

Hex D Flip-Flop with Common Clock and Reset

High-Performance Silicon-Gate CMOS

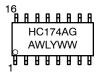
MC74HC174A

The MC74HC174A is identical in pinout to the LS174. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of six D flip-flops with common Clock and Reset inputs. Each flip-flop is loaded with a low-to-high transition of the Clock input. Reset is asynchronous and active-low.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 162 FETs or 40.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable*
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant



TSSOP-16 DT SUFFIX CASE 948F SOIC-16 D SUFFIX CASE 751B

MARKING DIAGRAMS

A = Assembly Location

L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

RESET [1 ●] V _{CC}
Q0 [2	15] Q5
D0 [3	14] D5
D1 [4	13] D4
Q1 [5	12] Q4
D2 [6	11] D3
Q2 [7	10] Q3
GND [8	9	CLOCK

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC174ADR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC74HC174ADTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV74HC174ADR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV74HC174ADTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

1

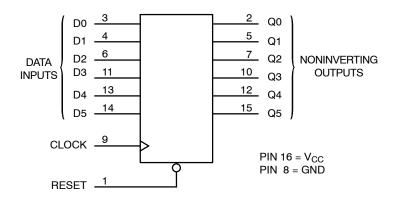


Figure 1. Logic Diagram

FUNCTION TABLE

	Output		
Reset	Clock	D	Q
L	Х	Х	L
Н	_	Н	Н
Н	_	L	L
Н	L	Х	No Change
Н	~	Х	No Change

DESIGN/VALUE TABLE

Design Criteria	Value	Units
Internal Gate Count*	40.5	ea.
Internal Gate Propagation Delay	1.5	ns
Internal Gate Power Dissipation	5.0	μW
Speed Power Product	0.0075	рЈ

^{*}Equivalent to a two-input NAND gate.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	DC Supply Voltage	(Referenced to GND)	-0.5 to +7.0	V
V _{IN}	DC Input Voltage	(Referenced to GND)	-0.5 to $V_{CC} + 0.5$	V
V _{OUT}	DC Output Voltage	(Referenced to GND) (Note 1)	-0.5 to V_{CC} + 0.5	V
I _{IN}	DC Input Current, per Pin		±20	mA
I _{OUT}	DC Output Current, per Pin		±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins		±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Second	s SOIC, TSSOP	260	°C
T_J	Junction Temperature Under Bias		+150	°C
θЈА	Thermal Resistance	SOIC TSSOP	112 148	°C/W
P _D	Power Dissipation in Still Air at 85°C	SOIC TSSOP	500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30-35%	UL 94 V-0 @ 0.125 in.	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	>2000 >100 >500	V
I _{LATCHUP}	Latchup Performance Above V _{CC}	and Below GND at 85°C (Note 5)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- I_O absolute maximum rating must be observed.
 Tested to EIA/JESD22-A114-A.
- 3. Tested to EIA/JESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	DC Supply Voltage	2.0	6.0	V	
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (F	0	V _{CC}	V	
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	CLOCK Input Rise and Fall Time (Figure 2)	V _{CC} = 2.0 V V _{CC} = 3.3 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0 0	1000 700 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

6. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

			V _{CC}	Guaran	teed Limi	t	
Symbol	Parameter	Test Conditions	V	–55°C to 25°C	≤ 85°C	≤125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	V_{OUT} = 0.1 V or V_{CC} – 0.1 V $ I_{OUT} \le 20 \mu A$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	٧
V _{IL}	Maximum Low-Level Input Voltage	V_{OUT} = 0.1 V or V_{CC} – 0.1 V $ I_{OUT} \le 20 \mu A$	2.0 4.5 6.0	0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \ \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5 6.0	3.98 5.48	3.84 5.34	3.7 5.2	
V _{OL}	Maximum Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \ \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	٧
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5 6.0	0.26 0.26	0.33 0.33	0.4 0.4	
I _{IN}	Maximum Input Leakage Current	V _{IN} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0	4.0	40	160	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$)

		V _{CC}	Guaran			
Symbol	Parameter	v	-55°C to 25°C	≤ 85°C	≤125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 2 and 5)	2.0 4.5 6.0	6.0 30 35	4.8 24 28	4.0 20 24	MHz
t _{PLH} t _{PHL}	Maximum Propagation Delay, Clock to Q (Figures 3 and 5)	2.0 4.5 6.0	110 22 19	140 28 24	165 33 28	ns
t _{PLH} t _{PHL}	Maximum Propagation Delay, Reset to Q (Figures 2 and 5)	2.0 4.5 6.0	110 21 19	140 28 24	160 32 27	ns
t _{TLH} t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 5)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
C _{in}	Maximum Input Capacitance		10	10	10	pF

			Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance, per Enabled Output	(Note 7)	62	pF

^{7.} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING REQUIREMENTS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6.0 \text{ ns}$)

				Guaranteed Limit						
			V _{CC}	–55°C 1	to 25°C	≤8	5°C	≤12	5°C	
Symbol	Parameter	Figure	V	Min	Max	Min	Max	Min	Max	Unit
t _{su}	Minimum Setup Time, Data to Clock	4	2.0 4.5 6.0	50 10 9.0		65 13 11		75 15 13		ns
t _h	Minimum Hold Time, Clock to Data	4	2.0 4.5 6.0	5.0 5.0 5.0		5.0 5.0 5.0		5.0 5.0 5.0		ns
t _{rec}	Minimum Recovery Time, Reset Inactive to Clock	3	2.0 4.5 6.0	5.0 5.0 5.0		5.0 5.0 5.0		5.0 5.0 5.0		ns
t _w	Minimum Pulse Width, Clock	2	2.0 4.5 6.0	75 15 13		95 19 16		110 22 19		ns
t _w	Minimum Pulse Width, Reset	3	2.0 4.5 6.0	75 15 13		95 19 16		110 22 19		ns
t _r , t _f	Maximum Input Rise and Fall Times	2	2.0 4.5 6.0		1000 500 400		1000 500 400		1000 500 400	ns

SWITCHING WAVEFORMS AND TEST CIRCUIT

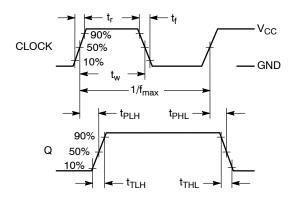


Figure 2. Switching Waveform

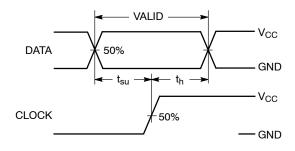


Figure 4. Switching Waveform

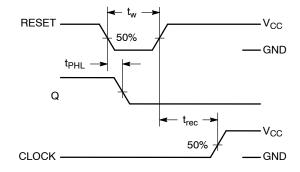
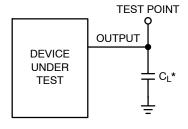



Figure 3. Switching Waveform

*Includes all probe and jig capacitance

Figure 5. Test Circuit

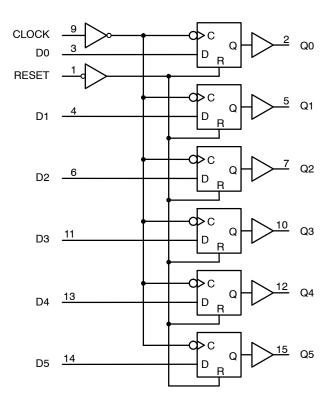
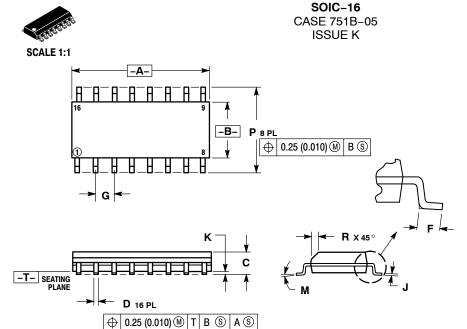



Figure 6. Expanded Logic Diagram

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050	BSC	
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

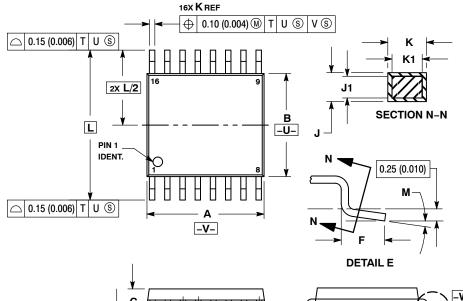
STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
PIN 1.	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE	#1	
2.	BASE	2.	ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION		BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.		7.	COLLECTOR, #4		
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3		
13.	BASE	13.	CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	OOL DEDING	COOTDONT
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDERING	FOOTPRINT
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	BASE, #1		8X
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1		i.40 — →
								- 0	.40
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				10% 1.12
2.	DRAIN, #1		CATHODE	2.	COMMON DRAIN (OUTPU	Τ\		1	16
3.	DRAIN, #2	3.		3.	COMMON DRAIN (OUTPU			, L .	'0
3. 4.	DRAIN, #2	3. 4.	CATHODE	3. 4.	GATE P-CH	1)		- —	
4. 5.	DRAIN, #2	4. 5.	CATHODE	4. 5.	COMMON DRAIN (OUTPU	Τ\		, , , , , , , , , , , , , , , , , , , 	
5. 6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPU		10	5X 1 -	
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPU		0.5	58	, L
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH	•,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPU	T)			
11.	GATE, #3	11.		11.	COMMON DRAIN (OUTPU				
12.	SOURCE, #3	12.		12.	COMMON DRAIN (OUTPU				
13.	GATE, #2	13.		13.	GATE N-CH	.,			
14.	SOURCE, #2	14.		14.	COMMON DRAIN (OUTPU	T)			V PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPU				1 <u>+=</u> 1- 1
16.	SOURCE, #1		ANODE	16.	SOURCE N-CH	.,			
								□ 8	9 + - + -
									~
									' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16		PAGE 1 OF 1	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

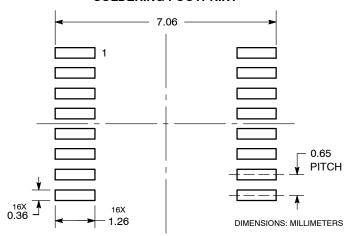
☐ 0.10 (0.004)

D


-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
C		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.18	0.28	0.007	0.011
7	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	٥°	QΟ	٥°	gο

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative