.2 Over-temperature)	L H	L L	L H	L
Case over-temperature protection (see Section 7.2 Over-temperature)	L H	L L	L H	L
UVLO	L H	L L	X X	X X

1. Pin voltage = $I_{OUT} * R_{LOAD}$

Figure 5. Typical application diagram with opto-couplers

Figure 6. Typical application diagram without opto-couplers

7 Protections and diagnostic

The IC integrates several protections to help the design of robust applications.

7.1 Under-voltage lock-out

The IC is turned off if the voltage on V_{CC} pin falls below the turn-off threshold (V_{UVOFF}). Normal operation restarts after V_{CC} exceeds the turn-on threshold (V_{UVON}). Turn-on and turn-off thresholds are defined in Table 4.

7.2 Over-temperature

The device is protected against overheating in case of overload conditions. During the driving period (when the MCU is forcing the IN pin high), if the output is overloaded, the device suffers two different thermal stresses: one related to the junction temperature of each output channel, and the other related to the whole case temperature.

The two thermal faults (Thermal Junction and Thermal Case) have different trigger thresholds: T_{JSD} and T_{CSD} , respectively.

Usually, in thermal stress conditions due to overload, the junction thermal shutdown is the first protection that is activated: the output channel (OUT) is turned off when its junction temperature (T_J) is higher than the activation threshold (T_{JSD}) and turned back on when it falls below the reset threshold (T_{JR}). This behavior continues while overload on the output persists. When the thermal protection is active, the FLT₁ (current source) becomes active accordingly.

If the thermal protection is active and the temperature of the case (T_C) increases over the case protection threshold (T_{CSD}), then the thermal case protection is activated and the output is switched off until the junction temperature and case temperature fall below their respective reset thresholds (T_{CR} and T_{JR}). The FLT₁ pin is active even when thermal case events occur.

Figure 7 shows the thermal protection behavior, while Figure 8 shows typical temperature trends and output vs. input state.

7.3 Overload

The IC integrates an overload protection circuit consisting of an output current sensing section and an output current limitation section.

When the output channel is ON, the sensing circuitry monitors the current supplied to the load: if the activation threshold (I_{PK}) is triggered, then the current limitation control circuitry is activated to limit output current to the current limitation level (I_{LIM}) and FLT₂ pin is activated until the overload condition is removed.

See the following sections for details and Table 9 for specific activation thresholds and limitation levels.

Note that while the output channel operates below its activation threshold, the power dissipation can be calculated by $R_{ON} * I_{OUT} ^2$, but when the current limitation circuit is activated, power dissipation increases and can be calculated by $V_{DS} * I_{OUT}$, where V_{DS} is the voltage drop between the OUT and V_{CC} pins of the IC. In order to protect the IC against thermal stress, the over-temperature protection is always active and retains the highest priority.

7.3.1 Overload protection with dual threshold

This case is activated when the pin I_{PD} is connected to GND by a capacitor (C_{PD}) and the IC works with two activation thresholds I_{PKH} and I_{PKL} .

The I_{PKH} is active only in the limited time frame between the L-H transition of the IN signal and the D_{PK} delay defined by the following design rule:

$$D_{PK} \left[\mu s \right] = 215 \times CPD \left[nF \right]$$

The above design rule is valid in the range 470 pF \leq C_{PD} \leq 470 nF (see Table 9).

If the I_{PKH} is triggered within the D_{PK} time frame, then the output current is limited to I_{LIMH} .

After D_{PK} has elapsed, the IC operates with I_{PKL} activation threshold and I_{LIML} limitation level, respectively.

7.3.2 Overload protection with single (low) threshold

The user can set the activation threshold to I_{PKL} and the limitation level to I_{LIML} by connecting the I_{PD} pin to the IN pin with a 220 K Ω resistor.

This condition is equivalent to setting D_{PK} = 0 µs.

Note: Leaving I_{PD} floating is equivalent to having an initial peak duration of 1 µs.

7.3.3 Overload protection with single (high) threshold

The user can set the activation threshold to I_{PKH} and the limitation level to I_{LIMH} by connecting the I_{PD} pin to GND with a 10 K Ω resistor.

7.4 V_{CC} disconnection protection

 V_{CC} disconnection involves the disconnection of the module from the supply line. When this condition is detected, the output channel can be driven normally until the voltage on V_{CC} pin remains higher than the UVLO threshold. In case of inductive load, if the V_{CC} is disconnected while the channel is active, the energy stored in the inductance is discharged through the power switch thanks to the integrated demagnetization circuit.

7.5 GND disconnection protection

GND disconnection is the disconnection of the module from the reference line. When this condition occurs, the output channel is turned off regardless of the input status.

When this event occurs, the IC continues working normally until the voltage between V_{CC} and GND pins of the IC results $\geq V_{UVOFF}$. The voltage on the GND pin of the IC rises up to the supply rail voltage level. In case of a GND disconnection event, a current (I_{LGND}) flows through OUT pin.

For an inductive load, if the GND is disconnected while the output channel is active, the current flows through the power, which is activated by an active clamp as if the input had been deactivated.

Figure 10. Ground disconnection

8 Active clamp

Active clamp is also known as Fast Demagnetization of inductive loads or Fast Current Decay. When a high-side driver turns off an inductance, an under-voltage on output is detected.

The OUT pin is pulled-down to $V_{CC}-V_{DEMAG}$. The conduction state is modulated by an internal circuitry in order to keep the OUT pin voltage at $\sim V_{DEMAG}$ until the load energy has been dissipated. The energy is dissipated in both IC internal switch and load resistance.

Figure 13. Typical demagnetization: L vs I (single pulse) at V_{CC} = 24 V and T_{AMB} = 125 °C

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

9.1 Package mechanical data

57

Figure 16. PowerSSO-24 package, section B-B

Table 11. PowerSSO-	24 mechanical data
---------------------	--------------------

Or work all	[mm]				
Symbol	Min.	Nom.	Max.		
θ	0°	-	7°		
θ1	5°	-	10°		
θ2	0°	-	-		
А	-	-	2.42		
A1	0.005	-	0.09		
A2	2.23	2.28	2.33		
b	0.375	-	0.45		
b1	-	0.40	-		
С	0.24	-	0.30		
c1	0.20	0.20	0.30		
D		10.30 BSC			
D1	6.60	-	7.00		
D2	-	3.65	-		
D3	-	4.30	-		
е		0.80 BSC			
E		10.30 BSC			
E1		7.50 BSC			
E2	4.60	-	5.00		
E3	-	2.30	-		
E4	-	2.90	-		
G1	-	1.20	-		
G2	-	1.00	-		
G3	-	0.80	-		
h	0.30	-	0.40		
L	0.60	0.70	0.85		
L1		1.40 REF			
L2	0.25 BSC				
Ν	24				
R	0.30	-	-		
R1	0.20	-	-		
S	0.25	-	-		

Table 12. Toleranc	e of forms	and positions
--------------------	------------	---------------

Symbol	Tolerance of forms and positions
ааа	0.20
bbb	0.20
ссс	0.10
ddd	0.20
eee	0.10
fff	0.20
999	0.15

STMicroelectronics is not responsible for PCB-related issues. The footprint shown in the above figure is a suggestion which may differ from the customer PCB supplier design rules.

Symbol	[mm]			
Symbol	Min.	Nom.	Max.	
А	0.80	0.85	0.90	
A1	0.00	-	0.05	
A3		0.20 REF.		
b	0.20	0.20 0.25 0.3		
D		8.00 BSC		
е		0.50 BSC		
E		6.00 BSC		
D2	5.97	6.02	6.07	
E2	3.97	4.02	4.07	
L	0.365	0.40	0.435	
k	0.53	-	-	
Ν	48			

Table 13. QFN48L mechanical data

Table 14. Tolerance of forms and positions

Symbol	Tolerance of forms and positions
ааа	0.10
bbb	0.10
ccc	0.10
ddd	0.05
eee	0.08
fff	0.10

Figure 19. QFN48L suggested footprint [mm]

10 Packing information

10.1 Packing mechanical data

Figure 20. PowerSSO-24 tube shipment (no suffix)

Table 15. PowerSSO-24 tube shipment information

Description	Value
Base quantity	49
Bulk quantity	1225
Tube length (±0.5)	532
A	3.5
В	13.8
C (±0.1)	0.6

Figure 21. PowerSSO-24 reel shipment

All dimensions are in mm		
Description	Value	
Base quantity	1000	
Bulk quantity	1000	
A (max.)	330	
B (min.)	1.5	
C (±0.2)	13	
F	20.2	
G (2 ±0)	24.4	
N (min.)	100	
T (max.)	30.4	

Table 17. PowerSSO-24 tape dimension

All dimensions are in mm		
Description	Symbol	Value
Tape width	W	24
Tape hole spacing	P0 (± 0.1)	4
Component spacing	Р	12
Hole diameter	D (± 0.05)	1.55
Hole diameter	D1 (min.)	1.5
Hole position	F (± 0.1)	11.5
Compartment depth	K (max.)	2.85
Hole spacing	P1 (± 0.1)	2

Note:

According to the Electronic Industries Association (EIA) standard 481 rev. A, Feb 1986.

Item	Description
Ao	Pocket Length
Во	Pocket Width
Ко	Pocket Depth
Т	Tape Thickness

57

Figure 25. QFN48L carrier tape, Pin 1 indication

57/

11 Ordering information

Table 19. Ordering information

Part number	Package	Packaging
IPS1025HF	PowerSSO-24	Tube
IPS1025HFTR	F0wer550-24	Tape and reel
IPS1025HFQ	QFN48L 8x6x0.9 mm	Tape and reel

Revision history

Date	Version	Changes
28-Mar-2022	1	Initial release
28-Jun-2022	2	Corrected typo in "Description" (value of propagation delay time at startup). Table 4 : changed $V_{\rm UVON}$ max value. Some minor changes.
01-Aug-2022	3	Add QFN data: fig.2, 12, 15, 16, 20, 21, 22; tables 1, 2, 3, 12, 13, 17, 18.
05-Apr-2023	4	Modified table 1; updated BT_{FLT} data in table 8; add figure 13. Changed figure 14 and table 11, add figures 15, 16 and table 12 (par.9.1, PowerSSO-24 package mechanical data); some minor changes.

Table 20. Document revision history

Contents

1 Block diagram	2
2 Pin connection	3
3 Absolute maximum ratings	4
4 Thermal data	5
5 Electrical characteristics	6
6 Output Logic	
7 Protections and diagnostic	
7.1 Under-voltage lock-out	12
7.2 Over-temperature	12
7.3 Overload.	14
7.3.1 Overload protection with dual threshold	14
7.3.2 Overload protection with single (low) threshold	15
7.3.3 Overload protection with single (high) threshold	15
7.4 V _{CC} disconnection protection	15
7.5 GND disconnection protection	16
8 Active clamp	17
9 Package information	19
9.1 Package mechanical data	20
10 Packing information	
10.1 Packing mechanical data	26
11 Ordering information	
Revision history	
Contents	
List of tables	
List of figures	

List of tables

Table 1.	Pin descriptions
Table 2.	Absolute maximum ratings
Table 3.	Thermal data
Table 4.	Supply
Table 5.	Output stage
Table 6.	Switching
Table 7.	Input pin (IN)
Table 8.	Diagnostic pins (FLT ₁ , FLT ₂)
Table 9.	Protections
Table 10.	Output stage truth table
Table 11.	PowerSSO-24 mechanical data
Table 12.	Tolerance of forms and positions
Table 13.	QFN48L mechanical data
Table 14.	Tolerance of forms and positions
Table 15.	PowerSSO-24 tube shipment information
Table 16.	PowerSSO-24 reel information
Table 17.	PowerSSO-24 tape dimension
Table 18.	Standard SPC parameters
Table 19.	Ordering information
Table 20.	Document revision history

List of figures

Figure 1.	IPS1025HF/IPS1025HFQ block diagram	2
Figure 2.	Pin connections (top through view)	3
Figure 3.	Timing	7
Figure 4.	High (left) and Low (right) I_{LOAD} control activation thresholds (I_{PK}) and limitation levels (I_{LIM})	9
Figure 5.	Typical application diagram with opto-couplers	10
Figure 6.	Typical application diagram without opto-couplers	11
Figure 7.	Thermal protection flowchart	13
Figure 8.	Thermal protection plot	13
Figure 9.	Short-circuit behavior with dual threshold (T _{CASE} < T _{CSD})	15
Figure 10.	Ground disconnection	16
Figure 11.	Active clamp equivalent principle schematic	17
Figure 12.	Typical demagnetization: E vs I (single pulse) at V_{CC} = 24 V and T_{AMB} = 125 °C	17
Figure 13.	Typical demagnetization: L vs I (single pulse) at V _{CC} = 24 V and T _{AMB} = 125 $^{\circ}$ C	
Figure 14.	PowerSSO-24 package dimensions	20
Figure 15.	PowerSSO-24 package, section A-A	21
Figure 16.	PowerSSO-24 package, section B-B	21
Figure 17.	PowerSSO-24 suggested footprint [mm]	23
Figure 18.	QFN48L package dimensions.	24
Figure 19.	QFN48L suggested footprint [mm]	25
Figure 20.	PowerSSO-24 tube shipment (no suffix).	26
Figure 21.	PowerSSO-24 reel shipment	27
Figure 22.	PowerSSO-24 tape drawings	28
Figure 23.	QFN48L reel shipment reference	29
Figure 24.	QFN48L carrier tape dimensions.	30
Figure 25.	QFN48L carrier tape, Pin 1 indication	30

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics - All rights reserved