sparkfun

TART SOMETHING

Page 1 of 14

Graphic LCD Hookup Guide

Introduction

Remember the days when cell phones were still “dumb,” and they had
physical keypads and just a tiny monochrome LCD for a display? Now that
iPhones, Galaxies, and the like have revolutionized that market, those little
LCDs have to find a new purpose in life: adding customized graphical
displays to projects!

These 84x48 pixel black and white LCDs are what you might have found in
an old Nokia 3310. They’re not flashy, and they don’t have a lot of display
real-estate. But, they are easy to control. If you're looking to step up your
project’s user interface (Ul) game from simple displays or LEDs, this
graphic LCD is a good place to start.

In this tutorial we’ll show how to control these graphic LCDs with just an
Arduino and a few wires in between. We'll cover everything from hardware
assembly to example code, and beyond.

Required Materials

* Arduino, RedBoard or any Arduino-compatible board.

» Male headers (included with Retail Kit) to solder to the display and
make it breadboard compatible.

» Jumper wires to connect from breadboard to Arduino.

» Breadboard to tie everything together.

Suggested Reading

* What is an Arduino? — We'll use an Arduino to send commands and
display data to the LCD.
« Serial Peripheral Interface (SPI) — An SPI-like interface is used to
control the LCD.
* How to Use a Breadboard — The breadboard ties the Arduino to the
LCD.

Display Overview

Before diving into hookup and example code, let’s first take a look at the
LCD and its breakout board. On this page we’ll cover everything from the
pinout of the board to the interface used to control the display.

The Pinout

To interface with and power the graphic LCD, there are two, parallel 8-pin
headers above and below it. Flipping the board over, you'll find the labels
for each of the pins.

As you may be able to tell by the faint traces connecting them, each pin on
one header is connected to the parallel pin on the other side. Here are the
eight unique pins along with an overview of their purpose:

:I:mber E:::oel Pin Function(input/Output?Notes
4 vee Positive Input Supply range is between
power supply 2.7V and 3.3V
2 IGND Ground Input
3 ISCE Chip select Input Active low
4 RST Reset Input Active low
Select between command
5 D/C Mode select Input mode (low) and data mode
(high).
6 DIVTOSI) Serial data in Input
7 SCLK | Serial clock Input
LED Maximum voltage supply is
8 LED backlight Input
3.3V.
supply

Power Supplies

There are two different supply voltages on the LCD. The most important
supply voltage — VCC — supplies the logic circuits inside the LCD. The
datasheet states this should be between 2.7 and 3.3V. In a normal state,
the LCD will consume about 6 or 7mA.

Page 2 of 14

The second voltage supply is required for the LED backlights on the board.
If you were to remove the LCD from the PCB (not that you should, or need
to), you'd see that these are backlights in their simplest form — four white
LEDs spaced around the edges of the board. You may also notice that
there aren’t any current limiting resistors.

]

]

This means you have to be careful with this voltage supply. Either stick a
current limiting resistor in series with the ‘LED’ pin, or limit the supply to
3.3V max. The LEDs can pull a lot of current! With nothing to limit them,
they’ll pull about 100mA at 3.3V.

The Control Interface

Built into this LCD is a Philips PCD8544 display controller, which converts
the massive parallel interface of the raw LCD to a more convenient serial
one. The PCD8544 is controlled through a synchronous serial interface
similar to SPI. There are clock (SCLK) and data (DN) input lines, and an
active-low chip select (SCE) input as well.

On top of those three serial lines, there is another input — D/C — which tells
the display whether the data it’s receiving is a command or displayable
data.

For a list of commands, check out the “Instructions” section of the PCD8544
datasheet (page 11). There are instructions to enable clearing of the
display, inverting the pixels, powering it down, and more.

Hardware Assembly & Hookup

Before we get to uploading code and sending data to the display, let’s take
care of the hardware stuff first. That includes assembling the display, and
hooking it up to the Arduino.

Assembly

To “assemble” the LCD, you'll need to solder something to one (or both) of
the 8-pin headers. There are plenty of options available here. To make the
LCD breadboard-compatible, straight or right-angle male headers can be
soldered in.

LCD with strait male headers soldered in, plugged into a mini blue
breadboard.

Otherwise, wires or other connectors can be soldered to the display pins.

Page 3 of 14

Hookup

In this example we’ll be connecting the LCD up to an Arduino, but this
hookup should be easily adaptable to other development platforms. For the
data transmission pins — SCLK and DN(MOSI) — we’ll use the Arduino’s
hardware SPI pins, which will help to achieve a faster data transfer. The
chip select (SCE), reset (RST), and a data/command (D/C) pins can be
connected to any digital I/O pin. Finally, the LED pin should be connected
to a PWM-capable Arduino pin, so we can dim the backlight as we please.

Unfortunately, the LCD has a maximum input voltage of 3.6V, so we can’t
hook up a standard 5V Arduino straight to it. We need to shift levels. This
leads us to a few options for hookup:

Direct Connect

The easiest hookup is to connect the Arduino pins directly to the LCD. To
allow for this easy hookup, you'll need a 3.3V-operating Arduino like the
3.3V/8MHz Pro or 3.3V Pro Mini.

This setup can work for 5V Arduino’s, ignoring the 3.6V limit on the V¢c and
data lines. We've done this. It works. But it may decrease your LCD’s life.

The data pins are connected as follows:

LCDPin [2r9UIN® Iyotes
Pin
1-VCC |3.3V (VCC) 3.3V only (not 5V!)
2-GND GND
3-SCE 7 Can be any digital pin.
4 -RST 6 Can be any digital pin.
5-DI/C 5 Can be any digital pin.
(?VI-ODS’\II) 11 Can't be moved.
SCLK 13 Can't be moved.
LED 9 Can be any PWM pin. 330Q resistor in between
the pins.

Limiting Resistors

Sticking resistors in-line with the data signals is a cheap, and easy way to
add some protection to the 3.3V lines. If you have an Arduino Uno (or
similar 5V ‘duino) and some 10kQ and 1kQ resistors lying around, try this:

The pins are connected the same as in the above example, however each
signal has an inline resistor. There are 10kQ resistors between the SCLK,
DN, D/C, and RST pins. A 1kQ resistor between SCE and pin 7. And the
330Q resistor remains between pin 9 and the LED pin.

Level Converters

Page 4 of 14

Page 5 of 14

Finally, a third option for hookup is to use actual level converters to switch
between 5V and 3.3V. Boards like the Bi-Directional Logic Level Converter
and the TXB0104 are perfect for something like this.

Unfortunately, the LCD has five 3.3V signal inputs and the level shifters
only have four channels. If you want to keep the circuit to a single shifter,
you can permanently tie RST high (through a 10kQ resistors), and run the
other signals through the shifter. You lose remote reset capability, but the
rest of the control remains.

Check out the hook up guides for those boards for more help in shifting the
signal between Arduino and LCD.

Example Code 1: LCD Demo

With the hardware all hooked up, we're ready to upload a sketch and start
drawing on the LCD!

The Sketch

Note: This example assumes you are using the latest version of the
Arduino IDE on your desktop. If this is your first time using Arduino,
please review our tutorial on installing the Arduino IDE.

Download, unzip, open the sketch from the GitHub repository.

EXAMPLE SKETCH (ZIP) https://github.com/sparkfun/GraphicLCD_Nokia_5110/archive/master.zip

Below is a snippet of the example LCD control code. This small novella of a
sketch shows off an array of graphics driver functions, character drawing
tools, and other useful functions to help you get started using the LCD. You
will need to include the LCD_Functions.h header in the same directory as
the sketch folder from the download. Otherwise, your code will not compile
when uploading to Arduino.

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text

darroll_vasek
Typewritten Text
https://github.com/sparkfun/GraphicLCD_Nokia_5110/archive/master.zip

darroll_vasek
Typewritten Text

/* Nokia 5100 LCD Example Code
Graphics driver and PCD8544 interface code for SparkFun's
84x48 Graphic LCD.
https://www.sparkfun.com/products/10168

by: Jim Lindblom
adapted from code by Nathan Seidle and mish-mashed with
code from the ColorLCDShield.
date: October 10, 2013
license: Officially, the MIT License. Review the included Li
cense.md file
Unofficially, Beerware. Feel free to use, reuse, and modify
this
code as you see fit. If you find it useful, and we meet some
day,
you can buy me a beer.

This all-inclusive sketch will show off a series of graphics

functions, like drawing lines, circles, squares, and text. T
hen

it'11l go into serial monitor echo mode, where you can type

text into the serial monitor, and it'll be displayed on the

LCD.

This stuff could all be put into a library, but we wanted to
leave it all in one sketch to keep it as transparent as poss

ible.

Hardware: (Note most of these pins can be swapped)

Graphic LCD Pin ---------- Arduino Pin
1-VCC mmmmmmmmmeeeee- 5V
2-GND e GND
3-SCE mmmmmmmmmmeeeee- 7
4-RST mmmmmmmemmeeeees 6
5-D/C mmmmmmmmmmeeeee- 5
6-DN(MOSI) =-=-=----====mmmmm- 11
7-SCLK mmmmmmmemeeeees 13
8-LED - 330 Ohm res -- 9

The SCLK, DN(MOSI), must remain where they are, but the oth
er
pins can be swapped. The LED pin should remain a PWM-capabl

e

pin. Don't forget to stick a current-limiting resistor in 1
ine

between the LCD's LED pin and Arduino pin 9!
*/

#include <SPI.h>
#include "LCD_Functions.h"

/* This array is the same size as the displayMap. We'll use it
as an example of how to draw a bitmap. xkcd comic transposing
makes for an excellent display application.

For reference, see: http://xkcd.com/149/ */

static const char xkcdSandwich[504] PROGMEM = {

OxFF, 0x8D, Ox9F, 0x13, 0x13, @xF3, 0x01l, 0x01, OxF9, OxF9, Ox
01, 0x81, OxF9, OxF9, Ox01, OXF1,

OxF9, 0x09, 0x09, OXFF, OXFF, @xF1, OXF9, 0x09, 0x09, OXF9, Ox
F1, 0x01, ©x01, Ox01l, Ox01l, 0x01,

OxF9, OxF9, 0x09, OXF9, Ox@9, OXF9, OxF1l, 0x01, OxCl, OXE9, Ox
29, 0x29, OxF9, OxFl, 0x01, OxFF,

OxFF, 0x71, 0xD9, 0x01, Ox@1, BxF1l, OXF9, 0x29, 0x29, OxB9, Ox
Bl, Ox01, 0x01, 0x01l, OxFl, OxF1,

ox11, OxF1l, OxF1l, OxF1l, OxEl, @x@1, OxE1l, OxF1l, Ox51, 0x51, Ox
71, ox61, 0x01, 0x01, OxCl, OxF1,

Page 6 of 14

ox31, 0x31, OxFl, OxFF, OxFF, 0x00,
60, OxEQ, oxA0, 0x01, Ox01, 0x81,
OxE1l, Ox61, 0Ox60, 0xCO, 0x01, OxE1l,
C1l, ox01, oxCl, OxEl, 0x20, 0x20,
OxFC, OxFC, OxE@, OxEQ, oxCl, OxEl,
01, OxFC, OxFC, ox21, 0x21, OxE1l,
oxCl, OxE5, OxE4, 0x0l1l, oxCl, OxEo,
01, OxFD, OxFD, 0x21, 0x20, OxE@,
0x00, 0x00, 0x01, 0x01, OxCO, Ox61,
Co, 0x81, 0x01, 0x01, 0x01, 0x00,
0x00, 0x00, 0x00, 0x01, 0x01l, 0x01,
00, 0x00, 0x00, 0x01, 0x03, 0x02,
0x03, 0x01, 0x00, 0x01, 0x03, OxF2,
1B, 0x10, 0x60, OXE3, 0x03, 0x00,
0x01, 0x03, 0x02, 0x02, 0x03, 0x03,
00, 0x03, 0x03, 0x00, 0x00, 0x03,
Ox03, 0x00, 0x00, 0x03, 0x03, 0x03,
02, 0x02, 0x03, 0x01l, 0x00, 0x03,
Ox03, 0x00, 0x00, 0x03, 0x00, 0x00,
80, 0Ox80, 0x80, 0Ox60, Ox3F, 0x07,
Ox00, 0x00, Ox00, 0x00, 0x00, 0x00,
00, OxFF, OxFF, 0x00, 0x00, 0x00,
Ox00, 0x00, 0Ox00, 0x00, OXFE, 0x01,
3E, OxE8, OxF8, OxFo, oxDo, 0x90,
Ox18, OxOF, Ox00, 0x00, 0x00, 0x00,
00, 0x00, 0x00, Ox00, 0x00, 0x00,
Ox00, 0x00, Ox00, 0x00, 0x00, 0x00,
00, 0x00, 0x00, 0x00, 0x00, 0x00,
Ox00, 0x00, Ox00, 0x00, 0x00, 0x00,
00, 0x00, 0x00, OxCO, Ox38, OXFF,
Ox0C, 0x38, OxEQ, 0x80, 0x00, 0x00,
00, Ox00, 0x00, Ox00, 0x00, OXFF,
OxFF, 0x00, 0x00, 0x00, 0x00, 0x00,
00, 0x00, 0x00, 0x00, 0x00, 0x33,
Ox5F, Ox8F, 0Ox84, 0x05, 0x07, 0x06,
14, 0x34, 0x68, 0x88, 0xD8, 0x70,
0x00, 0x00, 0Ox00, 0x00, 0x00, OXEO,
EQ, Ox00, OxFO, OxFO, 0x00, 0x80,
Ox80, 0x00, 0x00, 0x80, Ox80, 0x80,
00, Ox80, 0x00, 0x00, 0x20, 0x38,
OXOE, 0x01, 0OxCO, Ox3F, OxEQ, 0x00,
00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, OxFF, OxFF, 0x80,
80, Ox80, 0xB6, OxED, 0xCO, 0xCo,
0xCoO, OxEQ, OxAQ, OxAQ, OxAQ, OxAQ,
Al, OxAl, OxAl, OxE1l, OxEl, oxC1,
OxEF, OxBB, 0x83, 0x86, 0x88, 0xB0O,
90, 0x90, 0x90, Ox9F, Ox8F, 0x890,
Ox9F, Ox9F, 0x87, 0x8D, 0x98, 0x80,
9F, ©oxCo, oxC7, OxFF, oxB8, Ox8F,
0x80, 0x90, 0x90, 0xCO, OxFo, OxS8E,
B8, OxEQ, 0x80, 0x80, 0Ox80, 0x80,
0x80, 0x80, 0Ox80, 0x80, 0x80, 0x80,
s

void setup()

{
Serial.begin(9600);

ox01,

OxE1,

OxEQ,

0x20,

ox31,

oxo1,

ox1A,

0x00,

oxe3,

0x00,

0x00,

ox01,

0x00,

0x00,

0x00,

0x00,

0x00,

oxec,

ox10,

0x80,

0x00,

0x80,

OxA1,

0x80,

ox8C,

ox81,

0x80,

ox01,

ox21,

oxC1,

ox21,

ox31,

OXFF,

0x0B,

0x03,

0x00,

Ox3E,

0x00,

0x01,

0x00,

0x00,

0x00,

0x00,

0x00,

OxOE,

ox10,

0x00,

0x03,

0x80,

OxA1,

0x80,

Ox9E,

0x80,

OXFF,

ox01,

ox21,

OxEQ,

0x20,

ox21,

OxXFF,

0x08,

0x03,

oxo1,

0x63,

0x00,

0x02,

0x00,

0x00,

0x00,

0x00,

ox1F,

OXOE,

ox10,

0x80,

OXOE,

0x80,

OxA1,

0x80,

0x92,

ox81,

ox01,

OXEO,

OxE1,

0x00,

0x20,

0x00,

0x0B,

0x00,

0xe3,

0x80,

0x00,

oxe3,

0x00,

0x00,

0x00,

0x00,

OxFO,

0x0C,

OxFO,

0x80,

0x08,

0x80,

OxA1,

Ox8F,

ox92,

Ox8F,

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

ox

lcdBegin(); // This will setup our pins, and initialize the

LCD

updateDisplay(); // with displayMap untouched, SFE logo
setContrast(40); // Good values range from 40-60

delay(2000);

Page 7 of 14

lcdFunTime(); // Runs a 3@-second demo of graphics functions

// Wait for serial to come in, then clear display and go to
echo
while (!Serial.available())
H
clearDisplay(WHITE);
updateDisplay();
}

// Loop turns the display into a local serial monitor echo.
// Type to the Arduino from the serial monitor, and it'll echo
// what you type on the display. Type ~ to clear the display.
void loop()
{

static int cursorX = 0;

static int cursoryY = 9;

if (Serial.available())

{

char ¢ = Serial.read();

switch (c)

{

case '\n': // New line
cursorY += 8;
break;

case '\r': // Return feed
cursorX = 0;
break;

case '~': // Use ~ to clear the screen.
clearDisplay (WHITE);
updateDisplay();
cursorX = @; // reset the cursor
cursorY = 0;
break;

default:
setChar(c, cursorX, cursorY, BLACK);
updateDisplay();
cursorX += 6; // Increment cursor
break;

}

// Manage cursor

if (cursorX >= (LCD_WIDTH - 4))

{ // If the next char will be off screen...
cursorX = 0; // ... reset x to @...
cursorY += 8; // ...and increment to next line.
if (cursorY >= (LCD_HEIGHT - 7))

{ // If the next line takes us off screen...
cursorY = @; // ...go back to the top.
}
}
b
}

/* This function serves as a fun demo of the graphics driver
functions below. */
void lcdFunTime()
{
clearDisplay(WHITE); // Begin by clearing the display
randomSeed(analogRead(AQ));

/* setPixel Example */
const int pixelCount = 100;
for (int i=0; i<pixelCount; i++)

Page 8 of 14

}

//

//

setStr("full of stars", ©, LCD_HEIGHT-8, BLACK);
updateDisplay();

delay(1000);

// Seizure time!!! Err...demoing invertDisplay()
for (int i=0; i<5; i++)

te

{

d

}

invertDisplay(); // This will swap all bits in our display
delay(200);
invertDisplay(); // This will get us back to where we star

delay(200);

delay(2000);

/* setlLine Example */
clearDisplay(WHITE); // Start fresh
int x@ = LCD_WIDTH/2;

int y@ = LCD_HEIGHT/2;

for (float i=0; i<2*PI; i+=PI/8)

{

e).

}

// Time to whip out some maths:
const int lineLength = 24;

int x1 = x@ + lineLength * sin(i);
int y1 = y@ + lineLength * cos(i);

// setLine(x®, y@, x1, yl, bw) takes five variables. The

// first four are coordinates for the start and end of th

// line. The last variable is the color (1=black, @=whit

setLine(x@, y@, x1, yl, BLACK);
updateDisplay();
delay(100);

// Demo some backlight tuning
for (int j=0; j<2; j++)

{

for (int i=255; i>=@; i-=5)
{
analogWrite(blPin, i); // blPin is ocnnected to BL LED
delay(20);
¥
for (int i=0; i<256; i+=5)
{
analogWrite(blPin, 1i);
delay(20);
}

/* setRect Example */
clearDisplay(WHITE); // Start fresh

setPixel takes 2 to 3 parameters. The first two params
// are x and y variables. The third optional variable is
// a "color" boolean. 1 for black, @ for white.

// setPixel() with two variables will set the pixel with
// the color set to black.

clearPixel() will call setPixel with with color set to
// white.

setPixel(random(@, LCD_WIDTH), random(©, LCD_HEIGHT));

// After drawing something, we must call updateDisplay()
// to actually make the display draw something new.
updateDisplay();

delay(10);

Page 9 of 14

k)

st

t,

// setRect takes six parameters (x0, y0, x1, yo, fill, bw)
// x0, yo, x1, and y@ are the two diagonal corner coordinate

// fill is a boolean, which determines if the rectangle is
// filled in. bw determines the color @=white, 1=black.
for (int x=0; x<LCD_WIDTH; x+=8)
{ // Swipe right black
setRect(@, 0, x, LCD_HEIGHT, 1, BLACK);
updateDisplay();
delay(10);
¥
for (int x=0; x<LCD_WIDTH; x+=8)
{ // Swipe right white
setRect(@, ©, X, LCD_HEIGHT, 1, WHITE);
updateDisplay();
delay(10);
¥
for (int x=0; x<12; x++)
{ // Shutter swipe
setRect (0, @, x, LCD_HEIGHT, 1, 1

setRect(11, @, x+12, LCD_HEIGHT, BLACK) ;

M

)

1
setRect(23, 0, x+24, LCD_HEIGHT, 1, BLACK);
setRect(35, @, x+36, LCD_HEIGHT, 1, BLACK);
setRect(47, 0, x+48, LCD_HEIGHT, 1, BLACK);
setRect(59, @, x+60, LCD_HEIGHT, 1, BLACK);
setRect(71, @, x+72, LCD_HEIGHT, 1, BLACK);
updateDisplay();
delay(10);

}

// 3 Dee!

setRect(25, 10, 45, 30, @, WHITE);
setRect(35, 20, 55, 40, @, WHITE);

setline(25, 10, 35, 20, WHITE);
setLine(45, 30, 55, 40, WHITE);
setline(25, 30, 35, 40, WHITE);
setLine(45, 10, 55, 28, WHITE);
updateDisplay();

delay(2000);

/* setCircle Example */

clearDisplay (WHITE);

// setCircle takes 5 parameters -- x0, y@, radius, bw, and
// lineThickness. x@ and y@ are the center coords of the cir

// radius is the...radius. bw is the color (@=white, 1=blac
// lineThickness is the line width of the circle, 1 = smalle

// thickness moves in towards center.
for (int i=0; i<20; i++)
{

int x = random(®, LCD_WIDTH);

int y = random(@, LCD_HEIGHT);

setCircle(x, y, i, BLACK, 1);
updateDisplay();
delay(100);

}
delay(2000);

/* setChar & setStr Example */
// setStr takes 4 parameters: an array of characters to prin

// x and y coordinates for the top-left corner. And a color

Page 10 of 14

setStr("Modern Art", 0, 10, WHITE);
updateDisplay();
delay(2000);

/* setBitmap Example */

// setBitmap takes one parameter, an array of the same size
// as our screen.

setBitmap(xkcdSandwich);

updateDisplay();

For help understanding the sketch, check the comments in the code. Most
of the action takes place in the 1lcdFunTime() function.

Heads up! If the display is not showing pixels even with the correct
logic levels and example code, it may just have slight variances in the
way that they were manufactured. You can see the pixels faintly on
the screen at an angle or pushing down on the LCD. You will need to
try and set the contrast where it says setContrast(40) online 87 to a
value of 60 . There is probably some variances in the LCD’s contrast
which might explain why certain LCDs have issues displaying defined
pixels on the screen.

The Sketch in Action

Once uploaded to your Arduino, the sketch will begin by running the demo
— a set of basic animations and graphics functions. To begin, we’ll draw
some random pixels on the screen (“It’s full of stars...”). Then we’ll move
on to examples of drawing lines, rectangles, and circles. Throughout
there are examples of drawing characters and strings. Finally the demo
closes out with an homage to a monochrome comic which seems a perfect
fit for this littte monochrome LCD.

This is a demo of drawing bitmaps on the screen, which is one of the more
rewarding tasks we can accomplish with the ‘duino/LCD combo.

After the demo runs its course, the sketch will enter into a serial echo
mode. Open the serial monitor (set the baud rate to 9600 bps), and type
stuff over to the Arduino. It should start printing everything you send it onto
the LCD.

If you're intrigued by the possibilities of drawing bitmaps on the screen,
check out the next page! We’'ll show you how to import your own 84x48
bitmap and draw it on the screen.

Page 11 of 14

Example Code 2: Drawing Bitmaps

If the last demo has you chomping at the bit to design your own 84x48
bitmaps and display them, continue reading through this example. We'll
show you how to scale and import a bitmap, then compile it into your
Arduino code and send it to the LCD, so you can have your own, sillly
graphic.

Find/Make/Modify a Bitmap

To begin, find a bitmap image that you’d like to print to the LCD. 84x48
monochrome pixels doesn’t give you a /ot of room, but you can still get
some fun stuff on there. Here are a few examples:

After you've picked an image, you'll need to massage it to make it both
monochrome (2-bit color) and 84 x 48 pixels. Most standard image editors
can help with this. For Windows users, Paint is all you need to scale the
image. Then save it as a monochrome bitmap.

Convert Bitmap to Array

The next step is converting that regular image file to a 504-byte array of
char ’s. There are a number of programs that can help with this around the
web. We recommend LCD Assistant.

To load up an image in LCD Assistant, go to File > Load Image. A preview
of the image should open up, make sure it’s the right size — 84 pixels wide,
48 pixels tall. Also make sure the Byte orientation is set to Vertical and the
Size endianness is set to Little. The rest of the default settings (8
pixels/byte, etc.) should already be set correctly:

[LCO Assistant - hitpo/en.radzio.dp.pl/bamap_comverter e

Pcture preview

Settngs
Byte orientation
& Vertical
 Horizontal
Sue
width [84
respt [8
Other
I~ Indude sze
Sire endarness
& Utte
~ e
Prels byte
B =
=
Table rame ©
fexample bitmag-fa

Then go to File > Save output to generate a temporary text file. Open that
text file to have a look at your shiny new array. You'll need to modify the
type of the array to be justa char (no unsigned or const). Also make
sure the array has the proper naming conventions (no dashes, don't start
with a number, etc.).

Import into the Sketch and Draw!

Page 12 of 14

With that array created, copy the entire table over to your Arduino sketch.
Use the same sketch from Example 1. Paste the array wherever you'd like.
Now, to test out your drawing, replace the setup() and loop() in the last
sketch with the below (making sure the rest of the functions and variables
remain in the sketch):

// ...LCD definitions, variables, and bitmap array defined abo
ve.

void setup()
{

lcdBegin(); // This will setup our pins, and initialize the
LCD

setContrast(60); // Good values range from 40-60

setBitmap(flameBitmap); // flameBitmap should be replaced wi
th the name of your BMP array

updateDisplay(); // Update the display to make the array sh
ow up.

}

void loop()

{
}

// LCD control and graphics functions defined below...

Fun stuffl Now you can overlay text, or draw on on your bitmap. You can
even try importing multiple graphics to create animations!

Resources and Going Further

Thanks for checking out our Monochrome 84 x 48 Graphic LCD Hookup
Guide! Should you require any further resources to get your LCD up and
running, here are some handy places to look:

* LCD and Driver Resources

o PCD8544 LCD Controller Datasheet

o LCD Datasheet — Not exactly SparkFun’s LCD, but a pretty
close match.

o GitHub Repository - Example code used in this tutorial for the
Nokia graphic LCD.

+ Arduino Libraries and Code

o PCD8544 Arduino Library — A dependable Arduino library for
the PCD8544 LCD driver.

o AdaFruit LCD Library — Adafruit has an amazing Arduino
library to help interface with this LCD. Also requires their
graphics library.

« Bitmap Tools

o LCD Assitant

o Bitmap2LCD

o TheDotFactory — Nifty tool to create array definitions for
custom fonts.

Going Further

Now that you’ve got control of your graphic LCD, you can embed it into all
sorts of cool projects. If you need some inspiration, here are some related
tutorials to help you out:

* OLED Display Hookup Guide — While not exactly an LCD, this OLED
provides a nice, crisp text display to your project.

Page 13 of 14

Page 14 of 14

* MP3 Player Shield Music Box — This MP3 Player Music Box could be
well served by a sweet graphic display. Hmm...

* ITG-3200 Hookup Guide — The ITG-3200 is a fully-featured 3-axis
gyroscope sensor. This display could be used to create a visual
angular velocity meter.

https://learn.sparkfun.com/tutorials/graphic-lcd-hookup-guide 3/30/2018

